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Abstract. For a delta operator aD − bDp+1 we find the correspond-
ing polynomial sequence of binomial type and relations with Fuss numbers.
In the case of D − 1

2D
2 we show that the corresponding Bessel–Carlitz

polynomials are moments of the convolution semigroup of inverse Gaus-
sian distributions. We also find probability distributions νt, t > 0, for which
{yn(t)}, the Bessel polynomials at t, is the moment sequence.
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1. INTRODUCTION

A sequence {wn(t)}∞n=0 of polynomials is said to be of binomial type (see
[10]) if degwn(t) = n and for every n ­ 0 and s, t ∈ R we have

(1.1) wn(s+ t) =
n∑

k=0

(
n

k

)
wk(s)wn−k(t).

A linear operator Q of the form

(1.2) Q =
c1
1!
D +

c2
2!
D2 +

c3
3!
D3 + . . . ,

acting on the linear space R[x] of polynomials, is called a delta operator if c1 ̸= 0.
Here D denotes the derivative operator: D1 := 0 and Dtn := n · tn−1 for n ­ 1.
We will write Q = g(D), where

(1.3) g(x) =
c1
1!
x+

c2
2!
x2 +

c3
3!
x3 + . . .
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There is a one-to-one correspondence between sequences of binomial type and
delta operators, namely, if Q is a delta operator, then there is a unique sequence
{wn(t)}∞n=0 of binomial type satisfying Qw0(t) = 0 and Qwn(t) = n · wn−1(t)
for n ­ 1. These wn are called basic polynomials for Q.

A natural way of obtaining a sequence of binomial type is to start with a func-
tion f which is analytic in a neighborhood of zero:

(1.4) f(x) =
a1
1!
x+

a2
2!
x2 +

a3
3!
x3 + . . . ,

with a1 ̸= 0. Then a sequence of binomial type appears in the Taylor expansion of
exp

(
t · f(x)

)
, namely

(1.5) exp
(
t · f(x)

)
=
∞∑
n=0

wn(t)

n!
xn,

and the coefficients of wn are partial Bell polynomials of a1, a2, . . . More gener-
ally, we can merely assume that f (as well as g) is a formal power series. Then f
is the composition inverse of g: f

(
g(x)

)
= g

(
f(x)

)
= x.

The aim of the paper is to describe the sequences of polynomials of binomial
type, which correspond to delta operators of the form Q = aD − bDp+1. Then we
discuss the special case D − 1

2D
2 studied by Carlitz [3]. We find the related semi-

group of probability measures and also the family of distributions corresponding
to the Bessel polynomials.

2. THE RESULT

THEOREM 2.1. For a ̸= 0, b ∈ R, and for p ­ 1, letQ := aD− bDp+1. Then
the basic polynomials are as follows: w0(t) = 1 and for n ­ 1

(2.1) wn(t) =
[(n−1)/p]∑

j=0

(n+ j − 1)! bj

j! (n− jp− 1)! an+j
tn−jp.

In particular, w1(t) = t/a.

P r o o f. We have to show that if n ­ 1 then Qwn(t) = n · wn−1(t). It is
obvious for n = 1, so assume that n ­ 2. Then we have

aDwn(t) =
[(n−1)/p]∑

j=0

(n+ j − 1)! (n− jp)bj

j! (n− jp− 1)! an−1+j
tn−1−jp

= n

(
t

a

)n−1
+

[(n−1)/p]∑
j=1

(n+ j − 1)! (n− jp)bj

j! (n− jp− 1)! an−1+j
tn−1−jp
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and

bDp+1wn(t) =
[(n−p−1)/p]∑

j=0

(n+ j − 1)! (n− jp)bj+1

j! (n− jp− p− 1)! an+j
tn−1−jp−p.

Now we substitute j′ := j + 1 and obtain

bDp+1wn(t) =
[(n−1)/p]∑

j′=1

(n+ j′ − 2)! (n− j′p+ p)bj
′

(j′ − 1)! (n− j′p− 1)! an−1+j′
tn−1−j

′p.

If j ­ 1 and jp+ 1 < n, then

(n+ j − 1)! (n− jp)
j! (n− jp− 1)!

− (n+ j − 2)! (n− jp+ p)

(j − 1)! (n− jp− 1)!

=
(n+ j − 2)![(n+ j − 1)(n− jp)− j(n− jp+ p)]

j!(n− jp− 1)!

=
n(n+ j − 2)! (n− jp− 1)

j! (n− jp− 1)!
=

n(n+ j − 2)!

j! (n− jp− 2)!
,

and if jp+ 1 = n, then this difference is zero. Therefore we have

(aD − bDp+1)wn(t) = n

(
t

a

)n−1
+

[(n−2)/p]∑
j=1

n(n+ j − 2)! bj

j! (n− jp− 2)! an−1+j
tn−1−jp

= n
[(n−2)/p]∑

j=0

(n+ j − 2)! bj

j! (n−jp−2)! an−1+j
tn−1−jp = n · wn−1(t),

which concludes the proof. �

Recall that Fuss numbers of order p are given by
(
np+1
n

)
1

np+1 , and the corre-
sponding generating function

(2.2) Bp(x) :=
∞∑
n=0

(
np+ 1

n

)
xn

np+ 1

is determined by the equation

(2.3) Bp(x) = 1 + x · Bp(x)p.

In particular,

(2.4) B2(x) =
1−
√
1− 4x

2x
.

For more details, as well as combinatorial applications, we refer to [4].
Now we can exhibit the function f corresponding to the operator aD− bDp+1

and to the polynomials (2.1).
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COROLLARY 2.1. For the polynomials (2.1) we have

exp
(
t · f(x)

)
=
∞∑
n=0

wn(t)

n!
xn,

where

(2.5) f(x) =
x

a
· Bp+1

(
bxp

ap+1

)
.

P r o o f. Since f is the inverse function for g(x) := ax − bxp+1, it satisfies
af(x) = x+ bf(x)p+1, which is equivalent to(

af(x)

x

)
= 1 +

bxp

ap+1

(
af(x)

x

)p+1

.

Comparing with (2.3), we see that af(x)/x = Bp+1(bx
p/ap+1).

Alternatively, we could apply the formula an = w′n(0) for the coefficients
in (1.4). �

3. THE OPERATOR D − 1
2D

2

One important source of sequences of binomial type are moments of convolu-
tion semigroups of probability measures on the real line. In this part we describe an
example of such a semigroup, which corresponds to the delta operator D − 1

2D
2.

For more details we refer to [3], [5], [7], and [10] and to the entry A001497 in [11].
In view of (2.1), the sequence of polynomials of binomial type corresponding

to the delta operator D − 1
2D

2 is

(3.1) wn(t) =
n−1∑
j=0

(n+ j − 1)! tn−j

j! (n− j − 1)! 2j
=

n∑
k=1

(2n− k − 1)! tk

(n− k)! (k − 1)! 2n−k
,

with w0(t) = 1. They are related to the Bessel polynomials

(3.2) yn(t) =
n∑

j=0

(n+ j)!

j! (n− j)!

(
t

2

)j

= e1/t
√

2

πt
K−n−1/2 (1/t),

whereKν(z) denotes the modified Bessel function of the second kind. Namely, for
n ­ 1 we have

(3.3) wn(t) = tnyn−1 (1/t) = tnet
√

2t

π
K1/2−n(t).
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Applying Corollary 2.1 and (2.4) we get

(3.4) f(x) = x · B2(x/2) = 1−
√
1− 2x =

∞∑
n=1

an
n!
xn,

where an = (2n− 3)!! . The function f(xi) admits the Kolmogorov representation
(see formula (7.15) in [12]) as

(3.5) 1−
√
1− 2xi = xi +

+∞∫
0

(euxi − 1− uxi) e
−u/2
√
2πu3

du,

with the probability density function
√
ue−u/2√
2π

on [0,+∞). Therefore
ϕ(x) = exp

(
1−
√
1− 2xi

)
is the characteristic function of some infinitely divisible probability measure. It
turns out that the corresponding convolution semigroup {µt}t>0 is contained in
the family of inverse Gaussian distributions, see 24.3 in [1].

THEOREM 3.1. For t>0 define probability distribution µt :=ρt(u) du, where

(3.6) ρt(u) :=
t · exp

(
−(u− t)2/(2u)

)
√
2πu3

for u > 0 and ρt(u) = 0 for u ¬ 0. Then {µt}t>0 is a convolution semigroup,
exp

(
t− t
√
1− 2xi

)
is the characteristic function of µt, and {wn(t)}∞n=0 , defined

by (3.1), is the moment sequence of µt.

P r o o f. It is sufficient to check moments of µt. Substituting u := 2v and
applying the formula

(3.7) Kp(t) =
1

2

(
t

2

)p∞∫
0

exp

(
−v − t2

4v

)
dv

vp+1

(see (10.32.10) in [9]), we obtain

∞∫
0

un
t · exp

(
−(u− t)2/(2u)

)
√
2πu3

du =
tet√
2π

∞∫
0

exp

(
−u
2
− t2

2u

)
un−3/2 du

=
tet2n−1√

π

∞∫
0

exp

(
−v − t2

4v

)
vn−3/2 dv =

tet2n−1√
π

2

(
t

2

)n−1/2
K1/2−n(t),

which, by (3.3), is equal to wn(t). �
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4. PROBABILITY MEASURES CORRESPONDING TO THE BESSEL POLYNOMIALS

In this part we are going to give some remarks concerning Bessel polynomi-
als (3.2). First we compute the exponential generating function (cf. formula (6.2)
in [5]).

PROPOSITION 4.1. For the exponential generating function of the sequence
{yn(t)} we have

(4.1)
∞∑
n=0

yn(t)

n!
xn =

exp
(
1
t −

1
t

√
1− 2tx

)
√
1− 2tx

.

P r o o f. By (3.3) we have
∞∑
n=0

yn(t)

n!
xn =

∞∑
n=0

tn+1wn+1(1/t)

n!
xn =

∞∑
n=1

tnwn(1/t)

(n− 1)!
xn−1

=
d

dx

( ∞∑
n=0

tnwn(1/t)

n!
xn

)
=

d

dx
exp

(
1

t
− 1

t

√
1− 2tx

)
,

which leads to (4.1). �

Now we represent the Bessel polynomials (3.2) as a moment sequence.

THEOREM 4.1. For n ­ 0 and t > 0 we have

(4.2) yn(t) =
∞∫
0

un
exp

(
−(u− 1)2/(2tu)

)
√
2πtu

du.

P r o o f. Substituting u := 2tv, applying (3.7) and (3.2) we get
∞∫
0

un
exp

(
−(u− 1)2/(2tu)

)
√
2πtu

du =
e1/t√
2πt

∞∫
0

un−1/2 exp

(
−u
2t
− 1

2tu

)
du

=
e1/t(2t)n+1/2

√
2πt

∞∫
0

vn−1/2 exp

(
−v − 1

4t2v

)
dv

= e1/t
√

2

πt
K−n−1/2 (1/t) = yn(t),

which concludes the proof.
Alternatively, we could apply Theorem 3.1 and the relation (3.3). �

Denote by νt the corresponding probability measure, i.e.

(4.3) νt :=
exp

(
−(u− 1)2/(2tu)

)
√
2πtu

χ(0,+∞)(u) du.

Although the family {νt}t>0 is not a convolution semigroup, we will see that every
νt is infinitely divisible.
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THEOREM 4.2. For t > 0 we have the convolution formula

(4.4) νt = γt ∗Dtµ1/t,

where γt denotes the gamma distribution with shape 1/2 and scale 2t,

(4.5) γt =
exp

(
−u/(2t)

)
√
2πtu

χ(0,+∞)(u) du,

and Dtµ1/t is the dilation of µ1/t by t,

(4.6) Dtµ1/t =
exp

(
−(u− 1)2/(2tu)

)
√
2πtu3

χ(0,+∞)(u) du.

In particular, νt is infinitely divisible.

P r o o f. From Theorem 4.1 we see that the characteristic function of νt, i.e.

(4.7) ψt(x) =
exp

(
1
t −

1
t

√
1− 2txi

)
√
1− 2txi

,

is the product of
1√

1− 2txi
,

the characteristic function of γt, and

exp

(
1

t
− 1

t

√
1− 2txi

)
,

the characteristic function of Dtµ1/t, which proves (4.4). Since both γt and Dtµ1/t
are infinitely divisible, so is their convolution νt. �

Let us list some interesting integer sequences which arise from the polyno-
mials (3.1) and (3.2), together with their numbers in the On-Line Encyclopedia
of Integer Sequences [11] and the corresponding probability distribution. For their
combinatorial applications we refer to [11]:

1. A144301: wn(1), moments of µ1;
2. A107104: wn(2), moments of µ2;
3. A043301: wn+1(2)/2, moments of the density function u · ρ2(u)/2;
4. A080893: 2n · wn(1/2), moments of the density function ρ1/2(u/2)/2;
5. A001515: yn(1), moments of ν1;
6. A001517: yn(2), moments of ν2;
7. A001518: yn(3), moments of ν3;
8. A065919: yn(4), moments of ν4.
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