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Abstract. Let ω ∈ βN \ N be a free ultrafilter on N. It is known that
there is a difficulty in constructing the ultrapower of unbounded operators.
Krupa and Zawisza gave a rigorous definition of the ultrapower Aω of a
self-adjoint operator A. In this note, we give an alternative description of
Aω and the Hilbert space H(A) on which Aω is densely defined. This
provides a criterion to determine a representing sequence (ξn)n of a given
vector ξ ∈ dom(Aω) which has the property that Aωξ = (Aξn)ω holds. An
explicit core for Aω is also described.
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1. INTRODUCTION

Throughout the paper, we fix a free ultrafilter ω on N and a separable infinite-
dimensional Hilbert space H . We denote by B(H) the algebra of all bounded
operators in H . Let Hω be the Hilbert space ultraproduct of H . Each bounded
sequence (an)n ⊂ B(H) of bounded operators in H defines a bounded operator
(an)ω ∈ B(H), called the ultraproduct of (an)n, by the formula

(an)ω(ξn)ω := (anξn)ω, (ξn)ω ∈ Hω.

The ultrapower (or, more generally, the ultraproduct) of a sequence of bounded
operators has been used as an efficient tool for the analysis on Hilbert spaces. In
view of its usefullness, it is natural to consider a corresponding notion of ultra-
power Aω for an unbounded self-adjoint operator A. However, there arise essential
difficulties in connection with the following issues:

(1) definition of the domain dom(Aω) of Aω;
(2) self-adjointness of Aω;
(3) interpretation of Aω(ξn)ω = (Aξn)ω for ξ = (ξn)ω ∈ dom(Aω).
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Regarding (1), it does not make sense to define dom(Aω) to be the sub-
space dom(A)ω of all ξ ∈ Hω which is represented by a sequence (ξn)n, where
ξn ∈ dom(A) for all n, because dom(A)ω is simply the whole Hω and Aω(ξn)ω =
(Aξn)ω is not well-defined. Importance of the question (2) should be clear. The
problem (3) is probably the most delicate. Even if we could manage to define
dom(Aω) and suppose ξ ∈ dom(Aω) is represented by (ξn)n with ξn ∈ dom(A)
for all n, it might be the case where there exists another (ξ′n)n which also repre-
sents ξ (i.e., limn→ω ∥ξn − ξ′n∥ = 0 holds), and ξ′n ∈ dom(A) for all n holds as
well, and yet (Aξn)ω ̸= (Aξ′n)ω.

EXAMPLE 1.1. Let A be a self-adjoint operator and assume that there is an
orthonormal base {ηn}∞n=1 of H consisting of eigenvectors of A with Aηn = nηn,
n  1. Let η ∈ dom(A), and consider two sequences

ξn := η, ξ′n := η +
1

n
ηn (n  1).

Then it is clear that ξn, ξ′n ∈ dom(A), that (ξn)n, (ξ′n)n define the same element
ξ = (ξn)ω = (ξ′n)ω ∈ Hω, but

lim
n→ω
∥Aξn −Aξ′n∥ = lim

n→ω
∥ηn∥ = 1 ̸= 0,

whence (Aξn)ω ̸= (Aξ′n)ω. Should we define Aωξ = (Aξn)ω or Aωξ = (Aξ′n)ω?

Despite the above difficulty, Krupa and Zawisza [3], [4] gave a rigorous defi-
nition of Aω, as well as interesting applications to Schrödinger operators. To define
dom(Aω) in any sensible way, it is necessary to note that such a domain must be
in the subspace of DA, given as the set of all ξ ∈ Hω which has a representing
sequence (ξn)n of vectors from dom(A) such that (Aξn)n is also norm-bounded.
We put H(A) = DA. We recall from [4] the notion of partial ultrapowers.

DEFINITION 1.1. Let H ⊂ Hω be a closed subspace. A densely defined op-
erator A in H is called a partial ultrapower (p.u. for short) of A in H if for any
ξ ∈ dom(A ) there is (ξn)n ⊂ dom(A) such that ξ = (ξn)ω and A ξ = (Aξn)ω.

One of the fundamental results of Krupa and Zawisza [4] is the following:

THEOREM 1.1. (1) There is a p.u. Aω of A in H(A) satisfying dom(Aω) =
DA, uniquely determined by the property that for ξ ∈ DA and η ∈ H(A), Aωξ = η
if and only if there is a representative (ξn)n ⊂ dom(A) of ξ satisfying (Aξn)ω = η.

(2) Aω is the maximal among all p.u.’s of A. That is, if A is a p.u. of A inH,
thenH ⊂ H(A) and A = Aω|dom(A ).

(3) Aω is self-adjoint in H(A). Moreover, (Aω − i)−1 is the restriction of(
(A− i)−1

)
ω

to H(A) and sp(Aω) = sp(A) holds.

Note that in (1), the uniqueness of η is guaranteed by the condition η ∈ H(A).
Indeed, in Example 1.1, (Aξn)ω ∈ H(A), while (Aξ′n)ω /∈ H(A) (see Remark 4.1
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below). Despite their success, what seems to be unsatisfactory is that there is no a
priori criterion for a given ξ ∈ DA to choose an appropriate representative (ξn)n
such that (Aξn)ω is well-defined and is in H(A). Whether a chosen representa-
tive is indeed appropriate or not can be seen only after applying A and knowing
that the resulting vector is in the closure of DA. In this short note, we give an al-
ternative characterization of such an appropriate sequence, which will be called
a proper A-sequence, and give a new description of Aω in terms of an auxil-
iary operator Ãω by checking the validity of the equality Aω = Ãω. More pre-
cisely, we show that a bounded sequence (ξn)n of vectors from dom(A) has a
property that Aω(ξn)ω = (Aξn)ω if and only if (Aξn)n is bounded and, for ev-
ery ε > 0, there is a > 0, (ηn)n ∈ ℓ∞(N,H) with ηn ∈ 1[−a,a](A)H for each
n ∈ N, such that limn→ω ∥ξn − ηn∥A < ε. (∥ · ∥A is the graph norm.) Moreover,
a bounded sequence (ξn)n defines an element in H(A) if and only if the family of
maps {fn : R→ H}∞n=1 given by fn(t) = eitAξn is ω-equicontinuous (see Defini-
tion 3.1). We believe that this description will make Krupa–Zawisza analyses more
accessible and give a new insight into them.

2. PRELIMINARIES

Let ℓ∞(N,H) be the space of all bounded sequences in H . The ultrapower Hω

of H is defined by Hω = ℓ∞(N,H)/Tω, where Tω is the subspace of ℓ∞(N,H)
consisting of sequences tending to zero in norm along ω. The canonical image
of (ξn)n ∈ ℓ∞(N,H) is written as (ξn)ω, and Hω is again a Hilbert space (non-
separable in general) by the inner product

⟨ξ, η⟩ = lim
n→ω
⟨ξn, ηn⟩, ξ = (ξn)ω, η = (ηn)ω ∈ Hω.

We identify ξ ∈ H with its canonical image (ξ, ξ, . . .)ω ∈ Hω, so that H is a closed
subspace of Hω. Let {an}∞n=1 be a sequence of bounded operators on H . We then
define a bounded operator (an)ω ∈ B(Hω) by

(an)ω(ξn)ω := (anξn)ω, (ξn)ω ∈ Hω.

(an)ω is well-defined by the above, and ∥(an)ω∥ = limn→ω ∥an∥ holds. For a lin-
ear operator T on H , the domain of T is denoted by dom(T ). For ξ ∈ dom(T ),
we denote by ∥ξ∥T the graph norm of T given by (∥ξ∥2 + ∥Tξ∥2)1/2. For details
about operator theory, see, e.g., [7].

3. CONSTRUCTION OF Ãω

Let A be a self-adjoint operator on a separable Hilbert space H , and let u(t) =
eitA (t ∈ R). We introduce several subspaces of Hω. First, we need to introduce
the notion of ω-equicontinuity which has been used in the literature (see [2], [5]).
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DEFINITION 3.1. Let (X1, d1), (X2, d2) be metric spaces. A family of maps
{fn : X1 → X2}∞n=1 is said to be ω-equicontinuous if for every x ∈ X and ε > 0,
there exists δ = δx,ε > 0 and W ∈ ω such that for every x′ ∈ X with d1(x, x

′) < δ
and n ∈W , we have

d2
(
fn(x), fn(x

′)
)
< ε.

LEMMA 3.1. Let us assume that (ξn)n ∈ ℓ∞(N,H) is a sequence such that
{fn : t 7→ eitAξn}∞n=1 is ω-equicontinuous. Then t 7→ (eitAξn)ω is continuous.
Moreover, if (ξ′n)n ∈ ℓ∞(N,H) satisfies limn→ω ∥ξn− ξ′n∥ = 0, then the sequence
{f ′n : t 7→ eitAξ′n}∞n=1 is also ω-equicontinuous.

P r o o f. Let t ∈ R, and ε > 0 be given. There exists δ > 0 and W1 ∈ ω such
that for any s ∈ (t− δ, t+ δ) and n ∈W1 we have ∥eitAξn − eisAξn∥ < ε/3. This
means that ∥(eitAξn)ω − (eisAξn)ω∥ < ε/3, whence t 7→ (eitAξn)ω is continuous.
By (ξn)ω = (ξ′n)ω, it follows that W2 := {n ∈ N; ∥ξn − ξ′n∥ < ε/3} ∈ ω. Then
for s ∈ (t− δ, t+ δ) and n ∈W := W1 ∩W2 ∈ ω, we have

∥eitAξ′n − eisAξ′n∥ ¬ ∥eitA(ξ′n − ξn)∥+ ∥eitAξn − eisAξn∥+ ∥eisA(ξn − ξ′n)∥
< ε.

Therefore, {t 7→ eitAξ′n}∞n=1 is ω-equicontinuous. �

DEFINITION 3.2. A vector ξ = (ξn)ω ∈ Hω is called A-regular if the se-
quence {t 7→ eitAξn}∞n=1 is ω-equicontinuous. By Lemma 3.1, this notion does
not depend on the choice of the representing sequence (ξn)n.

DEFINITION 3.3. Under the above notation, we define the following:
(1) Let K(A) be the set of all A-regular vectors of Hω.
(2) Let dom(Ãω) be the set of ξ ∈ K(A) for which limt→0

1
t

(
u(t)ω − 1

)
ξ

exists.

LEMMA 3.2. K(A) is a closed subspace of Hω invariant under u(t)ω for all
t ∈ R.

P r o o f. It is clear that K(A) is a subspace of Hω, and that K(A) is u(t)ω-
invariant for all t ∈ R. Let ξ = (ξn)ω ∈ K(A) and ε > 0. There exists η = (ηn)ω ∈
K(A) such that ∥ξ − η∥ < ε/3. Let t ∈ R. By the ω-equicontinuity of {fn : t 7→
eitAηn}∞n=1, there exists δ > 0 and W1 ∈ ω such that for each s ∈ (t − δ, t + δ)
and n ∈W1, we have ∥eitAηn − eisAηn∥ < ε/3. Let W2 := {n ∈ N; ∥ξn − ηn∥ <
ε/3} ∈ ω. Then, for s ∈ (t− δ, t+ δ) and n ∈W := W1 ∩W2 ∈ ω, we have

∥eitAξn − eisAξn∥ ¬ ∥eitA(ξn − ηn)∥+ ∥eitAηn − eisAηn∥+ ∥eisA(ηn − ξn)∥
< ε.

Therefore, ξ = (ξn)ω is A-regular, and ξ ∈ K(A). �
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By Lemma 3.2, v(t) := u(t)ω|K(A) is a continuous one-parameter unitary
group of K(A). Therefore, by Stone’s theorem, there exists a self-adjoint oper-
ator Ãω with domain dom(Ãω) such that

iÃωξ = lim
t→0

1

t

(
v(t)− 1

)
ξ, ξ ∈ dom(Ãω).

In the sequel, we will show that Ãωξ = (Aξn)ω for appropriate (ξn)n representing
ξ ∈ dom(Ãω).

DEFINITION 3.4. Let A be a self-adjoint operator on H .
(1) A sequence (ξn)n ∈ ℓ∞(N,H) is called an A-sequence if ξn ∈ dom(A)

for all n  N. We denote the space of A-sequences by ℓ∞
(
N,dom(A)

)
.

(2) An A-sequence (ξn)n is called proper if it satisfies the following con-
dition:

(∗) For each ε > 0, there exists a > 0 and an A-sequence (ηn)n with the
following properties:

(i) ηn ∈ 1[−a,a](A)H for all n  1.
(ii) (Aξn)n ∈ ℓ∞(N,H), and limn→ω ∥ξn − ηn∥A < ε.

DEFINITION 3.5. As in [4], we let DA be the set of all ξ ∈ Hω which is
represented by an A-sequence (ξn)n such that (Aξn)n is bounded, and let H(A) =

DA. We also define related subspaces: define D̂A to be the space of all ξ ∈ Hω

which is represented by a proper A-sequence and also define D0 to be the set of
all ξ ∈ Hω which has a representative (ξn)n satisfying ξn ∈ 1[−a,a](A)H for all
n ∈ N, where a > 0 is a constant independent of n.

It is clear that D0 ⊂ D̂A ⊂ DA.

The main result of the paper is that D̂A = DA,K(A) = H(A), and Aω =

Ãω = Aω|D0 .
In this section we will show that

THEOREM 3.1. dom(Ãω) = D̂A ⊂ K(A), and D0 is a core for Ãω.

We need several lemmata. The following lemma justifies the choice of proper
A-sequences to consider the ultrapower.

LEMMA 3.3. D̂A ⊂ dom(Ãω), and for ξ ∈ D̂A with a proper representative
(ξn)n, we have

Ãωξ = (Aξn)ω.

In particular, (Aξn)ω = (Aξ′n)ω if both (ξn)n, (ξ
′
n)n are proper A-sequences rep-

resenting the same vector ξ ∈ D̂A.

P r o o f. We first show that D̂A ⊂ K(A). Since K(A) is closed and every
element in D̂A can be approximated by vectors of the form (ηn)ω, where ηn ∈
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1[−a,a](A)H (n ∈ N) for a fixed a > 0, it suffices to show that {t 7→ eitAηn}∞n=1

is ω-equicontinuous for such (ηn)ω. Let ε > 0 and t ∈ R be given. Let A =∫
R λde(λ) be the spectral resolution of A. We have

∥eitAηn − eisAηn∥2 =
∫
R
|ei(t−s)λ − 1|2d∥e(λ)ηn∥2

= 2
∫
R

(
1− cos

(
(t− s)λ

))
d∥e(λ)ηn∥2

¬
∫

[−a,a]
(t− s)2λ2d∥e(λ)ηn∥2

¬ (t− s)2a2∥ηn∥2.

Therefore, let δ > 0 be such that δ2a2 supn1 ∥ηn∥2 < ε2. Then, for each n ∈ N
and s ∈ (t− δ, t+ δ), ∥eitAηn − eisAηn∥ < ε holds. Therefore (ηn)ω is A-regular
and D̂A ⊂ K(A) holds.

Next, let ζ := (iAξn)ω. We show that 1
t

(
v(t)−1

)
ξ converges to ζ as t→0.

Let ε > 0. We may find a > 0 and (ηn)n satisfying the conditions in (∗) of Defini-
tion 3.4. Let η = (ηn)ω. Then we have∥∥∥∥1t (v(t)− 1

)
ξ − ζ

∥∥∥∥ ¬ ∥∥∥∥1t (v(t)− 1
)
(ξ − η)

∥∥∥∥+

∥∥∥∥1t (v(t)− 1
)
η − (iAηn)ω

∥∥∥∥
+ ∥(iAηn)ω − (iAξn)ω∥.

By the condition (∗), the last term satisfies ∥(iAηn)ω − (iAξn)ω∥ < ε.
Now estimate the first term:∥∥∥∥1t (v(t)− 1

)
(ξ − η)

∥∥∥∥2 = lim
n→ω

1

t2

∫
R
|eitλ − 1|2d∥e(λ)(ξn − ηn)∥2

¬ lim
n→ω

1

t2

∫
R
t2λ2d∥e(λ)(ξn − ηn)∥2

= ∥(Aξn)ω − (Aηn)ω∥2 < ε2.

Using ηn ∈ 1[−a,a](A)H (n  1), we then estimate the second term:

∥∥∥∥1t (v(t)− 1
)
η − (iAηn)ω

∥∥∥∥2 = lim
n→ω

a∫
−a

∣∣∣∣eitλ − 1

t
− iλ

∣∣∣∣2 d∥e(λ)ηn∥2
= lim

n→ω

a∫
−a

{(
cos(tλ)− 1

t

)2

+

(
sin(tλ)

t
− λ

)2}
d∥e(λ)ηn∥2

= lim
n→ω

a∫
−a

F (t, λ)d∥e(λ)ηn∥2,
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where

F (t, λ) = λ2

(
2
1− cos(tλ)

(tλ)2
− 2

sin(tλ)

tλ
+ 1

)
.

Therefore, for each t with |t|a < π/2, we have

sup
|λ|¬a

F (t, λ) ¬ 2a2 sup
|λ|¬a

(
1− sin(tλ)

tλ

)
= 2a2 sup

|x|¬|t|a

(
1− sinx

x

)
= 2a2

(
1− sin(ta)

ta

)
.

Consequently, for |t| < π/(2a),

lim
n→ω

a∫
−a

F (t, λ)d∥e(λ)ηn∥2 ¬ lim
n→ω

a∫
−a

2a2
(
1− sin(ta)

ta

)
d∥e(λ)ηn∥2

= 2a2
(
1− sin(ta)

ta

)
∥(ηn)ω∥2→ 0 as t→ 0.

Therefore we have

lim
t→0

∥∥∥∥1t (v(t)− 1
)
η − (iAηn)ω

∥∥∥∥ ¬ 2ε.

Since ε > 0 is arbitrary, the claim is proved. �

Now we show that the order of integration and ultralimit can be interchanged
for the ω-equicontinuous family {Fn : R→ H}∞n=1 under some additional condi-
tions.

LEMMA 3.4. Let Fn ∈ C(R,H) ∩ L1(R,H) (n ∈ N) be a family of H-
valued ω-equicontinuous maps satisfying the following two conditions:∫

R
sup
n1
∥Fn(t)∥dt <∞, sup

n1
∥Fn(t)∥ <∞ (t ∈ R).(3.1)

lim
a→∞

lim
n→ω

∫
R\[−a,a]

∥Fn(t)∥dt = 0.(3.2)

Then we have ( ∫
R
Fn(t)dt

)
ω
=
∫
R

(
Fn(t)

)
ω
dt.

REMARK 3.1. Note that, by the ω-equicontinuity of {Fn}∞n=1, t 7→
(
Fn(t)

)
ω

is continuous. In particular, it is measurable.
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P r o o f. By (3.1), we have∫
R

(
Fn(t)

)
ω
dt = lim

a→∞

a∫
−a

(
Fn(t)

)
ω
dt.

By (3.2), we also have( ∫
R
Fn(t)dt

)
ω
= lim

a→∞

( a∫
−a

Fn(t)dt
)
ω
.

Therefore, we have only to show that
∫ a

−a
(
Fn(t)

)
ω
dt =

( ∫ a

−a Fn(t)dt
)
ω

for all
a > 0. By the ω-equicontinuity of {Fn}∞n=1, there exists a partition of the interval
[−a, a] such that t0 = −a < t1 < t2 < . . . < tN = a, and W ∈ ω so that for each
0 ¬ i ¬ N − 1, n ∈W , and α, β ∈ [ti, ti+1], we have

∥Fn(α)− Fn(β)∥ < ε/4a.

This in particular implies that
∥∥(Fn(α)

)
ω
−
(
Fn(β)

)
ω

∥∥ < ε/4a. Therefore, by the
definition of the Riemann integral, we have

∥∥N−1∑
i=0

(ti+1 − ti)Fn(ti)−
a∫
−a

Fn(t)dt
∥∥ < ε/2 (n ∈W ),

and ∥∥N−1∑
i=0

(ti+1 − ti)
(
Fn(ti)

)
ω
−

a∫
−a

(
Fn(t)

)
ω
dt
∥∥ < ε/2.

Using
(∑N−1

i=0 (ti+1 − ti)Fn(ti)
)
ω
=
∑N−1

i=0 (ti+1 − ti)
(
Fn(ti)

)
ω

, we have

∥∥ a∫
−a

(
Fn(t)

)
ω
dt−

( a∫
−a

Fn(t)dt
)
ω

∥∥ < ε.

Since ε > 0 is arbitrary, the claim is proved. �

LEMMA 3.5. Let ξ = (ξn)ω ∈ K(A) and let f ∈ L1(R). Then we have( ∫
R
f(t)eitAξndt

)
ω
=
∫
R

(
f(t)eitAξn

)
ω
dt.

P r o o f. Note that t 7→ f(t)(eitAξn)ω is measurable thanks to Lemma 3.1.
Let C := supn ∥ξn∥. First assume that f ∈ L1(R) ∩C(R). It suffices to show that
{Fn : t 7→ f(t)eitAξn}∞n=1 is ω-equicontinuous and satisfies the conditions (3.1)
and (3.2) in Lemma 3.4. It follows that supn

∫
R ∥Fn(t)∥dt=

∫
R |f(t)|dt · ∥ξ∥<∞,

supn ∥Fn(t)∥ = |f(t)| <∞, and

lim
a→∞

lim
n→ω

∫
R\[−a,a]

∥Fn(t)∥dt = lim
a→∞

∫
R\[−a,a]

|f(t)|dt · ∥ξ∥ = 0.
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Therefore (3.1) and (3.2) in Lemma 3.4 are satisfied. We show the ω-equicontinuity
of {Fn}∞n=1. Suppose ε > 0 and t ∈ R are given. By the A-regularity of ξ and
continuity of f , there exists δ > 0 and W ∈ ω such that for each s ∈ (t− δ, t+ δ)
and n ∈W , we have

∥eitAξn − eisAξn∥ <
ε

2
(
|f(t)|+ 1

) , |f(t)− f(s)| < ε

2(C + 1)
.

Then it follows that

∥f(t)eitAξn − f(s)eisAξn∥

¬ |f(t)| · ∥eitAξn − eisAξn∥+ |f(t)− f(s)| · ∥eisAξn∥ < ε/2 + ε/2 = ε.

Therefore {Fn}∞n=1 is ω-equicontinuous. By Lemma 3.4, the claim follows.
Next, suppose f ∈ L1(R). Let ε > 0. There exists g ∈ L1(R) ∩ C(R) such

that ∥f − g∥1 < ε/2(C + 1). Then we have∥∥( ∫
R
f(t)eitAξndt−

∫
R
g(t)eitAξndt

)
ω

∥∥ ¬ lim
n→ω

∫
R
|f(t)− g(t)|∥ξn∥dt < ε/2,∥∥ ∫

R

(
g(t)eitAξn

)
ω
dt−

∫
R

(
f(t)eitAξn

)
ω
dt
∥∥ ¬ ∥g − f∥1 · ∥ξ∥ < ε/2,

whence by applying the above argument for g we have∥∥( ∫
R
f(t)eitAξndt

)
ω
−
∫
R

(
f(t)eitAξn

)
ω
dt
∥∥ < ε.

Since ε > 0 is arbitrary, the claim is proved. �

LEMMA 3.6. dom(Ãω) = D̂A.

P r o o f. By Lemma 3.3, it suffices to show that dom(Ãω) ⊂ D̂A. Let e(·)
(resp. ẽ(·)) be the spectral measure associated with A (resp. Ãω). We first show
the following:

CLAIM. For a given ξ ∈ dom(Ãω) and ε > 0, there exists a > 0 and (ηn)n ∈
ℓ∞(N,H) with the properties: ηn ∈ 1[−a,a](A)H (n ∈ N), ∥ξ − (ηn)ω∥ < ε, and
∥Ãωξ − (Aηn)ω∥ < ε.

Note that in general ẽ(B) is not the ultrapower of e(B) for a Borel set B.
Therefore we need some extra work (cf. [1], Section 4). As

∪
a>0 1[−a,a](Ãω)K(A)

is a core for Ãω, there exists a > 0, η = (ηn)ω ∈ 1[−a/2,a/2](Ãω)K(A) such that
∥ξ − η∥ < ε and ∥Ãωξ − Ãωη∥ < ε. Let f ∈ L1(R) be a function with the follow-
ing properties: supp(f̂) ⊂ [−a, a], f̂ = 1 on [−a/2, a/2], 0 ¬ f̂(λ) ¬ 1 (λ ∈ R).
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Here, f̂(λ) =
∫
R eiλtf(t)dt is the Fourier transform of f . For instance, one may

choose the de la Vallée-Poussin kernel Da/2 (see [1], Definition 4.12). Let

η′ :=
∫
R
f(t)eitÃωηdt.

Then we have (by the spectral condition of η and f̂ = 1 on [−a/2, a/2])

η′ =
∫
R

∫
R
f(t)eitλd

(
ẽ(λ)η

)
dt =

∫
R

( ∫
R
f(t)eitλdt

)
d
(
ẽ(λ)η

)
=
∫
R
f̂(λ)d

(
ẽ(λ)η

)
= f̂(Ãω)η = η.

Furthermore, by Lemma 3.5, we have

η = η′ =
( ∫
R
f(t)eitAηndt

)
ω
=

(
f̂(A)ηn

)
ω
,

and η′n := f̂(A)ηn ∈ 1[−a,a](A)H for each n  1. Therefore, (η′n)n is the required
sequence, as Ãωη = (Aη′n)ω (cf. Lemma 3.3).

Assume now that ξ ∈ dom(Ãω) with ∥ξ∥ = 1. We show that ξ ∈ D̂A, i.e.,
it has a proper representative. Let ε > 0. We use the following argument similar
to Lemma 3.9 (i) in [1]. By the above Claim, for each k ∈ N, put ε = 2−k−1 in
the above argument to find ak(¬ ak+1 ¬ ak+2 ¬ . . .) and (η

(k)
n )n ∈ ℓ∞(N,H)

satisfying η
(k)
n ∈ 1[−ak,ak](A)H (n ∈ N), and

∥ξ − (η(k)n )ω∥ <
1

2k+1
, ∥Ãωξ − (Aη(k)n )ω∥ <

1

2k+1
(k ∈ N).

Furthermore, we may assume ∥η(k)n ∥ ¬ 2 for each n, k ∈ N. Then for each k ∈ N
we have

∥(η(k+1)
n )ω − (η(k)n )ω∥ <

1

2k
, ∥(Aη(k+1)

n )ω − (Aη(k)n )ω∥ <
1

2k
.

Let

Gk :=

{
n ∈ N; ∥η(k+1)

n − η(k)n ∥ <
1

2k
, ∥Aη(k+1)

n −Aη(k)n ∥ <
1

2k

}
(k ∈ N).

Then Gk ∈ ω (k ∈ N) holds, and since ω is free, it follows that Fk :=
∩k

i=1Gi ∩
{n ∈ N;n  k} ∈ ω (k ∈ N). Since {Fk}∞k=1 is decreasing with empty intersec-
tion, N = (N \ F1) ⊔

⊔∞
j=1(Fj \ Fj+1). Then define (ξn)n by

ξn :=

{
η
(1)
n (n ∈ N \ F1),

η
(k)
n (n ∈ Fk \ Fk+1).
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Then supn1 ∥ξn∥ ¬ 2 <∞. Fix k  1. If n ∈ Fk =
⊔∞

j=k(Fj \ Fj+1), there is a

unique j  k for which n ∈ Fj \ Fj+1 holds, so that ξn = η
(j)
n . Then we have

∥ξn − η(k)n ∥ = ∥η(j)n − η(k)n ∥ ¬
j−1∑
i=k

∥η(i+1)
n − η(i)n ∥ ¬

j−1∑
i=k

1

2i
<

1

2k−1
,

so that Fk ∈ ω implies

∥(ξn)ω − (η(k)n )ω∥ <
1

2k−1
(k ∈ N).

Similarly,

∥(Aξn)ω − (Aη(k)n )ω∥ <
1

2k−1
(k ∈ N).

In particular, for each k ∈ N we have

∥ξ − (ξn)ω∥ ¬ ∥ξ − (η(k)n )ω∥+ ∥(η(k)n )ω − (ξn)ω∥ <
1

2k−2
.

Letting k →∞, we obtain ξ = (ξn)ω. We show that (ξn)n is a proper A-sequence.
Suppose ε > 0 is given. Take k such that ε > 2−k+1, and put a = ak > 0, ηn :=

η
(k)
n . Then, by construction, ηn ∈ 1[−a,a](A)H (n ∈ N), ∥(ξn)ω − (ηn)ω∥ < ε, and
∥(Aξn)ω − (Aηn)ω∥ < ε holds. Therefore, changing ξn to be zero if necessary for
n belonging to a set I with I /∈ ω, we may assume that (Aξn)n is bounded, and
(ξn)n is a proper A-sequence. This completes the proof. �

LEMMA 3.7. Let (ξn)n ∈ ℓ∞(N, H) be a sequence such that ξ = (ξn)ω ∈
K(A). Then (Ãω − i)−1ξ =

(
(A− i)−1ξn

)
ω

and (Ãω + i)−1ξ =
(
(A+ i)−1ξn

)
ω

.

P r o o f. Since v(t) = eitÃ = (eitA)ω|K(A) (t ∈ R), by the resolvent formula
and Lemma 3.5, we have

(Ãω − i)−1ξ = i
∞∫
0

e−te−itÃωξdt = i
∞∫
0

e−t(e−itAξn)ωdt

=
(
i
∞∫
0

e−te−itAξndt
)
ω
=

(
(A− i)−1ξn

)
ω
.

The latter identity follows similarly. �

REMARK 3.2. Note that (Ãω − i)−1ξ=
(
(A − i)−1ξn

)
ω

holds even if (ξn)n
is not proper. The only requirement is A-regularity: (ξn)ω ∈ K(A).

We are now ready to prove Theorem 3.1.
P r o o f o f T h e o r e m 3.1. The assertion dom(Ãω) = D̂A is proved in

Lemma 3.6. Then, for every ξ ∈ D̂A and ε > 0, there exists η ∈ D0 such that
∥ξ − η∥

Ãω
< ε holds (cf. Lemma 3.3). Therefore, Ãω is the closure of Ãω|D0 . �
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4. ALTERNATIVE DESCRIPTION OF Aω

Now we are ready to show

THEOREM 4.1. Under the same notation as in Section 3, the following holds:
(1) K(A) = H(A), and Aω = Ãω. Moreover, D0 is a core for Aω.
(2) For a representative (ξn)n of ξ ∈ dom(Aω), Aωξ = (Aξn)ω holds if and

only if it is a proper A-sequence (see Definition 3.4).

P r o o f. (1) By construction, it is clear that Ãω is a p.u. of A in K(A) ⊂ Hω.
Therefore, by the maximality of Aω, Theorem 1.1 (2), K(A) ⊂ H(A) and Ãω =
Aω|K(A). Consequently, if we show that K(A) = H(A), then Ãω = Aω holds. To
show H(A) ⊂ K(A), suppose (ξn)n is a representing sequence of ξ ∈ DA with
(Aξn)n ∈ ℓ∞(N,H). We show that {fn : t 7→ eitAξn}∞n=1 is ω-equicontinuous.
Let C := supn ∥Aξn∥. Then for t, s ∈ R, as in the analysis in Section 3,

∥eitAξn − eisAξn∥2=
∫
R
|eitλ − eisλ|2d∥e(λ)ξn∥2¬(t− s)2∥Aξn∥2¬C2(t− s)2,

which tends to zero as (t− s)→ 0 uniformly in n. Thus, we infer that {fn}∞n=1 is
ω-equicontinuous. Therefore DA ⊂ K(A), and taking the closure, H(A) ⊂ K(A)
holds. Consequently, H(A) = K(A). By Theorem 3.1, D0 is a core for Aω = Ãω.

(2) This follows from (1), Theorem 3.1, Lemma 3.3, and a simple observa-
tion that if Aωξ = (Aξn)ω and if (ξ′n)n is another proper A-sequence represent-
ing ξ, then for every ε > 0 there is a > 0 and an A-sequence (ηn)n with ηn ∈
1[−a,a](A)H (n ∈ N) such that limn→ω ∥ξn − ηn∥A = limn→ω ∥ξ′n − ηn∥A < ε,
so that (ξn)n is proper as well. �

REMARK 4.1. Finally, let us return to Example 1.1. We note that (ξn)n is
proper, while (ξ′n)n is not. The first claim is obvious. For the latter, if it
were proper, then so would be

(
1
nηn

)
n

. But if
(
1
nηn

)
n

were proper, there would
exist an A-sequence (ζn)n and a > 0 for which ζn ∈ 1[−a,a](A)H (n ∈ N),
limn→ω

∥∥ζn − 1
nηn

∥∥ < 1/2 and limn→ω ∥Aζn − ηn∥ < 1/2 hold. Let n0 ∈ N be
such that n0 > |a|. Then, for n  n0, ηn ∈ 1{n}(A)H, so ηn ⊥ ζn. Thus

lim
n→ω
∥Aζn − ηn∥2 = lim

n→ω
∥Aζn∥2 + 1 <

1

4
,

which is a contradiction. Thus
(
1
nηn

)
n
, whence (ξ′n)n, is not proper. Note also that

(ηn)ω is perpendicular to H(A) and, in particular, (Aξ′n)ω /∈ H(A). To see this,
let (ξn)n be an A-sequence such that (Aξn)n is bounded. Then

| lim
n→ω
⟨ηn, ξn⟩| = | lim

n→ω
⟨ηn, (A− i)−1(A+ i)ξn⟩|

¬ lim
n→ω

1

|n+ i|
∥(A+ i)ξn∥ = 0.

Thus (ηn)ω ∈ D⊥A = H(A)⊥.
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