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Abstract. In this article, we first extend Theorem 2 of Robinson [11]
from one dimension to two dimensions. Then the theoretical asymptotic
properties of the means, variances, covariance and MSEs of the regres-
sion/GPH (GPH states for Geweke and Porter-Hudak’s) estimators of the
memory parameters of the FISSARMA model are established. We also per-
formed simulations to study MSE and covariances for finite sample sizes.
We found that through the simulation study the MSE values of the mem-
ory parameters tend to the theoretical MSE values as the sample size in-
creases. It is also found that m1/2(d̂1 − d1) and m1/2(d̂2 − d2) are inde-
pendent and identically distributed as N(0, π2/24), when m = o(n4/5) and
ln2 n = o(m).
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1. INTRODUCTION

Many random phenomena are observed over a region. For instance, air tem-
perature, rainfall, and fertility of soil, to name just a few. Whenever observations
are made over a region, they may display spatial correlation, and it is therefore im-
portant to take this fact into consideration when analyzing spatial data. More im-
portantly, spatial modelling becomes significant, and in this respect various models
have been introduced from time to time. Spatial models on lattice are like the SAR,
CAR, MA, spatial ARMA models, etc. These models take into consideration the
spatial correlation in one way or the other. At times the spatial correlation structure
might exhibit long-memory patterns, and by including an index parameter into ex-
isting spatial models (FISSAR, GENSSAR), various types of correlation structures
can be produced. This in turn would assist a data analyst to model spatial data with
numerous types of correlation structure.

The autocorrelation function of the long-memory processes decays rather slow-
ly. The long-memory processes in area of time series are modelled by fractionally
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integrated ARMA (ARFIMA) models (see [3] and [4]). Boissy et al. [2] extended
the long-memory concept from time series to the spatial context and introduced the
fractional autoregressive model and established the strong consistency of Whittle’s
estimator for the parameters of the model. Independently, Shitan [13] considered
the same model and termed it “Fractionally Integrated Separable Spatial Autore-
gressive” (FISSAR) model and proposed a regression estimation method for es-
timation of the memory parameters in terms of the log-periodogram. Ghodsi and
Shitan [6] compared the regression and Whittle’s estimations of memory param-
eters by simulation study. For the values considered in that study, they found that
the regression method of estimation was better when compared with the Whittle
estimator in the sense that it had smaller root mean squared errors (RMSE) values.
Beran et al. [1] introduced the FISSARMA(p1, d1, q1)×(p2, d2, q2) model and de-
rived the asymptotic distribution of the least squares estimators of its parameters.
Guo et al. [8] showed that the Whittle estimators of the memory parameters of the
general spatial fractional ARMA model are consistent and asymptotically normal.

The regression method of estimating memory parameters seems to be useful
because it does not require any prior knowledge of other model parameters. The
asymptotic properties of regression estimator for the memory parameter of a long-
memory ARFIMA models in one dimension were extensively explored by Robin-
son [11] and [12] and Hurvich et al. [10]. The study of log-periodogram regression
for general long-memory spatial processes seems to be lacking in the literature.
Wang [14] derived the asymptotic properties of the mean and variance of Geweke
and Porter-Hudak’s (GPH) estimator of the memory parameter of d-dimensional
isotropic long-memory random fields with spectral density function as

f(ω1, ω2) =
( d∑
k=1

|1− e−iωk |2
)−α

f∗(ω1, . . . , ωd),

where α is the memory parameter. In this paper we derive some asymptotic prop-
erties of log-periodogram regression of FISSARMA models in two dimensions as
defined in (1.1). Note that, in the model considered by Wang, the long memory in
all directions is the same, but in our model is not. It is also obvious that the spectral
function of Wang’s model is different from the spectral function of the FISSARMA
models defined in (1.2).

The stationary fractionally integrated separable spatial ARMA processes
(FISSARMA(p1, d1, q1)×(p2, d2, q2)) on a two-dimensional regular lattice {Xij ,
i, j ∈ Z} are defined as follows:

(1.1) Φ(B1, B2)(1−B1)
d1(1−B2)

d2Xij = Θ(B1, B2)Zij ,

where B1 and B2 are the usual backward shift operators acting in the ith and jth
directions, respectively, i.e., Bk

1Xij = Xi−k,j , Bl
2Xij = Xi,j−l, −0.5 < d1, d2 <

0.5, and {Zij} is a two-dimensional Gaussian white noise process with mean zero
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and variance σ2, and
Φ(B1, B2) = Φ1(B1)Φ2(B2),

Θ(B1, B2) = Θ1(B1)Θ2(B2),

where

Φ1(z) = 1−
p1∑
j=1

ϕ1jz
j , Φ2(z) = 1−

p2∑
j=1

ϕ2jz
j ,

Θ1(z) = 1 +
q1∑
j=1

θ1jz
j , Θ2(z) = 1 +

q2∑
j=1

θ2jz
j ,

and the roots of the polynomials Φi and Θi (i = 1, 2) are outside the unit circle.
The spectral function of this model is given by

(1.2) f(ω1, ω2) = |1− e−iω1 |−2d1 |1− e−iω2 |−2d2f∗(ω1, ω2),

where ω1, ω2 ∈ [−π, π] \ {0} and f∗ is the spectral function of the standard sepa-
rable spatial ARMA (SSARMA) model determined by

f∗(ω1, ω2) =
σ2

4π2

∣∣∣∣Θ1(e
−iω1)

Φ1(e−iω1)

∣∣∣∣2 ∣∣∣∣Θ2(e
−iω2)

Φ2(e−iω2)

∣∣∣∣2,
which can be rewritten as

(1.3) f∗(ω1, ω2) = f∗1 (ω1)f
∗
2 (ω2)/σ

2,

where f∗1 and f∗2 are spectral functions of the ARMA(p1, q1) and ARMA(p2, q2)
models in time series, respectively. f∗1 and f∗2 are even, positive, continuous on
[−π, π], bounded above and bounded away from zero with f∗1

′
(0) = f∗2

′
(0) = 0,

and second and third derivatives of f∗1 and f∗2 are bounded in a neighborhood of
zero.

Let X1,1, . . . , X1,n2 , X2,1, . . . , X2,n2 , . . . , Xn1,1, . . . , Xn1,n2 be the random
sample on a regular lattice. The periodogram in the two-dimensional case is given
by the formula

(1.4) In1,n2(ω1, ω2) =
1

4π2n1n2

∣∣ n1∑
k=1

n2∑
l=1

Xk,le
i(kω1+lω2)

∣∣2.
The article is organized as follows. First we extend Theorem 2 of Robinson

[11] for the FISSARMA models, then we establish the theoretical asymptotic prop-
erties of the means, variances, covariance and MSEs of the regression or GPH es-
timators of d̂1 and d̂2 for the FISSARMA models (1.1) with spectral function as in
(1.2). In Section 3, we assess the accuracy of our asymptotic theory on the MSE
for small sample sizes by simulation, and finally, in Section 4, the conclusions are
drawn.
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2. MAIN RESULTS

Let ω1,j1 = 2πj1/n1 and ω2,j2 = 2πj2/n2, where jk = −mk, . . . ,mk for
k = 1, 2 and mk is a positive integer which tends to infinity slower than nk (where
mk can be equal to

√
nk as suggested by Geweke and Porter-Hudak [5]), and sup-

pose Ij1,j2 and f∗j1,j2 denote In1,n2(ω1, ω2) and f∗(ω1, ω2) evaluated at ω1 = ω1,j1

and ω2 = ω2,j2 , respectively.
Taking the logarithm of the spectral function of the FISSARMA model defined

in equation (1.2) and evaluating at the points ω1 = ω1,j1 and ω2 = ω2,j2 , after some
algebraic manipulation, we obtain the multiple regression equation

(2.1) ln Ij1,j2 = ln f∗(0, 0)− γ − 2d1x1,j1 − 2d2x2,j2 + ln
f∗j1,j2
f∗0,0

+ εj1,j2 ,

where x1,j1 = ln|1 − e−iω1,j1 |, x2,j2 = ln|1 − e−iω2,j2 |, εj1,j2 = ln(Ij1,j2/fj1,j2)
+ γ, fj1,j2 = f(ω1,j1 , ω2,j2) defined in (1.2) and γ = 0.577216 . . . is Euler’s con-
stant. Ghodsi and Shitan [7] showed that the ‘errors’, εj1,j2’s, are not independent
and identically distributed and limn→∞ E(εj1,j2) depends on j1, j2.

The regression (or GPH) estimators of d1 and d2 can be obtained as follows
by using the least squares method:

(2.2)

d̂1 = −

m1∑
j1=1

m2∑
j2=1

(x1,j1 − x̄1) ln Ij1,j2

2m2

m1∑
j1=1

(x1,j1 − x̄1)2
,

d̂2 = −

m1∑
j1=1

m2∑
j2=1

(x2,j2 − x̄2) ln Ij1,j2

2m1

m2∑
j2=1

(x2,j2 − x̄2)2
,

where x̄1 = 1
m1

∑m1

j1=1 x1,j1 and x̄2 =
1
m2

∑m2

j2=1 x2,j2 . Since f(−ω) = f(ω), we
have f(−ω1,−ω2) = f(−ω1, ω2) = f(ω1,−ω2) = f(ω1, ω2). So, we consider
only the positive values for j1 and j2, i.e. jk = 1, 2, . . . ,mk for k = 1, 2.

Using (2.1), we can obtain

(2.3) ln Ij1,j2 = −2d1x1,j1 − 2d2x2,j2 + ln f∗j1,j2 + εj1,j2 − γ;

putting (2.3) into (2.2), defining a1,j1 = x1,j1 − x̄1 and a2,j2 = x2,j2 − x̄2 and
noting that

∑m1

j1=1 a1,j1 = 0 and
∑m2

j2=1 a2,j2 = 0, we get

(2.4) d̂1 − d1 = −
1

2Sx1,x1

m1∑
j1=1

a1,j1 ln f
∗
1,j1 −

1

2m2Sx1,x1

m1∑
j1=1

m2∑
j2=1

a1,j1εj1,j2 ,

(2.5) d̂2 − d2 = −
1

2Sx2,x2

m2∑
j2=1

a2,j2 ln f
∗
2,j2 −

1

2m1Sx2,x2

m1∑
j1=1

m2∑
j2=1

a2,j2εj1,j2 ,
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where

Sx1,x1 =
m1∑
j1=1

a21,j1 =
m1∑
j1=1

x1,j1a1,j1 , Sx2,x2 =
m2∑
j2=1

a22,j2 =
m2∑
j2=1

x2,j2a2,j2 ,

and f∗1,j1 = f∗1 (ω1,j1) and f∗2,j2 = f∗2 (ω2,j2).
To derive the asymptotic properties of GPH estimators in Theorem 2.1 below,

we assume that the process (1.1) is Gaussian and that the following condition holds
true.

CONDITION A. We have:
m1/n1 → 0 and (m1 lnm1)/n1 → 0 as m1, n1 →∞,
m2/n2 → 0 and (m2 lnm2)/n2 → 0 as m2, n2 →∞.

THEOREM 2.1. Suppose that d̂1 and d̂2 are the regression (GPH) estimators
of memory parameters d1 and d2 of the FISSARMA model defined in (1.1). Under
Condition A, when n1 = n2 = n and m1 = m2 = m, we have

E(d̂1 − d1) =
−2π2

9

f∗
′′

1 (0)

f∗1 (0)

m2

n2
+ o

(
m2

n2

)
+O

(
ln3m

m

)
,(a)

E(d̂2 − d2) =
−2π2

9

f∗
′′

2 (0)

f∗2 (0)

m2

n2
+ o

(
m2

n2

)
+O

(
ln3m

m

)
,(b)

Var(d̂1) = Var(d̂2) =
π2

24m2
+ o

(
1

m2

)
+O

(
ln14m

m2

)
,(c)

Cov(d̂1, d̂2) = o

(
1

m2

)
+O

(
ln14m

m2

)
.(d)

COROLLARY 2.1. Since f∗
′′

1 (0), f∗1 (0) and f∗
′′

2 (0), f∗2 (0) depend on the pa-
rameters of the ARMA(p1, q1) and ARMA(p2, q2) models, respectively, E(d̂1 − d1)

and E(d̂2 − d2) also depend on them, respectively.

To prove Theorem 2.1 we need the following lemmas. In Lemma 2.1, we
will extend Theorem 2 in [11] for the ARFIMA model in one dimension to the
FISSARMA model in two dimensions.

LEMMA 2.1. For the stationary FISSARMA model observed on a two-dimen-
sional regular lattice {Xij} of size n1 × n2 defined in (1.1) we have

E

(
Ij1,j2
fj1,j2

)
= E

(
Jj1,j2Jj1,j2

fj1,j2

)
= 1 +O

(
max

{
ln j1
j1

,
ln j2
j2

})
,(a)

E

(
J2
j1,j2

fj1,j2

)
= O

(
ln j1
j1

ln j2
j2

)
,(b)
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E

(
Jj1,j2Jk1,k2√
fj1,j2fk1,k2

)
= O

(
ln j1
k1

ln j2
k2

)
,(c)

E

(
Jj1,j2Jk1,k2√
fj1,j2fk1,k2

)
= O

(
ln j1
k1

ln j2
k2

)
,(d)

where

Jj1,j2 =
1

2π
√
n1n2

n1∑
k=1

n2∑
l=1

Xkl exp
(
i(kω1,j1 + lω2,j2)

)
,

j1 = j1(n1), j2 = j2(n2), j1 > k1, j2 > k2, and j1/n1, j2/n2→0 as n1, n2→∞.

P r o o f. Using properties of the spectral representation of {Xij}, we can
show that (see [7])

(2.6) E
(
Jj1,j2Jk1,k2

)
=

π∫
−π

E
j1,k1

(λ1)f1(λ1)dλ1

π∫
−π

(
E

j2,k2
(λ2)f2(λ2)/σ

2
)
dλ2,

where

E
j,k
(λ) =

1

2πn
Dn(ωj − λ)Dn(λ− ωk),

and Dn(λ) =
∑n

s=1 e
isλ is the Dirichlet kernel. Note that

E
j,j
(λ) =

1

2πn
|Dn(λ− λj)|2 = Kn(λ− λj),

where Kn(·) is the Fejér kernel.
To prove part (a), replacing k1 and k2 by j1 and j2, respectively, in (2.6) and

using part (a) of Theorem 2 in [11], we obtain

E

(
Jj1,j2Jj1,j2

fj1,j2

)
= E

(
Ij1
fj1

)
E

(
Ij2
fj2

)
=

{
1 +O

(
ln j1
j1

)}{
1 +O

(
ln j2
j2

)}
= 1 +O

(
max

{
ln j1
j1

,
ln j2
j2

})
,

since ln j < j for any j > 0 implies

ln j1
j1

ln j2
j2

< max

{
ln j1
j1

,
ln j2
j2

}
.

Parts (b), (c) and (d) can be proved similarly. �
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Under Condition A we have (see [9])

Sx1,x1 = m1 + o(m1), a1,j1 = O(lnm1),(2.7)
Sx2,x2 = m2 + o(m2), a2,j2 = O(lnm2).(2.8)

Similarly to Lemma 1 in [10], we obtain the following:

LEMMA 2.2. Under Condition A, we have

− 1

2Sx1,x1

m1∑
j1=1

a1,j1 ln f
∗
1,j1 =

−2π2

9

f∗
′′

1 (0)

f∗1 (0)

m2
1

n2
1

+ o

(
m2

1

n2
1

)
,(2.9)

− 1

2Sx2,x2

m2∑
j2=1

a2,j2 ln f
∗
2,j2 =

−2π2

9

f∗
′′

2 (0)

f∗2 (0)

m2
2

n2
2

+ o

(
m2

2

n2
2

)
.(2.10)

Now, let αj1,j2,k1,k2 =max {|σ13|, |σ14|, |σ23|, |σ24|}, where σij=Cov(νi, νj)
for i, j = 1, 2, 3, 4, and

(ν1, ν2, ν3, ν4) =

(
Aj1,j2√
fj1,j2

,
Bj1,j2√
fj1,j2

,
Ak1,k2√
fk1,k2

,
Bk1,k2√
fk1,k2

)
with

Aj1,j2 =
1

2π
√
n1n2

n1∑
k=1

n2∑
l=1

Xkl cos(kω1,j1 + lω2,j2),

Bj1,j2 =
1

2π
√
n1n2

n1∑
k=1

n2∑
l=1

Xkl sin(kω1,j1 + lω2,j2).

In the following lemma we give an asymptotic expression for αj1,j2,k1,k2 .

LEMMA 2.3. We have

αj1,j2,k1,k2 = O

(
ln j1
k1

ln j2
k2

)
uniformly for 1 ¬ k1 < j1 ¬ m1 and 1 ¬ k2 < j2 ¬ m2.

P r o o f. From the proof of Proposition 3 in [7] we get

E(Jj1,j2Jk1,k2)

= E(Aj1,j2Ak1,k2 −Bj1,j2Bk1,k2) + iE(Aj1,j2Bk1,k2 +Bj1,j2Ak1,k2)

= Cov(Aj1,j2 , Ak1,k2)− Cov(Bj1,j2 , Bk1,k2)

+ i[Cov(Aj1,j2 , Bk1,k2) + Cov(Bj1,j2 , Ak1,k2)].
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Then, by the definition of σij , we obtain

1

fj1,j2fk1,k2
|E(Jj1,j2Jk1,k2)|2

=

[
Cov

(
Aj1,j2√
fj1,j2

,
Ak1,k2√
fk1,k2

)
− Cov

(
Bj1,j2√
fj1,j2

,
Bk1,k2√
fk1,k2

)]2
+

[
Cov

(
Aj1,j2√
fj1,j2

,
Bk1,k2√
fk1,k2

)
+Cov

(
Bj1,j2√
fj1,j2

,
Ak1,k2√
fk1,k2

)]2
= (σ13 − σ24)

2 + (σ14 + σ23)
2.

Similarly we can show that

1

fj1,j2fk1,k2
|E(Jj1,j2Jk1,k2)|2 = (σ13 + σ24)

2 + (σ14 − σ23)
2.

Therefore, after some algebaric manipulations we get

1

2fj1,j2fk1,k2
{|E(Jj1,j2Jk1,k2)|2 + |E(Jj1,j2Jk1,k2)|2}

= σ2
13 + σ2

14 + σ2
23 + σ2

24  [max {|σ13|, |σ14|, |σ23|, |σ24|}]2 = α2
j1,j2,k1,k2 .

From Lemma 2.1 (parts (c) and (d)) we obtain

1

2fj1,j2fk1,k2
{|E(Jj1,j2Jk1,k2)|2 + |E(Jj1,j2Jk1,k2)|2} = O

(
ln2 j1
k21

ln2 j2
k22

)
,

which completes the proof. �

LEMMA 2.4. We have Cov(εj1,j2 , εk1,k2) = O(α2
j1,j2,k1,k2

) uniformly for
ln2m1 ¬ k1 < j1 ¬ m1 and ln2m2 ¬ k2 < j2 ¬ m2.

P r o o f. The proof is similar to that of Lemma 2 in [10]. �

LEMMA 2.5. We have

lim
n1,n2→∞

inf
1¬j1¬m1,1¬j2¬m2

E

(
Ij1,j2
fj1,j2

)
> 0.

P r o o f. From the proof of Proposition 1 in [7] we know that

E

(
Ij1,j2
fj1,j2

)
= E

(
Ij1
fj1

)
E

(
Ij2
fj2

)
;

by taking limn1,n2→∞ inf1¬j1¬m1,1¬j2¬m2 of both sides of this equation and using
Lemma 4 in [10] we get the desired result. �
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LEMMA 2.6. We have limn1,n2→∞ sup1¬j1¬m1,1¬j2¬m2
E
(
ln2

Ij1,j2
fj1,j2

)
<∞.

P r o o f. The proof is similar to that of Lemma 5 in [10]. �

COROLLARY 2.2. From Lemmas 2.5 and 2.6 it follows that E(ε2j1,j2) = O(1),
and so E(εj1,j2) = O(1) and Var(εj1,j2) = O(1).

LEMMA 2.7. Letting γj1,j2 = max{(ln j1)/j1, (ln j2)/j2}, we have

E(εj1,j2) = O(γj1,j2) and Var(εj1,j2) =
π2

6
+O(γj1,j2)

uniformly for ln2mi ¬ ji ¬ mi, i = 1, 2.

P r o o f. It can be easily shown that (see [7]) εj1,j2 = ln(Ij1,j2/fj1,j2) + γ =
ln(ν21 + ν22) + γ, where ν1 and ν2 are defined as in Lemma 2.2. We also have
Jj1,j2/fj1,j2 = ν1 + iν2. From parts (a) and (b) of Lemma 2.1 we can obtain

E(ν21) =
1

2
+O(γj1,j2), E(ν22) =

1

2
+O(γj1,j2), E(ν1ν2) = O(γj1,j2),

and, consequently,
Σ−1 = 2I2 +O(γj1,j2)12,

where I2 and 12 are 2 × 2 identity and unit matrices, respectively. Therefore, the
asymptotic joint distribution of ν = (ν1, ν2)

′ is as follows:

f(ν1, ν2) =
1

2π|Σ|1/2
exp

(
−ν
′Σ−1ν

2

)
=

1

π
exp

(
−(ν21 + ν22)− (ν1 + ν2)

2O(γj1,j2)
)

=
1

π
exp

(
−(ν21 + ν22)

)
+O(γj1,j2).

The remaining part of the proof is similar to the proof of Lemma 6 in [14]. �

Now, let

(2.11)

T
(h(m))
i1 =

h(m)∑
j1=1

h(m)∑
j2=1

ai,jiεj1,j2 , T
(h(m))
i2 =

h(m)∑
j1=1

m∑
j2=1

ai,jiεj1,j2 ,

T
(h(m))
i3 =

m∑
j1=1

h(m)∑
j2=1

ai,jiεj1,j2 , T
(h(m))
i4 =

m∑
j1=h(m)+1

m∑
j2=h(m)+1

ai,jiεj1,j2 ,

where h(m) is a function of m and i = 1, 2.
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LEMMA 2.8. Under Condition A, when n1 = n2 = n and m1 = m2 = m,
we have

− 1

2mSx1,x1

m∑
j1=1

m∑
j2=1

a1,j1 E(εj1,j2) = O

(
ln3m

m

)
,(2.12)

− 1

2mSx2,x2

m∑
j1=1

m∑
j2=1

a2,j2 E(εj1,j2) = O

(
ln3m

m

)
.(2.13)

P r o o f. We first prove (2.12). By letting h(m) = ln2m in (2.11) we can
write

∣∣ m∑
j1=1

m∑
j2=1

a1,j1 E(εj1,j2)
∣∣ = ∣∣ 4∑

s=1

E(T
(ln2 m)
1s )

∣∣ ¬ 4∑
s=1

|E(T (ln2 m)
1s )|

= O(ln5m) +O
(
(ln3m)(m− ln2m)

)
+O

(
(m− ln2m) ln3m

)
+O

(
(lnm)

m∑
j1=(ln2m)+1

m∑
j2=(ln2m)+1

o(γj1,j2)
)
,

using (2.7), (2.8), Corollary 2.2 and Lemma 2.7. Since
∑m

j=(ln2m)+1(ln j)/j =

O(ln2m), the last term is equal to

O

(
(lnm)(m−ln2m)

m∑
j2=(ln2m)+1

ln j2
j2

)
=O

(
(ln3m)(m−ln2m)

)
if
ln j2
j2

>
ln j1
j1

,

and is equal to

O

(
(lnm)(m−ln2m)

m∑
j1=(ln2m)+1

ln j1
j1

)
=O

(
(ln3m)(m−ln2m)

)
if
ln j1
j1

>
ln j2
j2

.

Therefore,∣∣∣∣− 1

2mSx1,x1

m∑
j1=1

m∑
j2=1

a1,j1 E(εj1,j2)

∣∣∣∣
¬ 1

2m2
(
1 + o(1)

){O(ln5m) +O(m ln3m)}

= O

(
ln5m

m2

)
+O

(
ln3m

m

)
= O

(
ln3m

m

)
because (ln5m)/m < (ln2m)/m for any m > 0. This completes the proof of
(2.12). Similarly we can prove (2.13). �

Now, using the above lemmas, we can prove Theorem 2.1.
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P r o o f o f T h e o r e m 2.1. Parts (a) and (b) follow directly from equa-
tions (2.4), (2.5) and Lemmas 2.2 and 2.8.

To prove part (c), by (2.4), (2.5) and (2.11) we can write

(2.14) Var(d̂1) =
1

4m2S2
x1,x1

Var
( m∑
j1=1

m∑
j2=1

a1,j1εj1,j2
)

=
1

4m2S2
x1,x1

Var
( 4∑
s=1

T
(ln6 m)
1s

)
=

1

4m4
(
1 + o(1)

){ 4∑
s=1

Var(T
(ln6 m)
1s ) + 2

4∑
s=1

4∑
r=s+1

Cov(T
(ln6 m)
1s , T

(ln6 m)
1r )

}
.

Now, using Corollary 2.2, we have

Var(T
(ln6 m)
11 ) =

ln6 m∑
j1=1

ln6 m∑
j2=1

a21,j1Var(εj1,j2)

+
∑ ∑

(j1,j2) ̸=

∑
(k1,k2)

∑
a1,j1a1,k1 Cov(εj1,j2 , εk1,k2)

= O(ln14m)+O
(
(ln26m) sup

j1,j2

√
Var(εj1,j2) sup

k1,k2

√
Var(εk1,k2)

)
= O(ln26m) = o(m2).

Similarly we can obtain

Var(T
(ln6 m)
12 ) = O(m2 ln14m)

and

Var(T
(ln6 m)
13 ) = (ln6m)

(
m+ o(m)

)
+O(ln26m) = o(m2).

Using Lemmas 2.3, 2.4 and 2.7 and noting that

m∑
j1=(ln6m)+1

m∑
j2=(ln6m)+1

a21,j1 = (m− ln6m)
( m∑
j1=1

a21,j1 −
ln6 m∑
j1=1

a21,j1
)

= (m− ln6m)
(
m+ o(m) +O(ln8m)

)
= m2 + o(m2) +O(m ln8m)−m ln6m+ o(m ln6m) +O(ln14m)

= m2 + o(m2),
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we get

Var(T
(ln6 m)
14 ) =

m∑
j1=(ln6m)+1

m∑
j2=(ln6m)+1

a21,j1Var(εj1,j2)

+
∑ ∑

(j1,j2 )̸=

∑
(k1,k2)

∑
a1,j1a1,k1 Cov(εj1,j2 , εk1,k2)

=
m∑

j1=(ln6m)+1

m∑
j2=(ln6m)+1

a21,j1

(
π2

6
+O(γj1,j2)

)
+O

(
(ln2m)

∑ ∑
(j1,j2 )̸=

∑
(k1,k2)

∑
O(α2

j1,j2,k1,k2)
)

=
π2m2

6
+ o(m2) +O

(
(ln2m)

m∑
j1=(ln2m)+1

m∑
j2=(ln2m)+1

O(γj1,j2)
)

+O

(
(ln2m)

( m∑
j=(ln6m)+1

m∑
k=j+1

ln2 j

k2

)2)

=
π2m2

6
+ o(m2) +O

(
(ln4m)(m− ln2)

)
+O

(
(ln6m)

( m∑
j=(ln6m)+1

m

k2

)2)

=
π2m2

6
+ o(m2) +O

(
(ln4m)(m− ln2m)

)
+O

(
(ln6m)

(
m

ln6m

)2)
=

π2m2

6
+ o(m2) +O

(
(ln4m)(m− ln2m)

)
+O

(
(ln6m)

(
m

ln6m

)2)
=

π2m2

6
+ o(m2).

To find the covariances in (2.14) we note that

Cov(T
(ln6 m)
1s , T

(ln6 m)
1r ) =

∑
j1

∑
j2

∑
k1

∑
k2

a1,j1a1,k1 Cov(εj1,j2 , εk1,k2)

¬
∑
j1

∑
j2

∑
k1

∑
k2

a1,j1a1,k1

√
Var(εj1,j2)

√
Var(εk1,k2),

which for s, r = 1, 2, 3, 4 (s < r) can be calculated by using the Appendix A. Now
we can conclude that

Var(d̂1) =
π2

24m2
+ o

(
1

m2

)
+O

(
ln14m

m2

)
+O

(
ln26m

m4

)
+O

(
ln20m

m3

)
+O

(
ln26m

m3

)
+O

(
ln26m

m4

)
+O

(
ln14m

m2

)
=

π2

24m2
+ o

(
1

m2

)
+O

(
ln14m

m2

)
,
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which completes the proof of part (c). The proof of part (d) is the same as that of
part (c).

Now, since from (2.4), (2.5) and by the notation in (2.11) we have

Cov(d̂1, d̂2) =
1

4m2Sx1,x1Sx2,x2

Cov
( m∑
j1=1

m∑
j2=1

a1,j1εj1,j2 ,
m∑

j1=1

m∑
j2=1

a2,j2εj1,j2
)

=
1

4m4
(
1 + o(1)

) Cov ( 4∑
s=1

T
(ln6 m)
1s ,

4∑
s=1

T
(ln6 m)
2s

)
=

1

4m4
(
1 + o(1)

) 4∑
s=1

4∑
r=1

Cov(T
(ln6 m)
1s , T

(ln6 m)
2r ),

in which for s = r = 4, by Lemma 2.4,

Cov(T
(ln6 m)
14 , T

(ln6 m)
24 )

=
m∑

j1=(ln6m)+1

m∑
j2=(ln6m)+1

m∑
k1=(ln6m)+1

m∑
k2=(ln6m)+1

a1,j1a2,k2 Cov(εj1,j2 , εk1,k2)

=
m∑

j1=(ln6m)+1

m∑
j2=(ln6m)+1

m∑
k1=(ln6m)+1

m∑
k2=(ln6m)+1

a1,j1a2,k2O(α2
j1,j2,k1,k2)

= O

(
m2

ln6m

)
= o(m2),

for s ̸= r ̸= 4 we can write

Cov(T
(ln6 m)
1s , T

(ln6 m)
2r ) =

∑
j1

∑
j2

∑
k1

∑
k2

a1,j1a2,k2 Cov(εj1,j2 , εk1,k2)

¬
∑
j1

∑
j2

∑
k1

∑
k2

a1,j1a2,k2

√
Var(εj1,j2)

√
Var(εk1,k2).

Using the Appendix A, it can be easily shown that

Cov(T
(ln6 m)
12 , T

(ln6 m)
22 ) = Cov(T

(ln6 m)
12 , T

(ln6 m)
23 ) = Cov(T

(ln6 m)
12 , T

(ln6 m)
24 )

= Cov(T
(ln6 m)
14 , T

(ln6 m)
23 ) = O(m2 ln14m) + o(m2),

and Cov(T
(ln6 m)
1s , T

(ln6 m)
2r ) = o(m2) for the remaining values of s and r. Thus

Cov(d̂1, d̂2) = o

(
1

m2

)
+O

(
ln14m

m2

)
. �
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COROLLARY 2.3. Since the mean squared errors of d̂1 and d̂2,

MSE(d̂1) = Var(d̂1) + E2(d̂1 − d1)

=
−4π4

81

(
f∗
′′

1 (0)

f∗1 (0)

)2m4

n4
+

π2

24m2

+O

(
m ln3m

n2

)
+O

(
ln14m

m2

)
+ o

(
m4

n4

)
+ o

(
1

m2

)
and

MSE(d̂2) = Var(d̂2) + E2(d̂2 − d2)

=
−4π4

81

(
f∗
′′

2 (0)

f∗2 (0)

)2m4

n4
+

π2

24m2

+O

(
m ln3m

n2

)
+O

(
ln14m

m2

)
+ o

(
m4

n4

)
+ o

(
1

m2

)
,

tend to zero under Condition A, d̂1 and d̂2 are asymptotically consistent.

By omitting the negligible terms in the mean squared errors of d̂1 and d̂2 and
minimizing with respect to m, we obtain the theoretical (THR) asymptotically op-
timal choice for m as follows:

(2.15) mTHR =

(
27

128π2

)1/5( f∗i (0)

f∗
′′

i (0)

)2/5

n4/5 for i = 1, 2.

3. NUMERICAL RESULTS

In this section we report the numerical results of our study. We considered the
FISSAR(1, 1) model of the form

(1− ϕ10B1)(1− ϕ01B2)(1−B1)
d1(1−B2)

d2Xij = Zij ,

where |ϕ10| < 1, |ϕ01| < 1, −0.5 < d1, d2 < 0.5, and {Zij} is a two-dimensional
Gaussian white noise process with mean zero and variance σ2

z = 1.
Table 1 shows the theoretical values of the bias, standard deviation (SD), MSE

and covariance (Cov) of the GPH estimators of the memory parameters and esti-
mators based on the optimal choice of m1 and m2 mentioned in (2.15) (termed as
THR) using Theorem 2.1 and Corollary 2.3 by omitting the negligible terms. We
considered m1 = m2 =

√
n as Geweke and Porter-Hudak [5] proposed in the one-

dimensional case. The values for (ϕ10, ϕ01, d1, d2) were (i) = (0.1, 0.7, 0.2, 0.2)
and (ii) = (0.3, 0.3, 0.1, 0.4). For each of these two processes we calculated the
characteristics mentioned above for four sample sizes: n = 50, 100, 200, 300. Ta-
ble 2 shows the simulated values. For simulation study we generated 1000 realiza-
tions of FISSAR(1, 1) model using the method mentioned in [6].
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Table 1. Theoretical results: the bias, SD, MSE and covariance of d̂1 and d̂2 by
the THR and GPH methods for the FISSAR(1, 1) model for two sets of parameters

(i) : (ϕ10, ϕ01, d1, d2) = (0.1, 0.7, 0.2, 0.2) and (ii) : (ϕ10, ϕ01, d1, d2) = (0.3, 0.3, 0.1, 0.4)

Set n Method m1 m2

Bias SD MSE Cov

d̂1 d̂2 d̂1 d̂2 d̂1 d̂2 d̂1, d̂2

THR 19 4 0.078 0.218 0.033 0.160 0.001 0.073 0
50

GPH 7 7 0.010 0.668 0.091 0.091 0.008 0.455 0
THR 32 6 0.055 0.122 0.020 0.106 0.003 0.026 0

100
GPH 10 10 0.005 0.341 0.064 0.064 0.004 0.120 0

(i)
THR 56 11 0.042 0.103 0.011 0.058 0.001 0.014 0

200
GPH 14 14 0.002 0.167 0.045 0.045 0.002 0.030 0
THR 78 15 0.036 0.085 0.008 0.042 0.001 0.009 0

300
GPH 17 17 0.001 0.109 0.037 0.037 0.001 0.013 0

THR 10 10 0.107 0.107 0.064 0.064 0.015 0.015 0
50

GPH 7 7 0.052 0.052 0.091 0.091 0.011 0.011 0
THR 17 17 0.077 0.077 0.037 0.037 0.007 0.007 0

100
GPH 10 10 0.026 0.026 0.064 0.064 0.004 0.004 0

(ii)
THR 30 30 0.060 0.060 0.021 0.021 0.004 0.004 0

200
GPH 14 14 0.013 0.013 0.045 0.045 0.002 0.002 0
THR 41 41 0.050 0.050 0.015 0.015 0.002 0.002 0

300
GPH 17 17 0.008 0.008 0.037 0.037 0.001 0.001 0

Note that f∗1 (ω1) and f∗2 (ω2) for the FISSAR(1, 1) model used in Theorem 2.1,
Corollary 2.3 and equation (2.15) are given as:

(3.1) f∗1 (ω1) =
σ2

2π

1

1 + ϕ2
10 − 2ϕ10 cos(ω1)

,

(3.2) f∗2ω2) =
σ2

2π

1

1 + ϕ2
01 − 2ϕ01 cos(ω2)

.

According to Theorem 2.1, Corollaries 2.1 and 2.3 and equations (2.15), (3.1) and
(3.2), the value of each of m1, Bias(d̂1), SE(d̂1) and MSE(d̂1), depends on the value
of ϕ10, and the value of each of m2, Bias(d̂2), SE(d̂2) and MSE(d̂2), depends on
the value of ϕ01. This can be seen in Tables 1 and 2. Although the values of d1 and
d2 are equal when (ϕ10, ϕ01, d1, d2) = (0.1, 0.7, 0.2, 0.2), the values of bias, SD
and MSE of d̂2 are greater than those of d̂1, due to the value of ϕ01 which is greater
than the value of ϕ10.

It can also be seen that the simulated values of MSEs are less than the theoret-
ical values for small m1 and m2. These values are approximately equal for large
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Table 2. Simulation results: the bias, SD, MSE and covariance of d̂1 and d̂2 by
the THR and GPH methods for the FISSAR(1, 1) model for two sets of parameters

(i) : (ϕ10, ϕ01, d1, d2) = (0.1, 0.7, 0.2, 0.2) and (ii) : (ϕ10, ϕ01, d1, d2) = (0.3, 0.3, 0.1, 0.4)

Set n Method
Bias SD MSE Cov

d̂1 d̂2 d̂1 d̂2 d̂1 d̂2 d̂1, d̂2

THR 0.023 0.197 0.071 0.068 0.005 0.043 0.0005
50

GPH 0.021 0.244 0.107 0.047 0.012 0.062 0.0001
THR 0.042 0.170 0.041 0.052 0.003 0.031 −0.0002

100
GPH 0.009 0.244 0.068 0.041 0.004 0.061 0.0000

(i)
THR 0.039 0.134 0.021 0.025 0.002 0.018 0.0000

200
GPH 0.007 0.174 0.043 0.042 0.002 0.032 −0.0000
THR 0.034 0.105 0.014 0.018 0.001 0.011 −0.0000

300
GPH 0.003 0.123 0.033 0.035 0.001 0.016 −0.0000

THR 0.128 0.056 0.067 0.034 0.021 0.004 0.0000
50

GPH 0.084 −0.011 0.110 0.072 0.019 0.005 −0.0005
THR 0.089 0.069 0.036 0.022 0.009 0.005 0.0000

100
GPH 0.042 0.012 0.070 0.052 0.006 0.002 0.0000

(ii)
THR 0.065 0.069 0.018 0.015 0.004 0.005 −0.0000

200
GPH 0.021 0.024 0.043 0.038 0.002 0.002 −0.0000
THR 0.052 0.059 0.013 0.012 0.002 0.003 −0.0000

300
GPH 0.012 0.021 0.034 0.034 0.001 0.001 −0.0000

m1 and m2. From Tables 1 and 2 we can also see that the MSE decreases when the
grid size increases for both theoretical and simulated values.

In both theoretical and simulation studies, the biases and the MSEs of d̂2
obtained by the THR method are less than those obtained by the GPH method
when (ϕ10, ϕ01, d1, d2) = (0.1, 0.7, 0.2, 0.2), these differences decrease when n

increases. Note that in this case the ϕ01 value is large. The MSEs of d̂1 when
(ϕ10, ϕ01, d1, d2) = (0.1, 0.7, 0.2, 0.2) and the MSEs of d̂1 and d̂2 when
(ϕ10, ϕ01, d1, d2) = (0.3, 0.3, 0.1, 0.4) in both THR and GPH methods are almost
equal, but the biases in the THR method are greater and the SDs are smaller.

In the theoretical case, the bias, SD and MSE of d̂1 and d̂2 when ϕ10 = ϕ01

are equal and do not depend on the values of d̂1 and d̂2. In simulation, this happens
when n is large.

Finally, from Tables 1 and 2 it is easy to see that there is an agreement between
the theoretical and simulated covariance of d̂1 and d̂2.

In Figure 1, we have also drown boxplots for the bias of d̂1 and d̂2 obtained
by the THR and GPH methods when (ϕ10, ϕ01, d1, d2) = (0.3, 0.3, 0.1, 0.4) and
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n = 300. From Figure 1 it can be seen that the biases of the THR estimators are
greater than the biases of the GPH estimators. However, the standard deviations of
the THR estimators are smaller than the standard deviations of the GPH estimators.

Figure 2 shows Q–Q plots of the bias of d̂1 and d̂2 by (a) the THR method and
(b) the GPH method when (ϕ10, ϕ01, d1, d2) = (0.3, 0.3, 0.1, 0.4) and n = 300.
All tables and figures underscore the suboptimality of GPH estimators.

By Figures 1 and 2 and Tables 1 and 2, we suggest that m1/2(d̂1 − d1) and
m1/2(d̂2 − d2) are independent and identically distributed as N(0, π2/24) when
m = o(n4/5) and ln2 n = o(m).
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Figure 1. Boxplots of the bias of d̂1 and d̂2 by (a) the THR method and
(b) the GPH method when (ϕ10, ϕ01, d1, d2) = (0.3, 0.3, 0.1, 0.4) and n = 300
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Figure 2. Normal Q–Q plots of the bias of d̂1 and d̂2 by (a) the THR method and
(b) the GPH method when (ϕ10, ϕ01, d1, d2) = (0.3, 0.3, 0.1, 0.4) and n = 300
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4. CONCLUSION

In this article, we studied the properties of the regression estimators of the
FISSARMA models, in particular we established the asymptotic bias, variance,
covariance and MSE of the memory parameters of the model. We also derived
the spatial version of Theorem 2 of [11]. Some numerical results have also been
provided to verify theoretical results that we obtained. By the numerical results
it is found that m1/2(d̂1 − d1) and m1/2(d̂2 − d2) are independent and identically
distributed as N(0, π2/24) when m = o(n4/5) and ln2 n = o(m). Our results con-
tribute to the theory of spatial models, in particular the FISSARMA models.

5. APPENDIX A

To prove Theorem 2.1 we need the following:

(5.1)
ln6 m∑
j1=1

ln6 m∑
j2=1

a1,j1

√
Var(εj1,j2)=

ln6 m∑
j1=1

ln6 m∑
j2=1

a2,j2

√
Var(εj1,j2) = O(ln13m),

ln6 m∑
j1=1

m∑
j2=(ln6 m)+1

a1,j1

√
Var(εj1,j2) =

m∑
j1=(ln6 m)+1

ln6 m∑
j2=1

a2,j2

√
Var(εj1,j2)(5.2)

= O
(
(m− ln6m) ln7m

)
,

m∑
j1=(ln6 m)+1

ln6 m∑
j2=1

a1,j1

√
Var(εj1,j2) = O

(
(ln6m)

( m∑
j1=1

a1,j1−
ln6 m∑
j1=1

a1,j1
))

(5.3)

= O(ln13m),

(5.4)
ln6 m∑
j1=1

m∑
j2=(ln6 m)+1

a2,j2

√
Var(εj1,j2) = O(ln13m),

(5.5)
m∑

j1=(ln6 m)+1

m∑
j2=(ln6 m)+1

a1,j1

√
Var(εj1,j2)

= O
( m∑

j1=(ln6 m)+1

m∑
j2=(ln6 m)+1

a1,j1

√
π2/6 +O(γj1,j2)

)
= O

( m∑
j1=(ln6 m)+1

m∑
j2=(ln6 m)+1

a1,j1
(
1 +O(γj1,j2)

))
= O

( m∑
j1=(ln6 m)+1

m∑
j2=(ln6 m)+1

a1,j1 + (lnm)
m∑

j1=(ln6 m)+1

m∑
j2=(ln6 m)+1

O(γj1,j2)
)

= O
(
(m− ln6m)(ln7m)

)
+O

(
(m− ln6m)(ln3m)

)
= O

(
(m− ln6m)(ln7m)

)
,
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(5.6)
m∑

j1=(ln6 m)+1

m∑
j2=(ln6 m)+1

a2,j2

√
Var(εj1,j2) = O

(
(m− ln6m)(ln7m)

)
.
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