PROBABILITY
AND
MATHEMATICAL STATISTICS

Vol. 33, Fasc. 2 (2013), pp. 401-408

A FAMILY OF SEQUENCES OF BINOMIAL TYPE

BY
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Abstract. For a delta operator aD — bDPT! we find the correspond-
ing polynomial sequence of binomial type and relations with Fuss numbers.
In the case of D — %D2 we show that the corresponding Bessel-Carlitz
polynomials are moments of the convolution semigroup of inverse Gaus-
sian distributions. We also find probability distributions v, ¢ > 0, for which
{yn(t)}, the Bessel polynomials at ¢, is the moment sequence.

2000 AMS Mathematics Subject Classification: Primary: 05A40;
Secondary: 60E07, 44A60.

Key words and phrases: Sequence of binomial type, Bessel polyno-
mials, inverse Gaussian distribution.

1. INTRODUCTION

A sequence {wy(t)},~, of polynomials is said to be of binomial type (see
[10]) if deg wy,(t) = n and for every n > 0 and s,t € R we have

(1.1) (s +1) éf ( ) $)wn_(t).

k=0

A linear operator ) of the form

'D2+ Sp34

C1
(1.2) Q=D+ a

2
acting on the linear space R[z| of polynomials, is called a delta operator if ¢; # 0.
Here D denotes the derivative operator: D1 := 0 and Dt" :=n - t" ! forn > 1.
We will write @ = g(D), where

2,2 3.3

(1.3) g(x) = +§ +§x + ...
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There is a one-to-one correspondence between sequences of binomial type and
delta operators, namely, if () is a delta operator, then there is a unique sequence
{wn(t)}2, of binomial type satisfying Quy(t) = 0 and Qu,,(t) = n - wp—1(2)
for n > 1. These w, are called basic polynomials for Q).

A natural way of obtaining a sequence of binomial type is to start with a func-
tion f which is analytic in a neighborhood of zero:
aj az o

a
T+ —x +—3m3+...,

(1.4) flz)= T o1 3]

with a1 # 0. Then a sequence of binomial type appears in the Taylor expansion of
exp (¢ - f(x)), namely

X wp(t
(1.5) exp (tf(x)) => n(| )x”,
o n!
and the coefficients of w,, are partial Bell polynomials of a1, as, ... More gener-

ally, we can merely assume that f (as well as g) is a formal power series. Then f
is the composition inverse of g: f(g(z)) = g(f(z)) = =.

The aim of the paper is to describe the sequences of polynomials of binomial
type, which correspond to delta operators of the form @ = aD — bDP*!, Then we
discuss the special case D — %Dz studied by Carlitz [3]. We find the related semi-
group of probability measures and also the family of distributions corresponding
to the Bessel polynomials.

2. THE RESULT

THEOREM 2.1. Fora # 0,b € R, andforp > 1,let Q := aD — bDP*!. Then
the basic polynomials are as follows: wq(t) = 1 and forn > 1

[(n—1)/p] n+j—1 N
Yy ( )

=0

n—jp_

@.1) wn (1)

S (n—jp— 1)l
In particular, wy (t) = t/a.

Proof. We have to show that if n > 1 then Qu,(t) = n - w,_1(t). It is
obvious for n = 1, so assume that n > 2. Then we have

D7 (n+j = 1) (n — jp)b!
jt(n —jp—1)lan=1+J

[(n
aDwy(t) =

n—1—jp

n1 [(n=1)/p] DM |
> i (.?Jrj . )! (n' jfl)ftn_1_jp
= J'(n—jp—1Dlan1

=N

o2 1M
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and

bDP () = gn—1=jp—p

[(n=p=D/] (5, 4 j — 1)1 (n — jp)bI+!
2
=

( jln—jp—p—1lart

Now we substitute ;' := j + 1 and obtain

[(n—1)/p] (n+j —2)!(n—jp+ )bj' y
prJrl (1) = J : JpP—TDp ‘ tnflf] P
o= - Dl

Ifj > 1and jp+ 1 < n, then

(n+j-—D'(n—-gp) (+j—2)!(n—jp+p)

jt(n—jp—1)! (G =Dln—jp-1)
_ (4 =2)n+j—1)(n—jp) = jn—jp+p)
jln —jp—1)!
_ nn+j—-2)!(n—jp—1) _ n(n+j—2)!
jt(n —jp —1)! jt(n—jp —2)V

and if jp 4+ 1 = n, then this difference is zero. Therefore we have

n—1—jp

t>n—1 N (2P p(n 45— 2)1b

D —bvDP Y, (t) =n | = :
(@D =60 ) = TS Ch e

[(n—2)/p] (n+j—2) »
j=0 jt(n—jp—2)tan=1+s

=n

which concludes the proof. =

and the corre-

np+1) 1

Recall that Fuss numbers of order p are given by ( n ) apr

sponding generating function

X (np+1 x"
22 By(x) =
22 o= 3 ()
is determined by the equation
(2.3) By(z) =14z - By(x)P.
In particular,

1-+v1—-4x

2.4) Balw) = — .

For more details, as well as combinatorial applications, we refer to [4].
Now we can exhibit the function f corresponding to the operator a.D — bDP*!
and to the polynomials (2.1).
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COROLLARY 2.1. For the polynomials (2.1) we have

exp (t f(x ) i (t

n=0 n!

where
T baP
(2.5) f(z) = o Cptt <ap+1>-

Proof. Since f is the inverse function for g(z) := ax — bzP*!, it satisfies
af(x) =z + bf (x)P*L, which is equivalent to

p p+1
(af(x)):1+ bx <af(:n)> '
x aptl x
Comparing with (2.3), we see that af (z)/x = Bpi1(bzP /aPTl).

Alternatively, we could apply the formula a,, = w/,(0) for the coefficients
in(14). =

3. THE OPERATOR D — 1 D?

One important source of sequences of binomial type are moments of convolu-
tion semigroups of probability measures on the real line. In this part we describe an
example of such a semigroup, which corresponds to the delta operator D — %DQ.
For more details we refer to [3], [5], [7], and [10] and to the entry A001497 in [11].

In view of (2.1), the sequence of polynomials of binomial type corresponding
to the delta operator D — $D? is

n—l—] s i 2n—k—1)!tk

n—j—1)2i ,g k) (k — 1)1 27—k’

G w, Z
with wg(t) = 1. They are related to the Bessel polynomials

_ - (n+))!
(3.2) yn(t)_ Zo]'(n_]) < > \/7K—n 1/2 1/t

where K, (z) denotes the modified Bessel function of the second kind. Namely, for
n > 1 we have

2t
(3.3) wp(t) = "Y1 (1/t) = t”et\/;Kl/g_n(t)
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Applying Corollary 2.1 and (2.4) we get

o

(3.4) f@)=a Ba(w/2) =1-VI-20=Y ",

n=1 "
where a,, = (2n — 3)!!. The function f(x1) admits the Kolmogorov representation
(see formula (7.15) in [12]) as

e—u/2

vV 2mus

+00 .
(3.5) 1—vV1-2zi=ai+ [ (" —1— uzi) du,
0

with the probability density function

\/ﬁe—u/2
V2T

on [0, +00). Therefore
¢(z) = exp (1 — V1 — 2zi)

is the characteristic function of some infinitely divisible probability measure. It
turns out that the corresponding convolution semigroup {},- is contained in
the family of inverse Gaussian distributions, see 24.3 in [1].

THEOREM 3.1. Fort >0 define probability distribution ;= pi(u) du, where

_t exp(—(u —t)%/(2u))
V2mu3
for u >0 and pi(u) = 0 for u < 0. Then {1}, is a convolution semigroup,

exp (¢ — tv/1 — 2ai) is the characteristic function of ¢, and {wy (t)}>° , defined
by (3.1), is the moment sequence of ;.

(3.6) pe(u)

Proof. It is sufficient to check moments of p,. Substituting u := 2v and
applying the formula

1 /t\P 2\ dv
(3.7) Kyt) = ¢ (2) e (—v - 41)) s
(see (10.32.10) in [9]), we obtain

00 t- _ —t 2 2 t oo _ 2
Ju® exp(—(u — 1%/ (2u) du= "¢ [ exp <u - t) u" 32 du
0 V2mu? V271 2 2u

teton—1 o0 2N\ s, tel2nTl g\
_ - — =32 dy = 21 = Ki9_,(t
NG Oexp< v 4v>v v NG <2> 1/2-n(t);

which, by (3.3), is equal to wy, (). =
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4. PROBABILITY MEASURES CORRESPONDING TO THE BESSEL POLYNOMIALS

In this part we are going to give some remarks concerning Bessel polynomi-
als (3.2). First we compute the exponential generating function (cf. formula (6.2)
in [5]).

PROPOSITION 4.1. For the exponential generating function of the sequence
{yn(t)} we have

@.1) i yn(t)$n _exp (% — %\/1 — 2tx)
) = n! N V1 =2tz .

Proof. By (3.3) we have

£l 0 S (10) S (1)

n=0 n! n=0 n! n=1 (n_l)'
A= trwa() )\ d 11
_d$'<n§0n‘ :L')—dxexp<t—tv1—2tx>,

which leads to (4.1). =
Now we represent the Bessel polynomials (3.2) as a moment sequence.

THEOREM 4.1. Forn > 0andt > 0 we have

2 expl—(u — 2 U
(4.2) yn(t):{un p( (\/%/(Qt )

Proof. Substituting u := 2tv, applying (3.7) and (3.2) we get

% exp(—(u—1)%/(2tw) et/t oo <—u 1 )
n du = n /2 o d
{ B 2mtu " V2rt f B P B

0
1/t n+1/2 oo
= ete)me fvn—1/2 exp (—v _ 1) dv

V27t 0 4t2y
2
= VN SR 1 (1) = (),
which concludes the proof.

Alternatively, we could apply Theorem 3.1 and the relation (3.3). =

Denote by 14 the corresponding probability measure, i.e.

ex —(u — 2 u
43) = P J%/ 1)+ ooro ()

Although the family {14}, , is not a convolution semigroup, we will see that every
v, is infinitely divisible.
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THEOREM 4.2. Fort > 0 we have the convolution formula
4.4) ve = e * Dipi gy,

where ~y; denotes the gamma distribution with shape 1/2 and scale 2t,

exp(—u/(2t)
4.5) Ve = E/M)X(O,—s—oo) (u) du,

and Dypy 4 is the dilation of py s by t,

exp(—(u — 1)? U
p( (\/%/ (2t ))X(ij)(u) o

In particular, vy is infinitely divisible.

(4.6) Dy =

Proof. From Theorem 4.1 we see that the characteristic function of 14, i.e.

exp (% — %\/1 — 2txi)

4.7 x) = ,
is the product of
1
V1= 2tai’
the characteristic function of 7, and
1 1 :
exp 7 Z\/l — 2txi |,

the characteristic function of D1/, which proves (4.4). Since both ~; and Dy py /4
are infinitely divisible, so is their convolution v;. =

Let us list some interesting integer sequences which arise from the polyno-
mials (3.1) and (3.2), together with their numbers in the On-Line Encyclopedia
of Integer Sequences [11] and the corresponding probability distribution. For their
combinatorial applications we refer to [11]:

1. A144301: wy, (1), moments of pi1;

A107104: wy(2), moments of ji2;

A043301: wp41(2)/2, moments of the density function u - pa(u)/2;
A080893: 2" - wy,(1/2), moments of the density function py /5(u/2)/2;
A001515: ¥, (1), moments of vy;

A001517: y,,(2), moments of va;

A001518: y,,(3), moments of v3;

A065919: y,,(4), moments of vy.

e A U
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