PROBABILITY
 MATHEMATICAL STATISTICS
 Vol. 36, Fasc. 2 (2016), pp. 311-333

A MAXIMAL INEQUALITY FOR STOCHASTIC INTEGRALS

Mateusz Rapicki

Abstract: Assume that X is a càdlàg, real-valued martingale starting from zero, H is a predictable process with values in $[-1,1]$ and $Y=\int H d X$. This article contains the proofs of the following inequalities:
(i) If X has continuous paths, then

$$
\mathbb{P}\left(\sup _{t \geq 0} Y_{t} \geq 1\right) \leq 2 \mathbb{E} \sup _{t \geq 0} X_{t}
$$

where the constant 2 is the best possible.
(ii) If X is arbitrary, then

$$
\mathbb{P}\left(\sup _{t \geq 0} Y_{t} \geq 1\right) \leq c \mathbb{E} \sup _{t \geq 0} X_{t}
$$

where $c=3.0446 \ldots$ is the unique positive number satisfying the equation $3 c^{4}-8 c^{3}-$ $32=0$. This constant is the best possible.

2000 AMS Mathematics Subject Classification: Primary: 60G42; Secondary: 60G44.

Keywords and phrases: Martingale, sharp inequality.

