PROBABILITY
AND
MATHEMATICAL STATISTICS
Vol. 34, Fasc. 1 (2014), pp. 147-159

NOTES ON THE KRUPA-ZAWISZA ULTRAPOWER OF SELF-ADJOINT OPERATORS

BY
HIROSHI ANDO (Bures-SUR-Yvette), IZUMI OJIMA (Kyoto), and HAYATO SAIGO (Nagahama)

Abstract

Let $\omega \in \beta \mathbb{N} \backslash \mathbb{N}$ be a free ultrafilter on \mathbb{N}. It is known that there is a difficulty in constructing the ultrapower of unbounded operators. Krupa and Zawisza gave a rigorous definition of the ultrapower A_{ω} of a self-adjoint operator A. In this note, we give an alternative description of A_{ω} and the Hilbert space $H(A)$ on which A_{ω} is densely defined. This provides a criterion to determine a representing sequence $\left(\xi_{n}\right)_{n}$ of a given vector $\xi \in \operatorname{dom}\left(A_{\omega}\right)$ which has the property that $A_{\omega} \xi=\left(A \xi_{n}\right)_{\omega}$ holds. An explicit core for A_{ω} is also described.

2000 AMS Mathematics Subject Classification: Primary: 47A10; Secondary: 03C20.

Key words and phrases: Ultraproduct, unbounded self-adjoint operators.

1. INTRODUCTION

Throughout the paper, we fix a free ultrafilter ω on \mathbb{N} and a separable infinitedimensional Hilbert space H. We denote by $\mathbb{B}(H)$ the algebra of all bounded operators in H. Let H_{ω} be the Hilbert space ultraproduct of H. Each bounded sequence $\left(a_{n}\right)_{n} \subset \mathbb{B}(H)$ of bounded operators in H defines a bounded operator $\left(a_{n}\right)_{\omega} \in \mathbb{B}(H)$, called the ultraproduct of $\left(a_{n}\right)_{n}$, by the formula

$$
\left(a_{n}\right)_{\omega}\left(\xi_{n}\right)_{\omega}:=\left(a_{n} \xi_{n}\right)_{\omega}, \quad\left(\xi_{n}\right)_{\omega} \in H_{\omega}
$$

The ultrapower (or, more generally, the ultraproduct) of a sequence of bounded operators has been used as an efficient tool for the analysis on Hilbert spaces. In view of its usefullness, it is natural to consider a corresponding notion of ultrapower A_{ω} for an unbounded self-adjoint operator A. However, there arise essential difficulties in connection with the following issues:
(1) definition of the domain $\operatorname{dom}\left(A_{\omega}\right)$ of A_{ω};
(2) self-adjointness of A_{ω};
(3) interpretation of $A_{\omega}\left(\xi_{n}\right)_{\omega}=\left(A \xi_{n}\right)_{\omega}$ for $\xi=\left(\xi_{n}\right)_{\omega} \in \operatorname{dom}\left(A_{\omega}\right)$.

Regarding (1), it does not make sense to define $\operatorname{dom}\left(A_{\omega}\right)$ to be the subspace $\operatorname{dom}(A)_{\omega}$ of all $\xi \in H_{\omega}$ which is represented by a sequence $\left(\xi_{n}\right)_{n}$, where $\xi_{n} \in \operatorname{dom}(A)$ for all n, because $\operatorname{dom}(A)_{\omega}$ is simply the whole H_{ω} and $A_{\omega}\left(\xi_{n}\right)_{\omega}=$ $\left(A \xi_{n}\right)_{\omega}$ is not well-defined. Importance of the question (2) should be clear. The problem (3) is probably the most delicate. Even if we could manage to define $\operatorname{dom}\left(A_{\omega}\right)$ and suppose $\xi \in \operatorname{dom}\left(A_{\omega}\right)$ is represented by $\left(\xi_{n}\right)_{n}$ with $\xi_{n} \in \operatorname{dom}(A)$ for all n, it might be the case where there exists another $\left(\xi_{n}^{\prime}\right)_{n}$ which also represents ξ (i.e., $\lim _{n \rightarrow \omega}\left\|\xi_{n}-\xi_{n}^{\prime}\right\|=0$ holds), and $\xi_{n}^{\prime} \in \operatorname{dom}(A)$ for all n holds as well, and yet $\left(A \xi_{n}\right)_{\omega} \neq\left(A \xi_{n}^{\prime}\right)_{\omega}$.

Example 1.1. Let A be a self-adjoint operator and assume that there is an orthonormal base $\left\{\eta_{n}\right\}_{n=1}^{\infty}$ of H consisting of eigenvectors of A with $A \eta_{n}=n \eta_{n}$, $n \geqslant 1$. Let $\eta \in \operatorname{dom}(A)$, and consider two sequences

$$
\xi_{n}:=\eta, \quad \xi_{n}^{\prime}:=\eta+\frac{1}{n} \eta_{n} \quad(n \geqslant 1)
$$

Then it is clear that $\xi_{n}, \xi_{n}^{\prime} \in \operatorname{dom}(A)$, that $\left(\xi_{n}\right)_{n},\left(\xi_{n}^{\prime}\right)_{n}$ define the same element $\xi=\left(\xi_{n}\right)_{\omega}=\left(\xi_{n}^{\prime}\right)_{\omega} \in H_{\omega}$, but

$$
\lim _{n \rightarrow \omega}\left\|A \xi_{n}-A \xi_{n}^{\prime}\right\|=\lim _{n \rightarrow \omega}\left\|\eta_{n}\right\|=1 \neq 0
$$

whence $\left(A \xi_{n}\right)_{\omega} \neq\left(A \xi_{n}^{\prime}\right)_{\omega}$. Should we define $A_{\omega} \xi=\left(A \xi_{n}\right)_{\omega}$ or $A_{\omega} \xi=\left(A \xi_{n}^{\prime}\right)_{\omega}$?
Despite the above difficulty, Krupa and Zawisza [3], [4] gave a rigorous definition of A_{ω}, as well as interesting applications to Schrödinger operators. To define $\operatorname{dom}\left(A_{\omega}\right)$ in any sensible way, it is necessary to note that such a domain must be in the subspace of \mathscr{D}_{A}, given as the set of all $\xi \in H_{\omega}$ which has a representing sequence $\left(\xi_{n}\right)_{n}$ of vectors from $\operatorname{dom}(A)$ such that $\left(A \xi_{n}\right)_{n}$ is also norm-bounded. We put $H(A)=\overline{\mathscr{D}_{A}}$. We recall from [4] the notion of partial ultrapowers.

Definition 1.1. Let $\mathcal{H} \subset H_{\omega}$ be a closed subspace. A densely defined operator \mathscr{A} in \mathcal{H} is called a partial ultrapower (p.u. for short) of A in \mathcal{H} if for any $\xi \in \operatorname{dom}(\mathscr{A})$ there is $\left(\xi_{n}\right)_{n} \subset \operatorname{dom}(A)$ such that $\xi=\left(\xi_{n}\right)_{\omega}$ and $\mathscr{A} \xi=\left(A \xi_{n}\right)_{\omega}$.

One of the fundamental results of Krupa and Zawisza [4] is the following:
ThEOREM 1.1. (1) There is a p.u. A_{ω} of A in $H(A)$ satisfying $\operatorname{dom}\left(A_{\omega}\right)=$ \mathscr{D}_{A}, uniquely determined by the property that for $\xi \in \mathscr{D}_{A}$ and $\eta \in H(A), A_{\omega} \xi=\eta$ if and only if there is a representative $\left(\xi_{n}\right)_{n} \subset \operatorname{dom}(A)$ of ξ satisfying $\left(A \xi_{n}\right)_{\omega}=\eta$.
(2) A_{ω} is the maximal among all p.u.'s of A. That is, if \mathscr{A} is a p.u. of A in \mathcal{H}, then $\mathcal{H} \subset H(A)$ and $\mathscr{A}=\left.A_{\omega}\right|_{\operatorname{dom}(\mathscr{A})}$.
(3) A_{ω} is self-adjoint in $H(A)$. Moreover, $\left(A_{\omega}-i\right)^{-1}$ is the restriction of $\left((A-i)^{-1}\right)_{\omega}$ to $H(A)$ and $\operatorname{sp}\left(A_{\omega}\right)=\operatorname{sp}(A)$ holds.

Note that in (1), the uniqueness of η is guaranteed by the condition $\eta \in H(A)$. Indeed, in Example [.]. $\left(A \xi_{n}\right)_{\omega} \in H(A)$, while $\left(A \xi_{n}^{\prime}\right)_{\omega} \notin H(A)$ (see Remark 4.]
below). Despite their success, what seems to be unsatisfactory is that there is no a priori criterion for a given $\xi \in \mathscr{D}_{A}$ to choose an appropriate representative $\left(\xi_{n}\right)_{n}$ such that $\left(A \xi_{n}\right)_{\omega}$ is well-defined and is in $H(A)$. Whether a chosen representative is indeed appropriate or not can be seen only after applying A and knowing that the resulting vector is in the closure of \mathscr{D}_{A}. In this short note, we give an alternative characterization of such an appropriate sequence, which will be called a proper A-sequence, and give a new description of A_{ω} in terms of an auxiliary operator \widetilde{A}_{ω} by checking the validity of the equality $A_{\omega}=\widetilde{A}_{\omega}$. More precisely, we show that a bounded sequence $\left(\xi_{n}\right)_{n}$ of vectors from $\operatorname{dom}(A)$ has a property that $A_{\omega}\left(\xi_{n}\right)_{\omega}=\left(A \xi_{n}\right)_{\omega}$ if and only if $\left(A \xi_{n}\right)_{n}$ is bounded and, for every $\varepsilon>0$, there is $a>0,\left(\eta_{n}\right)_{n} \in \ell^{\infty}(\mathbb{N}, H)$ with $\eta_{n} \in 1_{[-a, a]}(A) H$ for each $n \in \mathbb{N}$, such that $\lim _{n \rightarrow \omega}\left\|\xi_{n}-\eta_{n}\right\|_{A}<\varepsilon$. ($\|\cdot\|_{A}$ is the graph norm.) Moreover, a bounded sequence $\left(\xi_{n}\right)_{n}$ defines an element in $H(A)$ if and only if the family of maps $\left\{f_{n}: \mathbb{R} \rightarrow H\right\}_{n=1}^{\infty}$ given by $f_{n}(t)=e^{i t A} \xi_{n}$ is ω-equicontinuous (see Definition (Bll). We believe that this description will make Krupa-Zawisza analyses more accessible and give a new insight into them.

2. PRELIMINARIES

Let $\ell^{\infty}(\mathbb{N}, H)$ be the space of all bounded sequences in H. The ultrapower H_{ω} of H is defined by $H_{\omega}=\ell^{\infty}(\mathbb{N}, H) / \mathcal{T}_{\omega}$, where \mathcal{T}_{ω} is the subspace of $\ell^{\infty}(\mathbb{N}, H)$ consisting of sequences tending to zero in norm along ω. The canonical image of $\left(\xi_{n}\right)_{n} \in \ell^{\infty}(\mathbb{N}, H)$ is written as $\left(\xi_{n}\right)_{\omega}$, and H_{ω} is again a Hilbert space (nonseparable in general) by the inner product

$$
\langle\xi, \eta\rangle=\lim _{n \rightarrow \omega}\left\langle\xi_{n}, \eta_{n}\right\rangle, \quad \xi=\left(\xi_{n}\right)_{\omega}, \eta=\left(\eta_{n}\right)_{\omega} \in H_{\omega} .
$$

We identify $\xi \in H$ with its canonical image $(\xi, \xi, \ldots)_{\omega} \in H_{\omega}$, so that H is a closed subspace of H_{ω}. Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence of bounded operators on H. We then define a bounded operator $\left(a_{n}\right)_{\omega} \in \mathbb{B}\left(H_{\omega}\right)$ by

$$
\left(a_{n}\right)_{\omega}\left(\xi_{n}\right)_{\omega}:=\left(a_{n} \xi_{n}\right)_{\omega}, \quad\left(\xi_{n}\right)_{\omega} \in H_{\omega} .
$$

$\left(a_{n}\right)_{\omega}$ is well-defined by the above, and $\left\|\left(a_{n}\right)_{\omega}\right\|=\lim _{n \rightarrow \omega}\left\|a_{n}\right\|$ holds. For a linear operator T on H, the domain of T is denoted by $\operatorname{dom}(T)$. For $\xi \in \operatorname{dom}(T)$, we denote by $\|\xi\|_{T}$ the graph norm of T given by $\left(\|\xi\|^{2}+\|T \xi\|^{2}\right)^{1 / 2}$. For details about operator theory, see, e.g., [⿴囗 $]$.

3. CONSTRUCTION OF \widetilde{A}_{ω}

Let A be a self-adjoint operator on a separable Hilbert space H, and let $u(t)=$ $e^{i t A}(t \in \mathbb{R})$. We introduce several subspaces of H_{ω}. First, we need to introduce the notion of ω-equicontinuity which has been used in the literature (see [2], [5]).

DEFINITION 3.1. Let $\left(X_{1}, d_{1}\right),\left(X_{2}, d_{2}\right)$ be metric spaces. A family of maps $\left\{f_{n}: X_{1} \rightarrow X_{2}\right\}_{n=1}^{\infty}$ is said to be ω-equicontinuous if for every $x \in X$ and $\varepsilon>0$, there exists $\delta=\delta_{x, \varepsilon}>0$ and $W \in \omega$ such that for every $x^{\prime} \in X$ with $d_{1}\left(x, x^{\prime}\right)<\delta$ and $n \in W$, we have

$$
d_{2}\left(f_{n}(x), f_{n}\left(x^{\prime}\right)\right)<\varepsilon
$$

Lemma 3.1. Let us assume that $\left(\xi_{n}\right)_{n} \in \ell^{\infty}(\mathbb{N}, H)$ is a sequence such that $\left\{f_{n}: t \mapsto e^{i t A} \xi_{n}\right\}_{n=1}^{\infty}$ is ω-equicontinuous. Then $t \mapsto\left(e^{i t A} \xi_{n}\right)_{\omega}$ is continuous. Moreover, if $\left(\xi_{n}^{\prime}\right)_{n} \in \ell^{\infty}(\mathbb{N}, H)$ satisfies $\lim _{n \rightarrow \omega}\left\|\xi_{n}-\xi_{n}^{\prime}\right\|=0$, then the sequence $\left\{f_{n}^{\prime}: t \mapsto e^{i t A} \xi_{n}^{\prime}\right\}_{n=1}^{\infty}$ is also ω-equicontinuous.
Proof. Let $t \in \mathbb{R}$, and $\varepsilon>0$ be given. There exists $\delta>0$ and $W_{1} \in \omega$ such that for any $s \in(t-\delta, t+\delta)$ and $n \in W_{1}$ we have $\left\|e^{i t A} \xi_{n}-e^{i s A} \xi_{n}\right\|<\varepsilon / 3$. This means that $\left\|\left(e^{i t A} \xi_{n}\right)_{\omega}-\left(e^{i s A} \xi_{n}\right)_{\omega}\right\|<\varepsilon / 3$, whence $t \mapsto\left(e^{i t A} \xi_{n}\right)_{\omega}$ is continuous. By $\left(\xi_{n}\right)_{\omega}=\left(\xi_{n}^{\prime}\right)_{\omega}$, it follows that $W_{2}:=\left\{n \in \mathbb{N} ;\left\|\xi_{n}-\xi_{n}^{\prime}\right\|<\varepsilon / 3\right\} \in \omega$. Then for $s \in(t-\delta, t+\delta)$ and $n \in W:=W_{1} \cap W_{2} \in \omega$, we have

$$
\begin{aligned}
\left\|e^{i t A} \xi_{n}^{\prime}-e^{i s A} \xi_{n}^{\prime}\right\| & \leqslant\left\|e^{i t A}\left(\xi_{n}^{\prime}-\xi_{n}\right)\right\|+\left\|e^{i t A} \xi_{n}-e^{i s A} \xi_{n}\right\|+\left\|e^{i s A}\left(\xi_{n}-\xi_{n}^{\prime}\right)\right\| \\
& <\varepsilon
\end{aligned}
$$

Therefore, $\left\{t \mapsto e^{i t A} \xi_{n}^{\prime}\right\}_{n=1}^{\infty}$ is ω-equicontinuous.
DEFINITION 3.2. A vector $\xi=\left(\xi_{n}\right)_{\omega} \in H_{\omega}$ is called A-regular if the sequence $\left\{t \mapsto e^{i t A} \xi_{n}\right\}_{n=1}^{\infty}$ is ω-equicontinuous. By Lemma B.ll, this notion does not depend on the choice of the representing sequence $\left(\xi_{n}\right)_{n}$.

DEFINITION 3.3. Under the above notation, we define the following:
(1) Let $K(A)$ be the set of all A-regular vectors of H_{ω}.
(2) Let $\operatorname{dom}\left(\widetilde{A}_{\omega}\right)$ be the set of $\xi \in K(A)$ for which $\lim _{t \rightarrow 0} \frac{1}{t}\left(u(t)_{\omega}-1\right) \xi$ exists.

Lemma 3.2. $K(A)$ is a closed subspace of H_{ω} invariant under $u(t)_{\omega}$ for all $t \in \mathbb{R}$.

Proof. It is clear that $K(A)$ is a subspace of H_{ω}, and that $K(A)$ is $u(t)_{\omega^{-}}$ invariant for all $t \in \mathbb{R}$. Let $\xi=\left(\xi_{n}\right)_{\omega} \in \overline{K(A)}$ and $\varepsilon>0$. There exists $\eta=\left(\eta_{n}\right)_{\omega} \in$ $K(A)$ such that $\|\xi-\eta\|<\varepsilon / 3$. Let $t \in \mathbb{R}$. By the ω-equicontinuity of $\left\{f_{n}: t \mapsto\right.$ $\left.e^{i t A} \eta_{n}\right\}_{n=1}^{\infty}$, there exists $\delta>0$ and $W_{1} \in \omega$ such that for each $s \in(t-\delta, t+\delta)$ and $n \in W_{1}$, we have $\left\|e^{i t A} \eta_{n}-e^{i s A} \eta_{n}\right\|<\varepsilon / 3$. Let $W_{2}:=\left\{n \in \mathbb{N} ;\left\|\xi_{n}-\eta_{n}\right\|<\right.$ $\varepsilon / 3\} \in \omega$. Then, for $s \in(t-\delta, t+\delta)$ and $n \in W:=W_{1} \cap W_{2} \in \omega$, we have

$$
\begin{aligned}
\left\|e^{i t A} \xi_{n}-e^{i s A} \xi_{n}\right\| & \leqslant\left\|e^{i t A}\left(\xi_{n}-\eta_{n}\right)\right\|+\left\|e^{i t A} \eta_{n}-e^{i s A} \eta_{n}\right\|+\left\|e^{i s A}\left(\eta_{n}-\xi_{n}\right)\right\| \\
& <\varepsilon
\end{aligned}
$$

Therefore, $\xi=\left(\xi_{n}\right)_{\omega}$ is A-regular, and $\xi \in K(A)$.

By Lemma B.2, $v(t):=\left.u(t)_{\omega}\right|_{K(A)}$ is a continuous one-parameter unitary group of $K(A)$. Therefore, by Stone's theorem, there exists a self-adjoint operator \widetilde{A}_{ω} with domain $\operatorname{dom}\left(\widetilde{A}_{\omega}\right)$ such that

$$
i \widetilde{A}_{\omega} \xi=\lim _{t \rightarrow 0} \frac{1}{t}(v(t)-1) \xi, \quad \xi \in \operatorname{dom}\left(\widetilde{A}_{\omega}\right)
$$

In the sequel, we will show that $\widetilde{A}_{\omega} \xi=\left(A \xi_{n}\right)_{\omega}$ for appropriate $\left(\xi_{n}\right)_{n}$ representing $\xi \in \operatorname{dom}\left(\widetilde{A}_{\omega}\right)$.

DEFinition 3.4. Let A be a self-adjoint operator on H.
(1) A sequence $\left(\xi_{n}\right)_{n} \in \ell^{\infty}(\mathbb{N}, H)$ is called an A-sequence if $\xi_{n} \in \operatorname{dom}(A)$ for all $n \geqslant \mathbb{N}$. We denote the space of A-sequences by $\ell^{\infty}(\mathbb{N}$, $\operatorname{dom}(A))$.
(2) An A-sequence $\left(\xi_{n}\right)_{n}$ is called proper if it satisfies the following condition:
(*) For each $\varepsilon>0$, there exists $a>0$ and an A-sequence $\left(\eta_{n}\right)_{n}$ with the following properties:
(i) $\eta_{n} \in 1_{[-a, a]}(A) H$ for all $n \geqslant 1$.
(ii) $\left(A \xi_{n}\right)_{n} \in \ell^{\infty}(\mathbb{N}, H)$, and $\lim _{n \rightarrow \omega}\left\|\xi_{n}-\eta_{n}\right\|_{A}<\varepsilon$.

DEFINITION 3.5. As in [4], we let \mathscr{D}_{A} be the set of all $\xi \in H_{\omega}$ which is represented by an A-sequence $\left(\xi_{n}\right)_{n}$ such that $\left(A \xi_{n}\right)_{n}$ is bounded, and let $H(A)=$ $\overline{\mathscr{D}_{A}}$. We also define related subspaces: define $\widehat{\mathscr{D}}_{A}$ to be the space of all $\xi \in H_{\omega}$ which is represented by a proper A-sequence and also define \mathscr{D}_{0} to be the set of all $\xi \in H_{\omega}$ which has a representative $\left(\xi_{n}\right)_{n}$ satisfying $\xi_{n} \in 1_{[-a, a]}(A) H$ for all $n \in \mathbb{N}$, where $a>0$ is a constant independent of n.

It is clear that $\mathscr{D}_{0} \subset \widehat{\mathscr{D}}_{A} \subset \mathscr{D}_{A}$.
The main result of the paper is that $\widehat{\mathscr{D}}_{A}=\mathscr{D}_{A}, K(A)=H(A)$, and $A_{\omega}=$ $\widetilde{A}_{\omega}=\overline{A_{\omega} \mid \mathscr{D}_{0}}$.

In this section we will show that
THEOREM 3.1. $\operatorname{dom}\left(\widetilde{A}_{\omega}\right)=\widehat{\mathscr{D}}_{A} \subset K(A)$, and \mathscr{D}_{0} is a core for \widetilde{A}_{ω}.
We need several lemmata. The following lemma justifies the choice of proper A-sequences to consider the ultrapower.

LEMMA 3.3. $\widehat{\mathscr{D}}_{A} \subset \operatorname{dom}\left(\widetilde{A}_{\omega}\right)$, and for $\xi \in \widehat{\mathscr{D}}_{A}$ with a proper representative $\left(\xi_{n}\right)_{n}$, we have

$$
\widetilde{A}_{\omega} \xi=\left(A \xi_{n}\right)_{\omega}
$$

In particular, $\left(A \xi_{n}\right)_{\omega}=\left(A \xi_{n}^{\prime}\right)_{\omega}$ if both $\left(\xi_{n}\right)_{n},\left(\xi_{n}^{\prime}\right)_{n}$ are proper A-sequences representing the same vector $\xi \in \widehat{\mathscr{D}}_{A}$.

Proof. We first show that $\widehat{\mathscr{D}}_{A} \subset K(A)$. Since $K(A)$ is closed and every element in $\widehat{\mathscr{D}}_{A}$ can be approximated by vectors of the form $\left(\eta_{n}\right)_{\omega}$, where $\eta_{n} \in$
$1_{[-a, a]}(A) H(n \in \mathbb{N})$ for a fixed $a>0$, it suffices to show that $\left\{t \mapsto e^{i t A} \eta_{n}\right\}_{n=1}^{\infty}$ is ω-equicontinuous for such $\left(\eta_{n}\right)_{\omega}$. Let $\varepsilon>0$ and $t \in \mathbb{R}$ be given. Let $A=$ $\int_{\mathbb{R}} \lambda d e(\lambda)$ be the spectral resolution of A. We have

$$
\begin{aligned}
\left\|e^{i t A} \eta_{n}-e^{i s A} \eta_{n}\right\|^{2} & =\int_{\mathbb{R}}\left|e^{i(t-s) \lambda}-1\right|^{2} d\left\|e(\lambda) \eta_{n}\right\|^{2} \\
& =2 \int_{\mathbb{R}}(1-\cos ((t-s) \lambda)) d\left\|e(\lambda) \eta_{n}\right\|^{2} \\
& \leqslant \int_{[-a, a]}(t-s)^{2} \lambda^{2} d\left\|e(\lambda) \eta_{n}\right\|^{2} \\
& \leqslant(t-s)^{2} a^{2}\left\|\eta_{n}\right\|^{2}
\end{aligned}
$$

Therefore, let $\delta>0$ be such that $\delta^{2} a^{2} \sup _{n \geqslant 1}\left\|\eta_{n}\right\|^{2}<\varepsilon^{2}$. Then, for each $n \in \mathbb{N}$ and $s \in(t-\delta, t+\delta),\left\|e^{i t A} \eta_{n}-e^{i s A} \eta_{n}\right\|<\varepsilon$ holds. Therefore $\left(\eta_{n}\right)_{\omega}$ is A-regular and $\widehat{\mathscr{D}}_{A} \subset K(A)$ holds.

Next, let $\zeta:=\left(i A \xi_{n}\right)_{\omega}$. We show that $\frac{1}{t}(v(t)-1) \xi$ converges to ζ as $t \rightarrow 0$. Let $\varepsilon>0$. We may find $a>0$ and $\left(\eta_{n}\right)_{n}$ satisfying the conditions in $(*)$ of Definition 3.4. Let $\eta=\left(\eta_{n}\right)_{\omega}$. Then we have

$$
\begin{aligned}
\left\|\frac{1}{t}(v(t)-1) \xi-\zeta\right\| \leqslant & \left\|\frac{1}{t}(v(t)-1)(\xi-\eta)\right\|+\left\|\frac{1}{t}(v(t)-1) \eta-\left(i A \eta_{n}\right)_{\omega}\right\| \\
& +\left\|\left(i A \eta_{n}\right)_{\omega}-\left(i A \xi_{n}\right)_{\omega}\right\|
\end{aligned}
$$

By the condition $(*)$, the last term satisfies $\left\|\left(i A \eta_{n}\right)_{\omega}-\left(i A \xi_{n}\right)_{\omega}\right\|<\varepsilon$.
Now estimate the first term:

$$
\begin{aligned}
\left\|\frac{1}{t}(v(t)-1)(\xi-\eta)\right\|^{2} & =\lim _{n \rightarrow \omega} \frac{1}{t^{2}} \int_{\mathbb{R}}\left|e^{i t \lambda}-1\right|^{2} d\left\|e(\lambda)\left(\xi_{n}-\eta_{n}\right)\right\|^{2} \\
& \leqslant \lim _{n \rightarrow \omega} \frac{1}{t^{2}} \int_{\mathbb{R}} t^{2} \lambda^{2} d\left\|e(\lambda)\left(\xi_{n}-\eta_{n}\right)\right\|^{2} \\
& =\left\|\left(A \xi_{n}\right)_{\omega}-\left(A \eta_{n}\right)_{\omega}\right\|^{2}<\varepsilon^{2}
\end{aligned}
$$

Using $\eta_{n} \in 1_{[-a, a]}(A) H(n \geqslant 1)$, we then estimate the second term:

$$
\begin{aligned}
\| \frac{1}{t}(v(t) & -1) \eta-\left(i A \eta_{n}\right)_{\omega}\left\|^{2}=\lim _{n \rightarrow \omega} \int_{-a}^{a}\left|\frac{e^{i t \lambda}-1}{t}-i \lambda\right|^{2} d\right\| e(\lambda) \eta_{n} \|^{2} \\
& =\lim _{n \rightarrow \omega} \int_{-a}^{a}\left\{\left(\frac{\cos (t \lambda)-1}{t}\right)^{2}+\left(\frac{\sin (t \lambda)}{t}-\lambda\right)^{2}\right\} d\left\|e(\lambda) \eta_{n}\right\|^{2} \\
& =\lim _{n \rightarrow \omega} \int_{-a}^{a} F(t, \lambda) d\left\|e(\lambda) \eta_{n}\right\|^{2}
\end{aligned}
$$

where

$$
F(t, \lambda)=\lambda^{2}\left(2 \frac{1-\cos (t \lambda)}{(t \lambda)^{2}}-2 \frac{\sin (t \lambda)}{t \lambda}+1\right)
$$

Therefore, for each t with $|t| a<\pi / 2$, we have

$$
\begin{aligned}
\sup _{|\lambda| \leqslant a} F(t, \lambda) & \leqslant 2 a^{2} \sup _{|\lambda| \leqslant a}\left(1-\frac{\sin (t \lambda)}{t \lambda}\right) \\
& =2 a^{2} \sup _{|x| \leqslant|t| a}\left(1-\frac{\sin x}{x}\right) \\
& =2 a^{2}\left(1-\frac{\sin (t a)}{t a}\right) .
\end{aligned}
$$

Consequently, for $|t|<\pi /(2 a)$,

$$
\begin{aligned}
\lim _{n \rightarrow \omega} \int_{-a}^{a} F(t, \lambda) d\left\|e(\lambda) \eta_{n}\right\|^{2} & \leqslant \lim _{n \rightarrow \omega} \int_{-a}^{a} 2 a^{2}\left(1-\frac{\sin (t a)}{t a}\right) d\left\|e(\lambda) \eta_{n}\right\|^{2} \\
& =2 a^{2}\left(1-\frac{\sin (t a)}{t a}\right)\left\|\left(\eta_{n}\right)_{\omega}\right\|^{2} \rightarrow 0 \quad \text { as } t \rightarrow 0
\end{aligned}
$$

Therefore we have

$$
\varlimsup_{t \rightarrow 0}\left\|\frac{1}{t}(v(t)-1) \eta-\left(i A \eta_{n}\right)_{\omega}\right\| \leqslant 2 \varepsilon
$$

Since $\varepsilon>0$ is arbitrary, the claim is proved.
Now we show that the order of integration and ultralimit can be interchanged for the ω-equicontinuous family $\left\{F_{n}: \mathbb{R} \rightarrow H\right\}_{n=1}^{\infty}$ under some additional conditions.

Lemma 3.4. Let $F_{n} \in C(\mathbb{R}, H) \cap L^{1}(\mathbb{R}, H)(n \in \mathbb{N})$ be a family of H valued ω-equicontinuous maps satisfying the following two conditions:

$$
\begin{array}{r}
\int_{\mathbb{R}} \sup _{n \geqslant 1}\left\|F_{n}(t)\right\| d t<\infty, \quad \sup _{n \geqslant 1}\left\|F_{n}(t)\right\|<\infty \quad(t \in \mathbb{R}) . \\
\lim _{a \rightarrow \infty} \lim _{n \rightarrow \omega} \int_{\mathbb{R} \backslash[-a, a]}\left\|F_{n}(t)\right\| d t=0 . \tag{3.2}
\end{array}
$$

Then we have

$$
\left(\int_{\mathbb{R}} F_{n}(t) d t\right)_{\omega}=\int_{\mathbb{R}}\left(F_{n}(t)\right)_{\omega} d t .
$$

REMARK 3.1. Note that, by the ω-equicontinuity of $\left\{F_{n}\right\}_{n=1}^{\infty}, t \mapsto\left(F_{n}(t)\right)_{\omega}$ is continuous. In particular, it is measurable.

Proof. By (B.Cl), we have

$$
\int_{\mathbb{R}}\left(F_{n}(t)\right)_{\omega} d t=\lim _{a \rightarrow \infty} \int_{-a}^{a}\left(F_{n}(t)\right)_{\omega} d t .
$$

By (3.2), we also have

$$
\left(\int_{\mathbb{R}} F_{n}(t) d t\right)_{\omega}=\lim _{a \rightarrow \infty}\left(\int_{-a}^{a} F_{n}(t) d t\right)_{\omega} .
$$

Therefore, we have only to show that $\int_{-a}^{a}\left(F_{n}(t)\right)_{\omega} d t=\left(\int_{-a}^{a} F_{n}(t) d t\right)_{\omega}$ for all $a>0$. By the ω-equicontinuity of $\left\{F_{n}\right\}_{n=1}^{\infty}$, there exists a partition of the interval $[-a, a]$ such that $t_{0}=-a<t_{1}<t_{2}<\ldots<t_{N}=a$, and $W \in \omega$ so that for each $0 \leqslant i \leqslant N-1, n \in W$, and $\alpha, \beta \in\left[t_{i}, t_{i+1}\right]$, we have

$$
\left\|F_{n}(\alpha)-F_{n}(\beta)\right\|<\varepsilon / 4 a .
$$

This in particular implies that $\left\|\left(F_{n}(\alpha)\right)_{\omega}-\left(F_{n}(\beta)\right)_{\omega}\right\|<\varepsilon / 4 a$. Therefore, by the definition of the Riemann integral, we have

$$
\left\|\sum_{i=0}^{N-1}\left(t_{i+1}-t_{i}\right) F_{n}\left(t_{i}\right)-\int_{-a}^{a} F_{n}(t) d t\right\|<\varepsilon / 2 \quad(n \in W),
$$

and

$$
\left\|\sum_{i=0}^{N-1}\left(t_{i+1}-t_{i}\right)\left(F_{n}\left(t_{i}\right)\right)_{\omega}-\int_{-a}^{a}\left(F_{n}(t)\right)_{\omega} d t\right\|<\varepsilon / 2 .
$$

Using $\left(\sum_{i=0}^{N-1}\left(t_{i+1}-t_{i}\right) F_{n}\left(t_{i}\right)\right)_{\omega}=\sum_{i=0}^{N-1}\left(t_{i+1}-t_{i}\right)\left(F_{n}\left(t_{i}\right)\right)_{\omega}$, we have

$$
\left\|\int_{-a}^{a}\left(F_{n}(t)\right)_{\omega} d t-\left(\int_{-a}^{a} F_{n}(t) d t\right)_{\omega}\right\|<\varepsilon
$$

Since $\varepsilon>0$ is arbitrary, the claim is proved.
Lemma 3.5. Let $\xi=\left(\xi_{n}\right)_{\omega} \in K(A)$ and let $f \in L^{1}(\mathbb{R})$. Then we have

$$
\left(\int_{\mathbb{R}} f(t) e^{i t A} \xi_{n} d t\right)_{\omega}=\int_{\mathbb{R}}\left(f(t) e^{i t A} \xi_{n}\right)_{\omega} d t .
$$

Proof. Note that $t \mapsto f(t)\left(e^{i t A} \xi_{n}\right)_{\omega}$ is measurable thanks to Lemma B..1. Let $C:=\sup _{n}\left\|\xi_{n}\right\|$. First assume that $f \in L^{1}(\mathbb{R}) \cap C(\mathbb{R})$. It suffices to show that $\left\{F_{n}: t \mapsto f(t) e^{i t A} \xi_{n}\right\}_{n=1}^{\infty}$ is ω-equicontinuous and satisfies the conditions (B.ll) and (B.2) in Lemma B.4. It follows that $\sup _{n} \int_{\mathbb{R}}\left\|F_{n}(t)\right\| d t=\int_{\mathbb{R}}|f(t)| d t \cdot\|\xi\|<\infty$, $\sup _{n}\left\|F_{n}(t)\right\|=|f(t)|<\infty$, and

$$
\lim _{a \rightarrow \infty} \lim _{n \rightarrow \omega} \int_{\mathbb{R} \backslash[-a, a]}\left\|F_{n}(t)\right\| d t=\lim _{a \rightarrow \infty} \int_{\mathbb{R} \backslash(-a, a]}|f(t)| d t \cdot\|\xi\|=0 .
$$

Therefore (B.1) and (3.2) in Lemma B.4 are satisfied. We show the ω-equicontinuity of $\left\{F_{n}\right\}_{n=1}^{\infty}$. Suppose $\varepsilon>0$ and $t \in \mathbb{R}$ are given. By the A-regularity of ξ and continuity of f, there exists $\delta>0$ and $W \in \omega$ such that for each $s \in(t-\delta, t+\delta)$ and $n \in W$, we have

$$
\left\|e^{i t A} \xi_{n}-e^{i s A} \xi_{n}\right\|<\frac{\varepsilon}{2(|f(t)|+1)}, \quad|f(t)-f(s)|<\frac{\varepsilon}{2(C+1)}
$$

Then it follows that

$$
\begin{aligned}
& \left\|f(t) e^{i t A} \xi_{n}-f(s) e^{i s A} \xi_{n}\right\| \\
\leqslant & |f(t)| \cdot\left\|e^{i t A} \xi_{n}-e^{i s A} \xi_{n}\right\|+|f(t)-f(s)| \cdot\left\|e^{i s A} \xi_{n}\right\|<\varepsilon / 2+\varepsilon / 2=\varepsilon
\end{aligned}
$$

Therefore $\left\{F_{n}\right\}_{n=1}^{\infty}$ is ω-equicontinuous. By Lemma 3.4, the claim follows.
Next, suppose $f \in L^{1}(\mathbb{R})$. Let $\varepsilon>0$. There exists $g \in L^{1}(\mathbb{R}) \cap C(\mathbb{R})$ such that $\|f-g\|_{1}<\varepsilon / 2(C+1)$. Then we have

$$
\begin{gathered}
\left\|\left(\int_{\mathbb{R}} f(t) e^{i t A} \xi_{n} d t-\int_{\mathbb{R}} g(t) e^{i t A_{n}} \xi_{n} d t\right)_{\omega}\right\| \leqslant \lim _{n \rightarrow \omega} \int_{\mathbb{R}}|f(t)-g(t)|\left\|\xi_{n}\right\| d t<\varepsilon / 2 \\
\quad\left\|\int_{\mathbb{R}}\left(g(t) e^{i t A} \xi_{n}\right)_{\omega} d t-\int_{\mathbb{R}}\left(f(t) e^{i t A} \xi_{n}\right)_{\omega} d t\right\| \leqslant\|g-f\|_{1} \cdot\|\xi\|<\varepsilon / 2
\end{gathered}
$$

whence by applying the above argument for g we have

$$
\left\|\left(\int_{\mathbb{R}} f(t) e^{i t A} \xi_{n} d t\right)_{\omega}-\int_{\mathbb{R}}\left(f(t) e^{i t A} \xi_{n}\right)_{\omega} d t\right\|<\varepsilon
$$

Since $\varepsilon>0$ is arbitrary, the claim is proved.
Lemma 3.6. $\operatorname{dom}\left(\widetilde{A}_{\omega}\right)=\widehat{\mathscr{D}}_{A}$.
Proof. By Lemma [3.3, it suffices to show that $\operatorname{dom}\left(\widetilde{A}_{\underset{\omega}{\omega}}\right) \subset \widehat{\mathscr{D}}_{A}$. Let $e(\cdot)$ (resp. $\widetilde{e}(\cdot))$ be the spectral measure associated with $A\left(\operatorname{resp} . \widetilde{A}_{\omega}\right)$. We first show the following:

CLAIM. For a given $\xi \in \operatorname{dom}\left(\widetilde{A}_{\omega}\right)$ and $\varepsilon>0$, there exists $a>0$ and $\left(\eta_{n}\right)_{n} \in$ $\ell^{\infty}(\mathbb{N}, H)$ with the properties: $\eta_{n} \in 1_{[-a, a]}(A) H(n \in \mathbb{N}),\left\|\xi-\left(\eta_{n}\right)_{\omega}\right\|<\varepsilon$, and $\left\|\widetilde{A}_{\omega} \xi-\left(A \eta_{n}\right)_{\omega}\right\|<\varepsilon$.

Note that in general $\widetilde{e}(B)$ is not the ultrapower of $e(B)$ for a Borel set B. Therefore we need some extra work (cf. [li], Section 4). As $\bigcup_{a>0} 1_{[-a, a]}\left(\widetilde{A}_{\omega}\right) K(A)$ is a core for \widetilde{A}_{ω}, there exists $a>0, \eta=\left(\eta_{n}\right)_{\omega} \in 1_{[-a / 2, a / 2]}\left(\widetilde{A}_{\omega}\right) K(A)$ such that $\|\xi-\eta\|<\varepsilon$ and $\left\|\widetilde{A}_{\omega} \xi-\widetilde{A}_{\omega} \eta\right\|<\varepsilon$. Let $f \in L^{1}(\mathbb{R})$ be a function with the following properties: $\operatorname{supp}(\hat{f}) \subset[-a, a], \hat{f}=1$ on $[-a / 2, a / 2], 0 \leqslant \hat{f}(\lambda) \leqslant 1(\lambda \in \mathbb{R})$.

Here, $\hat{f}(\lambda)=\int_{\mathbb{R}} e^{i \lambda t} f(t) d t$ is the Fourier transform of f. For instance, one may choose the de la Vallée-Poussin kernel $D_{a / 2}$ (see [1]], Definition 4.12). Let

$$
\eta^{\prime}:=\int_{\mathbb{R}} f(t) e^{i t \widetilde{A}_{\omega}} \eta d t
$$

Then we have (by the spectral condition of η and $\hat{f}=1$ on $[-a / 2, a / 2]$)

$$
\begin{aligned}
\eta^{\prime} & =\int_{\mathbb{R}} \int_{\mathbb{R}} f(t) e^{i t \lambda} d(\widetilde{e}(\lambda) \eta) d t=\int_{\mathbb{R}}\left(\int_{\mathbb{R}} f(t) e^{i t \lambda} d t\right) d(\widetilde{e}(\lambda) \eta) \\
& =\int_{\mathbb{R}} \hat{f}(\lambda) d(\widetilde{e}(\lambda) \eta)=\hat{f}\left(\widetilde{A}_{\omega}\right) \eta=\eta .
\end{aligned}
$$

Furthermore, by Lemma [3.5], we have

$$
\eta=\eta^{\prime}=\left(\int_{\mathbb{R}} f(t) e^{i t A} \eta_{n} d t\right)_{\omega}=\left(\hat{f}(A) \eta_{n}\right)_{\omega}
$$

and $\eta_{n}^{\prime}:=\hat{f}(A) \eta_{n} \in 1_{[-a, a]}(A) H$ for each $n \geqslant 1$. Therefore, $\left(\eta_{n}^{\prime}\right)_{n}$ is the required sequence, as $\widetilde{A}_{\omega} \eta=\left(A \eta_{n}^{\prime}\right)_{\omega}$ (cf. Lemma [3.3]).

Assume now that $\xi \in \operatorname{dom}\left(\widetilde{A}_{\omega}\right)$ with $\|\xi\|=1$. We show that $\xi \in \widehat{\mathscr{D}}_{A}$, i.e., it has a proper representative. Let $\varepsilon>0$. We use the following argument similar to Lemma 3.9 (i) in [[]]. By the above Claim, for each $k \in \mathbb{N}$, put $\varepsilon=2^{-k-1}$ in the above argument to find $a_{k}\left(\leqslant a_{k+1} \leqslant a_{k+2} \leqslant \ldots\right)$ and $\left(\eta_{n}^{(k)}\right)_{n} \in \ell^{\infty}(\mathbb{N}, H)$ satisfying $\eta_{n}^{(k)} \in 1_{\left[-a_{k}, a_{k}\right]}(A) H(n \in \mathbb{N})$, and

$$
\left\|\xi-\left(\eta_{n}^{(k)}\right)_{\omega}\right\|<\frac{1}{2^{k+1}}, \quad\left\|\widetilde{A}_{\omega} \xi-\left(A \eta_{n}^{(k)}\right)_{\omega}\right\|<\frac{1}{2^{k+1}} \quad(k \in \mathbb{N})
$$

Furthermore, we may assume $\left\|\eta_{n}^{(k)}\right\| \leqslant 2$ for each $n, k \in \mathbb{N}$. Then for each $k \in \mathbb{N}$ we have

$$
\left\|\left(\eta_{n}^{(k+1)}\right)_{\omega}-\left(\eta_{n}^{(k)}\right)_{\omega}\right\|<\frac{1}{2^{k}}, \quad\left\|\left(A \eta_{n}^{(k+1)}\right)_{\omega}-\left(A \eta_{n}^{(k)}\right)_{\omega}\right\|<\frac{1}{2^{k}}
$$

Let
$G_{k}:=\left\{n \in \mathbb{N} ;\left\|\eta_{n}^{(k+1)}-\eta_{n}^{(k)}\right\|<\frac{1}{2^{k}},\left\|A \eta_{n}^{(k+1)}-A \eta_{n}^{(k)}\right\|<\frac{1}{2^{k}}\right\} \quad(k \in \mathbb{N})$.
Then $G_{k} \in \omega(k \in \mathbb{N})$ holds, and since ω is free, it follows that $F_{k}:=\bigcap_{i=1}^{k} G_{i} \cap$ $\{n \in \mathbb{N} ; n \geqslant k\} \in \omega(k \in \mathbb{N})$. Since $\left\{F_{k}\right\}_{k=1}^{\infty}$ is decreasing with empty intersection, $\mathbb{N}=\left(\mathbb{N} \backslash F_{1}\right) \sqcup \bigsqcup_{j=1}^{\infty}\left(F_{j} \backslash F_{j+1}\right)$. Then define $\left(\xi_{n}\right)_{n}$ by

$$
\xi_{n}:= \begin{cases}\eta_{n}^{(1)} & \left(n \in \mathbb{N} \backslash F_{1}\right), \\ \eta_{n}^{(k)} & \left(n \in F_{k} \backslash F_{k+1}\right)\end{cases}
$$

Then $\sup _{n \geqslant 1}\left\|\xi_{n}\right\| \leqslant 2<\infty$. Fix $k \geqslant 1$. If $n \in F_{k}=\bigsqcup_{j=k}^{\infty}\left(F_{j} \backslash F_{j+1}\right)$, there is a unique $j \geqslant k$ for which $n \in F_{j} \backslash F_{j+1}$ holds, so that $\xi_{n}=\eta_{n}^{(j)}$. Then we have

$$
\left\|\xi_{n}-\eta_{n}^{(k)}\right\|=\left\|\eta_{n}^{(j)}-\eta_{n}^{(k)}\right\| \leqslant \sum_{i=k}^{j-1}\left\|\eta_{n}^{(i+1)}-\eta_{n}^{(i)}\right\| \leqslant \sum_{i=k}^{j-1} \frac{1}{2^{i}}<\frac{1}{2^{k-1}}
$$

so that $F_{k} \in \omega$ implies

$$
\left\|\left(\xi_{n}\right)_{\omega}-\left(\eta_{n}^{(k)}\right)_{\omega}\right\|<\frac{1}{2^{k-1}} \quad(k \in \mathbb{N})
$$

Similarly,

$$
\left\|\left(A \xi_{n}\right)_{\omega}-\left(A \eta_{n}^{(k)}\right)_{\omega}\right\|<\frac{1}{2^{k-1}} \quad(k \in \mathbb{N})
$$

In particular, for each $k \in \mathbb{N}$ we have

$$
\left\|\xi-\left(\xi_{n}\right)_{\omega}\right\| \leqslant\left\|\xi-\left(\eta_{n}^{(k)}\right)_{\omega}\right\|+\left\|\left(\eta_{n}^{(k)}\right)_{\omega}-\left(\xi_{n}\right)_{\omega}\right\|<\frac{1}{2^{k-2}}
$$

Letting $k \rightarrow \infty$, we obtain $\xi=\left(\xi_{n}\right)_{\omega}$. We show that $\left(\xi_{n}\right)_{n}$ is a proper A-sequence. Suppose $\varepsilon>0$ is given. Take k such that $\varepsilon>2^{-k+1}$, and put $a=a_{k}>0, \eta_{n}:=$ $\eta_{n}^{(k)}$. Then, by construction, $\eta_{n} \in 1_{[-a, a]}(A) H(n \in \mathbb{N}),\left\|\left(\xi_{n}\right)_{\omega}-\left(\eta_{n}\right)_{\omega}\right\|<\varepsilon$, and $\left\|\left(A \xi_{n}\right)_{\omega}-\left(A \eta_{n}\right)_{\omega}\right\|<\varepsilon$ holds. Therefore, changing ξ_{n} to be zero if necessary for n belonging to a set I with $I \notin \omega$, we may assume that $\left(A \xi_{n}\right)_{n}$ is bounded, and $\left(\xi_{n}\right)_{n}$ is a proper A-sequence. This completes the proof.

Lemma 3.7. Let $\left(\xi_{n}\right)_{n} \in \ell^{\infty}(\mathbb{N}, H)$ be a sequence such that $\xi=\left(\xi_{n}\right)_{\omega} \in$ $K(A)$. Then $\left(\widetilde{A}_{\omega}-i\right)^{-1} \xi=\left((A-i)^{-1} \xi_{n}\right)_{\omega}$ and $\left(\widetilde{A}_{\omega}+i\right)^{-1} \xi=\left((A+i)^{-1} \xi_{n}\right)_{\omega}$.

Proof. Since $v(t)=e^{i t \widetilde{A}}=\left.\left(e^{i t A}\right)_{\omega}\right|_{K(A)}(t \in \mathbb{R})$, by the resolvent formula and Lemma 3.5, we have

$$
\begin{aligned}
\left(\widetilde{A}_{\omega}-i\right)^{-1} \xi & =i \int_{0}^{\infty} e^{-t} e^{-i t \widetilde{A}_{\omega}} \xi d t=i \int_{0}^{\infty} e^{-t}\left(e^{-i t A_{n}} \xi_{n} d t\right. \\
& =\left(i \int_{0}^{\infty} e^{-t} e^{-i t A_{n}} \xi_{n} d t\right)_{\omega}=\left((A-i)^{-1} \xi_{n}\right)_{\omega} .
\end{aligned}
$$

The latter identity follows similarly.
REMARK 3.2. Note that $\left(\widetilde{A}_{\omega}-i\right)^{-1} \xi=\left((A-i)^{-1} \xi_{n}\right)_{\omega}$ holds even if $\left(\xi_{n}\right)_{n}$ is not proper. The only requirement is A-regularity: $\left(\xi_{n}\right)_{\omega} \in K(A)$.

We are now ready to prove Theorem B. 11 .
Proof of Theorem B.I. The assertion $\operatorname{dom}\left(\widetilde{A}_{\omega}\right)=\widehat{\mathscr{D}}_{A}$ is proved in Lemma B.6. Then, for every $\xi \in \widehat{\mathscr{D}}_{A}$ and $\varepsilon>0$, there exists $\eta \in \mathscr{D}_{0}$ such that $\|\xi-\eta\|_{\widetilde{A}_{\omega}}<\varepsilon$ holds (cf. Lemma [3.3). Therefore, \widetilde{A}_{ω} is the closure of $\left.\widetilde{A}_{\omega}\right|_{\mathscr{D}_{0}}$.

4. ALTERNATIVE DESCRIPTION OF A_{ω}

Now we are ready to show
THEOREM 4.1. Under the same notation as in Section 3, the following holds:
(1) $K(A)=H(A)$, and $A_{\omega}=\widetilde{A}_{\omega}$. Moreover, \mathscr{D}_{0} is a core for A_{ω}.
(2) For a representative $\left(\xi_{n}\right)_{n}$ of $\xi \in \operatorname{dom}\left(A_{\omega}\right), A_{\omega} \xi=\left(A \xi_{n}\right)_{\omega}$ holds if and only if it is a proper A-sequence (see Definition 3.4).

Proof. (1) By construction, it is clear that \widetilde{A}_{ω} is a p.u. of A in $K(A) \subset H_{\omega}$. Therefore, by the maximality of A_{ω}, Theorem ID (2), $K(A) \subset H(A)$ and $\widetilde{A}_{\omega}=$ $\left.A_{\omega}\right|_{K(A)}$. Consequently, if we show that $K(A)=H(A)$, then $\widetilde{A}_{\omega}=A_{\omega}$ holds. To show $H(A) \subset K(A)$, suppose $\left(\xi_{n}\right)_{n}$ is a representing sequence of $\xi \in \mathscr{D}_{A}$ with $\left(A \xi_{n}\right)_{n} \in \ell^{\infty}(\mathbb{N}, H)$. We show that $\left\{f_{n}: t \mapsto e^{i t A} \xi_{n}\right\}_{n=1}^{\infty}$ is ω-equicontinuous. Let $C:=\sup _{n}\left\|A \xi_{n}\right\|$. Then for $t, s \in \mathbb{R}$, as in the analysis in Section 3,
$\left\|e^{i t A} \xi_{n}-e^{i s A} \xi_{n}\right\|^{2}=\int_{\mathbb{R}}\left|e^{i t \lambda}-e^{i s \lambda}\right|^{2} d\left\|e(\lambda) \xi_{n}\right\|^{2} \leqslant(t-s)^{2}\left\|A \xi_{n}\right\|^{2} \leqslant C^{2}(t-s)^{2}$,
which tends to zero as $(t-s) \rightarrow 0$ uniformly in n. Thus, we infer that $\left\{f_{n}\right\}_{n=1}^{\infty}$ is ω-equicontinuous. Therefore $\mathscr{D}_{A} \subset K(A)$, and taking the closure, $H(A) \subset K(A)$ holds. Consequently, $H(A)=K(A)$. By Theorem B.l, \mathscr{D}_{0} is a core for $A_{\omega}=\widetilde{A}_{\omega}$.
(2) This follows from (1), Theorem B.1, Lemma B.3, and a simple observation that if $A_{\omega} \xi=\left(A \xi_{n}\right)_{\omega}$ and if $\left(\xi_{n}^{\prime}\right)_{n}$ is another proper A-sequence representing ξ, then for every $\varepsilon>0$ there is $a>0$ and an A-sequence $\left(\eta_{n}\right)_{n}$ with $\eta_{n} \in$ $1_{[-a, a]}(A) H(n \in \mathbb{N})$ such that $\lim _{n \rightarrow \omega}\left\|\xi_{n}-\eta_{n}\right\|_{A}=\lim _{n \rightarrow \omega}\left\|\xi_{n}^{\prime}-\eta_{n}\right\|_{A}<\varepsilon$, so that $\left(\xi_{n}\right)_{n}$ is proper as well.

REMARK 4.1. Finally, let us return to Example 【.I. We note that $\left(\xi_{n}\right)_{n}$ is proper, while $\left(\xi_{n}^{\prime}\right)_{n}$ is not. The first claim is obvious. For the latter, if it were proper, then so would be $\left(\frac{1}{n} \eta_{n}\right)_{n}$. But if $\left(\frac{1}{n} \eta_{n}\right)_{n}$ were proper, there would exist an A-sequence $\left(\zeta_{n}\right)_{n}$ and $a>0$ for which $\zeta_{n} \in 1_{[-a, a]}(A) H(n \in \mathbb{N})$, $\lim _{n \rightarrow \omega}\left\|\zeta_{n}-\frac{1}{n} \eta_{n}\right\|<1 / 2$ and $\lim _{n \rightarrow \omega}\left\|A \zeta_{n}-\eta_{n}\right\|<1 / 2$ hold. Let $n_{0} \in \mathbb{N}$ be such that $n_{0}>|a|$. Then, for $n \geqslant n_{0}, \eta_{n} \in 1_{\{n\}}(A) H$, so $\eta_{n} \perp \zeta_{n}$. Thus

$$
\lim _{n \rightarrow \omega}\left\|A \zeta_{n}-\eta_{n}\right\|^{2}=\lim _{n \rightarrow \omega}\left\|A \zeta_{n}\right\|^{2}+1<\frac{1}{4}
$$

which is a contradiction. Thus $\left(\frac{1}{n} \eta_{n}\right)_{n}$, whence $\left(\xi_{n}^{\prime}\right)_{n}$, is not proper. Note also that $\left(\eta_{n}\right)_{\omega}$ is perpendicular to $H(A)$ and, in particular, $\left(A \xi_{n}^{\prime}\right)_{\omega} \notin H(A)$. To see this, let $\left(\xi_{n}\right)_{n}$ be an A-sequence such that $\left(A \xi_{n}\right)_{n}$ is bounded. Then

$$
\begin{aligned}
\left|\lim _{n \rightarrow \omega}\left\langle\eta_{n}, \xi_{n}\right\rangle\right| & =\left|\lim _{n \rightarrow \omega}\left\langle\eta_{n},(A-i)^{-1}(A+i) \xi_{n}\right\rangle\right| \\
& \leqslant \lim _{n \rightarrow \omega} \frac{1}{|n+i|}\left\|(A+i) \xi_{n}\right\|=0
\end{aligned}
$$

Thus $\left(\eta_{n}\right)_{\omega} \in \mathscr{D}{ }_{A}^{\perp}=H(A)^{\perp}$.

Acknowledgments. The current research started from the authors' discussion during the 15th Workshop on Non-Commutative Harmonic Analysis (September 23-29, 2012) in Beedlewo, Poland. We thank the organizers for their hospitality extended to them. We also thank Yasumichi Matsuzawa for many useful comments which improved the presentation of the paper.

REFERENCES

[1] H. Ando and U. Haagerup, Ultraproducts of von Neumann algebras, arXiv: 12112.5457 v 2.
[2] A. Kishimoto, Rohlin property for flows, Contemp. Math. 335 (2003), pp. 195-207.
[3] A. Krupa and B. Zawisza, Applications of ultrapowers in analysis of unbounded selfadjoint operators, Bull. Polish Acad. Sci. Math. 32 (1984), pp. 581-588.
[4] A. Krupa and B. Zawisza, Ultrapowers of unbounded selfadjoint operators, Studia Math. 87 (2) (1987), pp. 101-120.
[5] T. Masuda and R. Tomatsu, Rohlin flows on von Neumann algebras, preprint, arXiv: 1206.0955 v 2 .
[6] H. Saigo, Categorical non-standard analysis, preprint, arXiv: 1009.0234.
[7] K. Schmüdgen, Unbounded self-adjoint operators on Hilbert space, Grad. Texts in Math., Springer, 2012.

Hiroshi Ando
Institut des Hautes Études Scientifiques
Le Bois-Marie 35, route de Chartres
91440 Bures-sur-Yvette, France
E-mail: ando@ihes.fr

Izumi Ojima
Research Institute for Mathematical Sciences
Kyoto University
Sakyo-ku, Kitashirakawa Oiwakecho 606-8502 Kyoto, Japan
E-mail: ojima@kurims.kyoto-u.ac.jp

Hayato Saigo
Nagahama Institute of Bio-Science and Technology
Nagahama 526-0829, Japan
E-mail: h_saigoh@nagahama-i-bio.ac.jp

