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Abstract. Two semi-martingales with respect to a common filtration
are said to be tangential if they have the same local characteristics. When
the latter are non-random, the underlying semi-martingale is known to have
independent increments. We show that every semi-martingale has a tangen-
tial process with conditionally independent increments. We also extend the
Zinn–Hitchenko and related tangential comparison theorems to continuous
time. Combining those results, we obtain some surprisingly general exis-
tence, convergence, and tightness criteria for broad classes of single and
multiple stochastic integrals.
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1. INTRODUCTION

Two semi-martingalesX and Y with respect to a common filtration F are said
to be tangential if they have the same local characteristics. The latter consist of the
quadratic variation of the continuous martingale component, the compensator of
the jump point process, and a predictable drift component. Though the definition
of the latter is not unique (cf. [9], p. 76), the precise choice is not important for our
purposes.

Extending some celebrated theorems of Lévy, Watanabe, and Jacod [6], Grige-
lionis [2] proved that a semi-martingale X with X0 = 0 has independent incre-
ments iff its local characteristics are a.s. non-random (cf. [9], p. 106), in which
case the latter determine uniquely the distribution of X . This suggests that, for a
general semi-martingale X , we may reduce to the elementary case of independent
increments simply by conditioning on the local characteristics. Unfortunately, that
is only possible when X is already a mixture of processes with independent incre-
ments, which is not true in general. However, we show in Theorem 3.1 below that
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every semi-martingale X has a tangential process Y with conditionally indepen-
dent increments. The idea is then to study the basic properties of X by comparing
with the process Y , for which the corresponding properties may be elementary and
well known.

A closely related notion is that of tangent processes, first mentioned by Itô [4]
and featured more prominently in papers by Jacod [7] and others. Here we think
of the local characteristics (A,B,C) of X as functions of ω ∈ Ω. Then for almost
every ω there exists a processXω = (Xω

t ) (the tangent process at ω) with indepen-
dent increments and local characteristics (Aω, Bω, Cω). The previous comparison
then amounts to reducing the study of a semi-martingale X to that of its tangent
processes Xω.

Related ideas have long been used to extend some classical limit theorems for
independent random variables to the dependent case. A more systematic approach
was proposed by Jakubowski [10], who identified some general conditioning prin-
ciples. Some powerful comparison theorems for tangential sequences were ob-
tained by Zinn [27] and Hitchenko [3], and the whole area was explored in mono-
graphs by Kwapień and Woyczyński [21] and de la Peña and Giné [23], which
contain extensions, alternative proofs, and numerous applications. In Theorem 4.1
below, we use the approach in [21] to extend the Zinn–Hitchenko inequalities to
continuous time.

The tangential comparison gains in power when combined with the classical
BDG-inequalities of martingale theory [1], [12], which allow us to compare mar-
tingales that are only weakly tangential, in the sense that the associated quadratic
variation processes are strictly tangential. This sometimes leads to the possibility
of comparing the original process X with a suitably symmetrized version X̃ , an
idea also explored in Section 4.

The indicated methods have important applications to stochastic integration,
since the basic tangential properties are preserved by integration of predictable pro-
cesses. Though conditions for integrability and convergence can often be deduced
from the general theory of semi-martingales (cf. [12], Chapter 26), the present
approach is so much easier whenever it applies, since we only need to know the
corresponding criteria for processes with independent increments, where the the-
ory is elementary and accessible by classical methods. Here some results in the
independence case are explored in Section 2.1 below, and related criteria for more
general stochastic integrals are indicated in Section 5.

A somewhat different approach was developed in [19], [20], where a discrete-
time tangential comparison is combined with a rather sophisticated approximation
argument. Though the resulting criteria are of course equivalent, the results are of-
ten stated in terms of Orlicz spaces and other subtle notions of functional analysis.

Multiple stochastic integrals with respect to a Brownian motion were first stud-
ied by Itô [5], who was motivated by some earlier work of Wiener (cf. [12], pp.
262ff.). Extensions to more general sequences or processes with independent in-
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crements have been considered by many authors, such as in [16]–[18], [22], [25],
[26], where a wide range of methods are employed. In [11], [15], only some ele-
mentary properties of Poisson processes were used to find necessary and sufficient
conditions for the existence and convergence of multiple integrals with respect
to increasing or symmetric Lévy processes. The approach extends easily to any
processes with independent, positive or symmetric increments, as indicated in Sec-
tion 2.2 below.

It has long been an open problem how to apply the tangential methods to mul-
tiple integrals with respect to more general processes (cf. Problem 5 in [13]). An
obvious first step is to decompose the integral into tetrahedral components (where
the coordinates are linearly ordered), which allows us to express its value in terms
of iterated single integrations. Since the integrand in each step is predictable, we
may now use the results for single stochastic integrals to replace the last (outer)
integrator by a tangential process with conditionally independent increments. The
problem is that, in order to continue the process recursively, we would need to
change the order of integration, which may destroy the predictability of the inte-
grands.

In Section 6 the indicated difficulties are overcome by a subtle trick of condi-
tioning, which leads to some necessary and sufficient conditions for the existence
and convergence to zero of multiple integrals with respect to arbitrary marked point
processes. (The extension to increasing processes is now routine.) The given crite-
ria, stated in terms of certain sequential compensators with associated sequentially
tangential processes, extend the more elementary decoupling relations for Poisson
integrals, derived by different methods in [15]. In the more difficult signed case,
we can only prove some weaker one-sided results.

Our terminology and notation follow [12]. Thus, we take all processesX,Y, . . .
to be adapted to an underlying filtration F = (Ft), satisfying the usual condi-
tions of right-continuity and completeness. For semi-martingalesX , we denote the
associated quadratic variation process by [X]. The maximum process is denoted
by X∗t = sups¬t |Xs|, and we put X∗ = X∗∞, as usual. For suitable measures µ
and measurable functions f , we denote the associated integral by µf =

∫
fdµ =∫

fsµ(ds), whereas the measure with density f is denoted by f · µ. When the
underlying space is R+ = [0,∞), we may also take f · µ to mean the function
(f · µ)t =

∫ t

0
fdµ, where the integration extends over the semi-open interval (0, t].

A similar notation applies to stochastic integrals of predictable processes V with
respect to semi-martingales X .

We write N = {1, 2, . . . }, and let 2J or 2d denote the class of subsets of J
or {1, . . . , d}, respectively. The cardinality of the set J is denoted by |J |. For any
functions f or measures µ, we write ∆fs or ∆µs for the jump size or point mass
at s. A relation f <

⌢
g between the functions f, g ­ 0 means that f ¬ cg for some

constant c ∈ (0,∞), and by f ≍ g we mean that both f <
⌢
g and g <

⌢
f . The norm

∥ · ∥ denotes total variation or supremum, depending on the context.
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For any measurable spaces S and T , the associated σ-fields are denoted by
S and T . Though most results have versions for arbitrary Borel spaces, we may
usually take S and T to be separable and complete metric spaces with associated
Borel σ-fields. The unit mass at s ∈ S is denoted by δs, whereas the indicator
function of the set B ∈ S is denoted by 1B , so that 1B(s) = δsB. For complicated
sets B = {·}, we often write 1B = 1{·}, for typographical convenience. Expected
values are written as Eξ without brackets, and L(ξ) denotes the distribution of the
random element ξ. Independence is denoted by ⊥⊥, and conditional independence
given ξ by ⊥⊥ξ.

2. PROCESSES WITH INDEPENDENT INCREMENTS

Since the tangent processes of a general semi-martingale are processes with
independent increments, it is important to understand the latter. Here the classical
Lévy–Itô representation provides a unique decomposition of such a process X
into a Brownian motion of variable rate, a sum of suitably compensated jumps,
and a deterministic drift component (cf. [9], [12]). The jump component is best
understood in terms of the associated jump point process ξ on (0,∞)× (R \ {0}),
given for measurable B ⊂ R \ {0} by

(2.1) ξ([0, t]×B) =
∑
s¬t

1B(∆Xs), t ­ 0,

which inherits the independence property (in the time variable) from X .
More generally, we may consider point processes ξ on S with marks in T , for

any separable and complete metric spaces S and T . Thus, ξ is an integer-valued
random measure on S × T , such that ξB < ∞ a.s. for all bounded, measurable
sets B ⊂ S × T , and sups ξ({s} × T ) ¬ 1 a.s. By the Lévy–Itô theorem, ξ has
independent increments, in the sense that ξ(I1 × ·), . . . , ξ(In × ·) are independent
for disjoint I1, . . . , In, iff

(2.2) ξ = η +
∑

k
(δsk ⊗ δτk) a.s.

for some Poisson process η on S × T with Eη({s} × T ) ≡ 0, some distinct points
s1, s2, . . . ∈ S, and some independent random elements τ1, τ2, . . . in T∆ = T ∪
{∆} with arbitrary ∆ /∈ T (cf. Theorem 12.10 in [12]). Writing α = Eη and βk =
L(τk), we note that ξ has intensity measure

(2.3) ν = α+
∑

k
(δsk ⊗ βk) = α+

∑
k
νk,

which is locally finite on S × T and determines uniquely the distribution of ξ. Con-
versely, any such measure ν on S×T with sups ν({s}×T ) ¬ 1 may qualify. Note
that ξ is Poisson iff it has no fixed discontinuities, in the sense that ν({s}× T ) ≡ 0.
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2.1. Single integrals. Using elementary formulas for Laplace transforms, we
can easily derive criteria for ξnfn

P→ 0 or∞ when the ξn are Poisson processes on
S with arbitrary intensities Eξn = νn. Here we consider the more general case of
marked point processes ξn with independent increments. For the easy proofs, we
refer to [14]. Define ψ(x) = 1− e−x.

LEMMA 2.1. Let ξ, ξ1, ξ2, . . . be T -marked point processes on S with in-
dependent S-increments and intensities ν, ν1, ν2, . . . Then for any functions
f, f1, f2, . . . ­ 0 on S × T ,

(i) P{ξf <∞} = 1{ν(f ∧ 1) <∞};
(ii) ξnfn

P→ 0 iff νn(fn ∧ 1)→ 0;

(iii) νn(fn ∧ 1)→∞⇒ ξnfn
P→∞⇒ νnfn →∞, with equivalence on the

left when
lim sup
n→∞

(∥∆νn∥ ∧ ∥ψ ◦ fn∥) < 1.

We turn to the corresponding criteria for integrals of symmetric point pro-
cesses. Given a simple point process ξ with intensity ν, we may write ξ = ξ′ + ξ′′,
where ξ′ and ξ′′ are complementary 1

2
-thinnings of ξ with intensity ν/2. The sym-

metrized version ξ̃ of ξ may then be defined as ξ′ − ξ′′. Equivalently, we may form
ξ̃ by attaching independent, symmetric signs to the atoms of ξ.

The integral ξ̃f is elementary when the support of f has finite ν-measure. In
general, it is defined by the condition ξ̃fn

P→ ξ̃f for any functions fn → f with
bounded support satisfying |fn| ¬ |f |, whenever the limit exists and is a.s. inde-
pendent of the choice of approximating sequence (fn). The proof of statement (iii)
below may be based on the Kolmogorov–Rogozin inequality (cf. [24], p. 68).

LEMMA 2.2. Let ξ̃, ξ̃1, ξ̃2, . . . be symmetric, T -marked point processes on S
with independent S-increments and intensities ν, ν1, ν2, . . . Then for any functions
f, f1, f2, . . . on S × T ,

(i) ξ̃f exists iff ν(f2 ∧ 1) <∞, and when S = R+, we have

P{(f · ξ̃)∗ <∞} = 1{ν(f2 ∧ 1) <∞};

(ii) ξ̃nfn
P→ 0 iff νn(f2n ∧ 1)→ 0;

(iii) νn(f2n ∧ 1) → ∞ ⇒ |ξ̃nfn|
P→ ∞ ⇒ νnf

2
n → ∞, with equivalence on

the left when

(2.4) lim sup
n→∞

(∥∆νn∥ ∧ ∥ψ ◦ f2n∥) < 1.

Given a simple point process ξ with independent increments and intensity ν,
we may next consider the compensated integrals (ξ − ν)f , defined by the condi-

tion (ξ − ν)fn
P→ (ξ − ν)f for bounded functions fn → f with bounded supports
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and |fn| ¬ |f |, whenever the limit exists and is a.s. independent of the choice of
approximating sequence (fn). To avoid near cancellations, we need to assume

(2.5) sup
s∈S

ν{s} < 1, sup
n­1

sup
s∈S

νn{s} < 1.

LEMMA 2.3. Let ξ, ξ1, ξ2, . . . be simple point processes on S with indepen-
dent increments and intensities ν, ν1, ν2, . . . satisfying (2.5). Then for any functions
f, f1, f2, . . . ­ 0 on S,

(i) (ξ − ν)f exists iff ν(f2 ∧ f) <∞, and for S = R+ and bounded f we
have

P
{(
f · (ξ − ν)

)∗
<∞

}
= 1{νf2 <∞};

(ii) (ξn − νn)fn
P→ 0 iff νn(f2n ∧ fn)→ 0.

We also consider the intermediate case between the symmetric and compen-
sated integrals in Lemmas 2.2 and 2.3.

COROLLARY 2.1. Let ξ±, ξ±1 , ξ
±
2 , . . . be pairwise independent, simple point

processes on S with independent increments and intensities ν±, ν±1 , ν
±
2 , . . . , sat-

isfying conditions as in (2.5), and put ξ = ξ+ − ξ−, ν = ν+ − ν−, and |ν| =
ν+ + ν−, and similarly for ξn, νn, and |νn|. Then for any uniformly bounded func-
tions f, f1, f2, . . . on S,

(i) (ξ − ν)f exists iff |ν|f2 <∞, and when S = R+, we have

P
{(
f · (ξ − ν)

)∗
<∞

}
= 1{|ν|f2 <∞};

(ii) (ξn − νn)fn
P→ 0 iff |νn|f2n → 0.

For subsequent needs, we show how in the previous results we may add some
independent Gaussian random variables to the symmetric or compensated point
process integrals ξ̃nfn or (ξn − νn)fn. We state the resulting extension only for
Lemma 2.2 (ii), the remaining cases being similar.

COROLLARY 2.2. For each n ∈ N, let ξ̃n be a symmetric, T -marked point
process on S with independent S-increments and intensity νn, and let γ be an
independent N(0, 1) random variable. Then for any functions fn on S × T and
constants σn,

ξ̃nfn + σnγ
P→ 0 ⇔ νn(f

2
n ∧ 1) + σ2n → 0.

For suitable processes on R+, the previous results extend to criteria for uni-
form boundedness and convergence.

COROLLARY 2.3. Let X,X1, X2, . . . be centered processes with independent
increments, such that the jumps of modulus greater than one are symmetric or have
positive compensator. Then
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(i) |X∞| <∞ a.s.⇔ X∗ <∞ a.s.;

(ii) Xn(∞)
P→ 0⇔ X∗n

P→ 0.

In general, we say that the process X or sequence (Xn) satisfies the maximum
property if equivalence holds in (i) or (ii).

2.2. Multiple integrals. A fairly complete theory of multiple Poisson integrals
was developed in [15]. Most results extend with essentially the same proofs to
the more general setting of processes with independent increments, and most re-
sults for symmetric integrals remain valid when the underlying processes ξ and
ξ1, . . . , ξd are completely arbitrary. For those reasons we will only quote without
proofs some of the main results, often in simplified form, for subsequent compari-
son and reference. A fuller treatment can be found in [14].

First let ξ and ξ1, . . . , ξd be i.i.d. T -marked point processes on S with intensity
ν, and put S̄ = S × T . Given any function f ­ 0 on S̄J with |J | <∞, we define
recursively some functions f1, . . . , f|J | ­ 0 on S̄J by

(2.6) f1 = f ∧ 1, fk+1 = fk
∏
|I|=k

1{νIfk ¬ 1}, 1 ¬ k < |J |,

where the product extends over all sets I ⊂ J with |I| = k, and νI denotes inte-
gration in the arguments indexed by I , so that νIfk becomes a measurable function
of the remaining arguments indexed by J \ I .

Next define recursively some classes Cd of measurable functions f ­ 0 on S̄d.
Starting with C0 = {0, 1} and assuming Ck to be given for all k < d, we define Cd
by the conditionsν

d−k{νJfk =∞} = 0,

1{νJfk > 1} ∈ Cd−k,
J ∈ 2d with k = |J | > 0.

We may now characterize the a.s. finiteness and convergence to zero of the multi-
ple integrals ξ1 . . . ξdf and ξdf . For notational convenience, we consider only the
case of constant ν. Given some measurable functions fn ­ 0 on S̄d, we define the
associated truncated functions f1n, . . . , f

d
n as in (2.6). Say that a function f on Sd

is non-diagonal if it vanishes on all diagonal spaces where two or more variables
agree.

LEMMA 2.4. Let ξ, ξ1, . . . , ξd be i.i.d. T -marked point processes on S with
independent increments and intensity ν, and let f, f1, f2, . . . ­ 0 be measurable
functions on S̄d. Then

(i) P{ξ1 . . . ξdf <∞} = 1{f ∈ Cd};
(ii) ξ1 . . . ξdfn

P→ 0 iff νdfdn → 0 and

ξ1 . . . ξd−k{νJfkn > 1} P→ 0, J ∈ 2d with k = |J | > 0.
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Both results remain true for the integrals ξdf and ξdfn when f and all fn are
non-diagonal.

Next let ζ and ζ1, . . . , ζd be conditionally independent symmetrizations of
some simple point processes ξ and ξ1, . . . , ξd on S. Thus, if ξ =

∑
k δτk , we may

define ζ =
∑

k σkδτk , where the random signs σk are i.i.d. and independent of
τ1, τ2, . . . with distribution P{σk = ±1} = 1

2
. For ξ1, . . . , ξd we need the associ-

ated sign sequences σ1, . . . , σd to be independent.
For any measurable function f on Sd, we define ζ1 . . . ζdf as the limit in prob-

ability of the elementary integrals ζ1 . . . ζdfn, for functions fn → f with bounded
supports satisfying |fn| ¬ |f |, provided that the limit exists and is a.s. independent
of the choice of f1, f2, . . . The definition of the integral ζdf is similar.

In the special case where ξ and ξ1, . . . , ξd are equal to counting measure on
N, the integrals reduce to multi-linear forms in σ or σ1, . . . , σd, here denoted by
σdA or σ1 . . . σdA for suitable arrays A = (ak) indexed by Nd. For general point
processes ξ =

∑
k δτk on S and functions f on Sd, we define f(ξd) as the array

on Nd with entries f(τk1 , . . . , τkd). The definition of f(ξ1 . . . ξd) is similar.
We may now state the basic existence and representation theorem for multiple

symmetric integrals.

LEMMA 2.5. Let ξ and ξ1, . . . , ξd be simple point processes on S with sym-
metrizations ζ and ζ1, . . . , ζd, generated by the independent sign sequences σ and
σ1, . . . , σd, and fix any measurable function f on Sd. Then

(i) the integral ζ1 . . . ζdf exists iff ξ1 . . . ξdf2 <∞ a.s., and similarly for the
integrals ζdf and ξdf2 when f is symmetric non-diagonal;

(ii) the following representations hold a.s. whenever either side exists:

ζ1 . . . ζdf = (σ1 . . . σd)f(ξ1 . . . ξd), ζdf = σdf(ξd).

In other words, the two sides exist simultaneously, in which case they are
equal. By independence of the sign sequences, we may form the multi-linear forms
on the right by first conditioning on the processes ξ and ξ1, . . . , ξd.

We finally compare the various integrals considered above, under appropriate
conditions on the integrands and underlying point processes.

COROLLARY 2.4. Let ξ and ξ1, . . . , ξd be simple point processes on S with
conditionally independent symmetrizations ζ and ζ1, . . . , ζd, and let f, f1, f2, . . .
be measurable functions on Sd. Then

(i) ζ1 . . . ζdf exists iff ξ1 . . . ξdf2 <∞ a.s.;

(ii) ζ1 . . . ζdfn
P→ 0 iff ξ1 . . . ξdf2n

P→ 0.
If f, f1, f2, . . . are symmetric non-diagonal, then also

(iii) ζdf exists iff ξdf2 <∞ a.s.;

(iv) ζdfn
P→ 0 iff ξdf2n

P→ 0.
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If ξ and ξ1, . . . , ξd are i.i.d. T -marked on S with independent increments and
f, f1, f2, . . . are symmetric non-diagonal on S̄d, then the conditions in (i) and (ii)
are equivalent to the corresponding ones in (iii) and (iv).

3. TANGENTIAL EXISTENCE AND RANDOMIZATION

Let F = (Ft) be a filtration on R+ satisfying the usual conditions of right-
continuity and completeness. Given an F-adapted, T -marked point process ξ on
(0,∞), we define the F-compensator of ξ as the a.s. unique predictable random
measure ξ̂ on R+ × T such that EξV = Eξ̂V for all predictable processes V ­ 0
on R+ × T . Note that ξ̂ always exists, by Theorem 25.22 in [12]. Say that ξ has
F-independent increments if θtξ⊥⊥Ft for all t ­ 0, where (θtξ)B = ξ(B + t) for
measurable B ⊂ (0,∞) × T , and ⊥⊥ denotes independence. By a fundamental
theorem of Jacod (cf. [9], p. 106), ξ has F-independent increments iff ξ̂ is a.s. non-
random, in which case ξ has intensity Eξ = ξ̂. In the ql-continuous (quasi-left-
continuous) case, the process ξ is then Poisson, and the result reduces to Watan-
abe’s theorem.

Given a real semi-martingale X , we define the associated jump point process
ξ on R+ × (R \ {0}) by (2.1) and write ξ̂ for the compensator of ξ. If X is increas-
ing with X0 = 0, we define the local characteristics of X as the pair (Xc, ξ̂),
where Xc denotes the continuous component of X . For local martingales X with
X0 = 0, the local characteristics are instead defined as the pair ([X]c, ξ̂), where
[X]c denotes the continuous component of the quadratic variation [X] of X .

Two semi-martingales X and Y , adapted to a common filtration F , are said
to be tangential if their local characteristics agree a.s. We also say that two local
martingales X and Y are weakly tangential if their increasing processes [X] and
[Y ] are tangential. The latter property is indeed weaker than the proper tangential
relation between X and Y . Our main result in this section is Theorem 3.1, which
shows that any semi-martingale X has a tangential process Y with conditionally
independent increments. In general, this is only true after a suitable extension of
the underlying filtrationF . Given two filtrationsF and G on a common probability
space Ω, we say that G is a standard extension of F if

Ft ⊂ Gt⊥⊥Ft F , t ­ 0,

where the second relation means that G⊥⊥Ft F for all G ∈ Gt and F ∈
∪

uFu.
This is precisely the condition needed for all adaptedness and conditioning prop-
erties to be preserved (cf. [12], p. 352).

A discrete-time version of the mentioned result is well known and due to
Kwapień and Woyczyński [20] (cf. [23], pp. 293f., or [21], pp. 103ff.). In fact,
it is worth pointing out that all major results in this paper have discrete-time ver-
sions, which follow as special cases of the continuous-time statements (but not
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the other way around). To see this, it suffices to embed the discrete-time scale Z+

into R+ and extend the discrete filtration F = (Fk) to R+ by setting Ft = F[t] for
all t ­ 0, where [t] denotes the integral part of t. All tangential and predictable
properties of random sequences X = (Xk) remain valid for the continuous-time
extensions Xt = X[t].

We should also comment on the relationship between the present results and
those of Jacod and Sadi [8], where the authors identify a broad class of processesX
containing all semi-martingales, such that X admits a tangent process with condi-
tionally independent increments. This is understood in the sense of convergence
in probability of certain random probability measures on the Skorokhod space
D(R+), constructed from sums of conditional probabilities associated with X .
We may think of the limiting random measure as the conditional distribution of
the desired tangent process X̃ , given the original filtration. However, the process
X̃ is never constructed, which obviously requires an appropriate randomization,
and there is no mention of the induced filtration F̃ and its relation to the original
filtration F . In fact, F enters only via the mentioned conditional probabilities.

For a semi-martingaleX with given local characteristics ρ, it is actually trivial
to construct a process X̃ with conditionally independent increments, having the
same local characteristics ρ. However, it is essential for our purposes that X and
X̃ should be tangential with respect to a common extended filtration F̃ , preserv-
ing all adaptedness and conditioning properties of F , so that, in particular, every
martingale or predictable process will remain a martingale or predictable process
with respect to F̃ . This is why we require F̃ to be a standard extension of F .
With this requirement, the construction becomes quite sophisticated and involves
a subtle discussion of various properties of conditional independence, essentially
contained in the proofs of Lemmas 3.1, 3.2, and 3.4.

For clarity we begin with a preliminary result of independent interest. For
any combination X of processes and filtrations, we define an X -compensator as
a compensator with respect to the filtration generated by X . The definitions of
X -martingale, X -adaptedness, etc., are similar.

LEMMA 3.1. Given a filtration F on R+, consider a continuous local mar-
tingale M and an S-marked, adapted point process ξ with compensator η. Form
a Cox process ζ⊥⊥η F directed by η and a Brownian motion B⊥⊥(ζ,F), put N =
B ◦ [M ], and let G denote the filtration generated by F , ζ, and N . Then

(i) G is a standard extension of F ;
(ii) N is a continuous local G-martingale with [N ] = [M ] a.s., and both ξ

and ζ have G-compensator η;
(iii) when η is continuous, it is also a (ξ, η)-compensator of ξ and a (ζ, η)-

compensator of ζ.

P r o o f. (i) Since ζ⊥⊥η F and B⊥⊥(ζ,η)F , we have

(ζ,B)⊥⊥η F
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by the chain rule for conditional independence (cf. Proposition 6.8 in [12]), and so

(ζt, N t)⊥⊥
η, [M ]

F , t ­ 0,

where ζt denotes the restriction of ζ to [0, t]× S. Using the conditioning criterion
in Proposition 6.6 of [12] and the definitions of ζ and N , we further note that

(ζt, N t) ⊥⊥
ηt, [M ]t

(η, [M ]), t ­ 0.

Combining those relations and using the chain rule again, we obtain

(ζt, N t) ⊥⊥
ηt, [M ]t

F , t ­ 0,

which implies Gt⊥⊥Ft F for all t ­ 0.
(ii) Since B⊥⊥(ζ,F), we get

B ⊥⊥
[M ], Ns

(F , ζ,N s), s ­ 0,

and so
θsN ⊥⊥

[M ], Ns

Gs, s ­ 0.

Combining with the relation θsN⊥⊥[M ]N
s and using the chain rule again, we ob-

tain
θsN⊥⊥

[M ]

Gs, s ­ 0.

Localizing if necessary to ensure integrability, we get for any s ­ t the desired
martingale property

E(Nt −Ns| Gs) = E
[
E(Nt −Ns| Gs, [M ])

∣∣Gs]
= E

[
E(Nt −Ns| [M ])

∣∣Gs] = 0,

and the associated rate property

E(N2
t −N2

s | Gs) = E
[
E(N2

t −N2
s | Gs, [M ])

∣∣Gs]
= E

[
E(N2

t −N2
s | [M ])

∣∣Gs]
= E

[
E([M ]t − [M ]s| [M ])

∣∣Gs],
proving the assertions for N .

Property (i) shows that η remains a G-compensator of ξ. Next, the relation
ζ⊥⊥η F implies θtζ⊥⊥(η,ζt)Ft. Combining this with the Cox property θtζ⊥⊥η ζ

t
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and using the chain rule, we get θtζ⊥⊥η(ζ
t,Ft). Invoking the tower property of

conditional expectations and the Cox property of ζ, we obtain

E(θtζ| Gt) = E(θtζ| ζt,Ft)
= E

[
E(θtζ| ζt, η,Ft)

∣∣ ζt,Ft]
= E

[
E(θtζ| η)

∣∣ ζt,Ft ]
= E(θtη| ζt,Ft) = E(θtη| Gt).

Since η remains G-predictable, it is then a G-compensator of ζ.
(iii) The martingale properties in (ii) extend to the filtrations generated by

(ξ, η) and (ζ, η), respectively, by the tower property of conditional expectations.
Since η is continuous and adapted to both filtrations, it is both (ξ, η)-predictable
and (ζ, η)-predictable. The assertions follow by combination of the mentioned
properties. �

Using the previous ideas, we may construct tangential processes with condi-
tionally independent increments.

THEOREM 3.1. For any F-semi-martingale X with local characteristics Y,
there exist a standard extension G of F and a G-tangential semi-martingale
X̃⊥⊥Y F , such that X̃ has conditionally independent increments given Y .

P r o o f. Define the jump point process ξ ofX as in (2.1), and let η denote the
F-compensator of ξ. Further, let M be the continuous martingale component of
X , and let A be the predictable drift component of X with respect to an arbitrarily
fixed truncation function. When η is continuous, we may define ζ, N , and G as in
Lemma 3.1, and construct an associated semi-martingale X̃ by compensating the
jumps given by ζ. Then X̃ has the same local characteristics Y = ([M ], η, A) as
X , so the two processes are G-tangential. Since ζ⊥⊥η F and B⊥⊥(ζ,F), we have
X̃⊥⊥Y F , and the independence properties of B and ζ show that X̃ has condition-
ally independent increments.

The tangential property may fail when η has discontinuities, since the projec-
tion ζ̄ = ζ(· × S) may then have multiplicities, so that ζ is no longer a marked
point process. We then need to replace the Cox process in Lemma 3.1 by a more
general S-marked point process ζ on R+ with conditionally independent incre-
ments given η, such that E(ζ | η) = η a.s. Note that the compensator η of ξ a.s.
satisfies η({t} × S) ¬ 1 for all t ­ 0, since the discontinuity set is covered by
countably many predictable times.

Just as in the construction of Cox processes, it is enough to consider a non-
random measure µ = η with this property, and construct an S-marked point pro-
cess ζ with independent increments and intensity µ. Then write as in (2.3)

µ = µc +
∑
k­1

(δtk ⊗ νk),
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where µc is continuous, the times tk ∈ (0,∞) are distinct and at most countably
many, and the νk are measures on S with ∥νk∥ ¬ 1. Let α be a Poisson process on
R+ × S with intensity µc, and choose some independent random elements βk in
S∆ with distributions νk on S. As in case of (2.2), the S-marked point process

ζ = α+
∑
k­1

(δtk ⊗ δβk
)

has clearly the desired properties. It is easy to check that the associated kernel is
measurable in µ, which allows us to construct an associated S-marked point pro-
cess with conditionally independent increments and conditional intensity η. The as-
sertions of Lemma 3.1 remain valid in this case, and the associated semi-martingale
X̃ has local characteristics Y , so that X and X̃ are indeed G-tangential. �

Given an S-marked point process ξ on (0,∞), we may construct a sym-
metrization ξ̃ by attaching independent random signs to the points of ξ. We need
to know how that affects the compensator. Since ξ̃ is not adapted, we must first
extend the underlying filtration F . Here we consider the more general case where
ξ̃ is a ν-randomization of ξ, for some probability kernel ν from R+ × S to T , so
that a unit mass at (r, s) ∈ R+ × S is equipped with a mark in T with distribution
νr,s, independently for all points of ξ.

LEMMA 3.2. Given an F-adapted point process ξ on (0,∞) × S with com-
pensator ξ̂ and a probability kernel ν from R+×S to T, let η be a ν-randomization
of ξ on R+× S × T, and write G for the right-continuous filtration generated byF
and η. Then G is a standard extension of F , and η has G-compensator η̂ = ξ̂ ⊗ ν.

P r o o f. For any t ­ 0, let ξt and ηt denote the restrictions of ξ and η to
[0, t]× S and [0, t]× S × T , respectively, and put η′t = η − ηt. Then clearly

η⊥⊥ξ F , ηt⊥⊥ξ η
′
t, ηt⊥⊥ξtξ.

Using the first relation, combining with the other two, and invoking the chain rule
for conditional independence (cf. Proposition 6.8 in [12]), we obtain

ηt⊥⊥ξ,η′t
F , ηt⊥⊥ξt(η

′
t,F),

and so

ηt⊥⊥Ft(η
′
t,F), (ηt,Ft)⊥⊥Ft(η

′
t,F).

In the last relation we may approximate from the right to get Gt⊥⊥FtF , which
shows that G is a standard extension of F .
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Using the latter property, the chain rule for conditional expectations, the rela-
tion η⊥⊥ξ F , Fubini’s theorem, and the definitions of randomization and compen-
sation, we get on (t,∞)× S × T for arbitrary t ­ 0

E(η|Gt) = E(η|Ft) = E[E(η|Ft, ξ)|Ft]
= E[E(η|ξ)|Ft] = E(ξ ⊗ ν|Ft)
= E(ξ|Ft)⊗ ν = E(ξ̂|Ft)⊗ ν
= E(ξ̂ ⊗ ν|Ft) = E(ξ̂ ⊗ ν|Gt).

Here, e.g., E( η | Ft) denotes the a.s. unique Ft-measurable random measure such
that E( η | Ft)f = E( ηf | Ft) a.s. for any measurable function f ­ 0. Since η̂ =
ξ̂ ⊗ ν is F-predictable and hence even G-predictable, we conclude that η̂ is indeed
a G-compensator of η. �

The last result has a partial converse, given here under some simplifying as-
sumptions.

LEMMA 3.3. Let ξ be an F-adapted point process on (0,∞) with marks in
S × T, such that ξ̄ = ξ(· × S × T ) is a.s. locally finite and unbounded, and sup-
pose that ξ has compensator ξ̂ = η ⊗ ν for a predictable random measure η on
R+ × S and a non-random probability measure ν on T . Then ζ = ξ(· × T ) is
an S-marked point process on (0,∞) with compensator η, and the associated se-
quence γ = (γk) of T -marks is i.i.d. ν. However, ζ and γ need not be independent.

P r o o f. The assertion for ζ being obvious by projection, we turn to the one
for γ. Letting ξ̄ have supporting times τ1 < τ2 < . . . and putting τ0 = 0, we in-
troduce the discrete filtration Gk = Fτk , k ∈ Z+. Then γ is clearly G-adapted, and
since ξ̄ has exactly one point in each interval (τk−1, τk], we see by optional sam-
pling that γ has G-compensator

γ̂k = E
[
η
(
(τk−1, τk]× S

)
|Gk−1

]
ν

= E
[
ζ
(
(τk−1, τk]× S

)
|Gk−1

]
ν = ν

a.s. for each k ∈ N. It remains to apply the discrete-time version of Jacod’s theo-
rem.

To prove the last assertion, let ξ be a unit rate Poisson process on R+, and
attach some i.i.d.U(0, 1) marks γ1, γ2, . . . to the points τ1, τ2, . . . of ξ. Then form a
new process ξ′ by deleting all points of ξ in the interval (τ1, τ1+ γ1]. The remaining
marks γ′k are again i.i.d. ν, e.g., by optional skipping (cf. Theorem 11.13 in [12]),
but they are not independent of ξ′, since the latter process depends on the first
mark γ1. �

The following preservation property is needed in the next section.
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LEMMA 3.4. Given an F-semi-martingale X with local characteristics ρ, let
Y and Y ′ be G-tangential to X with conditionally independent increments, where
G is a standard extension of F , and suppose that F , Y, and Y ′ are conditionally
independent given ρ. Then X − Y and Y − Y ′ are G-tangential.

P r o o f. The only difficulty is to verify the tangential property for the associ-
ated jump point processes. Then let ξ, η, and η′ be the jump processes ofX , Y , and
Y ′, and let ξ̂ denote the associated compensator, so that F , η, and η′ are condition-
ally independent given ξ̂. On the continuity set A of ξ̂, the processes η and η′ are
even conditionally Poisson ξ̂, and so the discontinuity sets of the three processes
are a.s. disjoint on A, and the compensators of the jump processes of X − Y and
Y − Y ′ agree a.s. on A.

Since ξ̂ is predictable, its discontinuity set Ac is covered by the graphs of
countably many predictable times τ1, τ2, . . . (cf. Proposition 25.17 in [12]), and so
it suffices to show that the two compensators agree a.s. at any predictable time
τ < ∞. Let τ be announced by the optional times σ1, σ2, . . . . Since 1B1[τ ] is
predictable for any B ∈ Gσn , we note that E(∆ξ̂τ | Gσn) = E(∆ξτ | Gσn), which
extends to E(∆ξ̂τ | Gτ−) = E(∆ξτ | Gτ−) by martingale convergence (cf. Lem-
ma 25.2 and Theorem 7.23 in [12]). Since ∆ξ̂τ is Gτ−-measurable by Lemma 25.3
in [12], we obtain a.s.

(3.1) ∆ξ̂τ = E(∆ξτ | Gτ−) = E(∆ητ | Gτ−) = E(∆η′τ | Gτ−).

Noting that η has compensator ξ̂ with respect to the extended filtration Ht =
Gt ∨ F∞, we obtain EηV = Eξ̂V for any H-predictable process V ­ 0. Given
a predictable time τ as above, we may choose V = 1B1[τ ] for any B ∈ Hτ− to
get a.s.

E(∆ητ |Hτ−) = E(∆ξ̂τ |Hτ−) = ∆ξ̂τ ,

where the last equality holds since ∆ξ̂τ is Gτ−-measurable. Since the same rela-
tions hold for the original filtration G, we conclude that a.s.

E(∆ητ | Gτ−,F∞) = E(∆ητ | Gτ−),

which means that ∆ητ and F∞ are conditionally independent given Gτ−. By a
similar argument applied to ∆η′τ , we obtain

∆ξτ⊥⊥
Gτ−

∆ητ⊥⊥
Gτ−

∆η′τ .

Combining with (3.1), we get a.s.

E[∆(ξτ , ητ )| Gτ−] = E[∆(ητ , η
′
τ )| Gτ−],

and it follows easily that the compensators of the jump processes of X − Y and
Y − Y ′ agree a.s. at τ . �
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We conclude with a simple technical fact, needed in Section 6.

LEMMA 3.5. Let ξ be an F-adapted, T -marked point process on (0,∞) with
F-compensator η. Then η remains an F-compensator of ξ, conditionally on F0.

P r o o f. It is enough to verify that E( ξV |F0) = E( ηV |F0) a.s. for any F-
predictable process V ­ 0, which holds since the process 1AV is again F-predict-
able for any A ∈ F0. �

4. TANGENTIAL COMPARISON

Here we prove the basic comparison theorems for tangential processes, ex-
tending the discrete-time results of Zinn [27], Hitchenko [3], and Kwapień and
Woyczyński [21]. We also prove some related separation properties, and show how
the results lead to some general equivalence statements for broad classes of tan-
gential or semi-tangential processes. Say that a semi-martingaleX is conditionally
symmetric if X and −X are tangential.

A non-decreasing, continuous function φ on R+ with φ(0) = 0 is said to have
moderate growth if φ(2x) ¬ cφ(x), x > 0, for some constant c > 0. Then there
exists a function h > 0 on (0,∞) such that φ(cx) ¬ h(c)φ(x) for all c, x > 0.
The stated condition holds, in particular, for all power functions φ(x) = |x|p with
p > 0, as well as for φ(x) = x∧ 1 and φ(x) = 1− e−x. Note that the composition
of two functions of moderate growth has the same property.

THEOREM 4.1. Let the processesX and Y be tangential, increasing or condi-
tionally symmetric. Then for any non-decreasing, continuous function of moderate
growth φ on R+ with φ(0) = 0, we have

Eφ(X∗) ≍ Eφ(Y ∗),

where the domination constants depend only on φ. When φ is convex, this remains
true for any weakly tangential local martingales X and Y .

Our proof is a continuous-time version of the argument in [21]. We begin with
some tail estimates of independent interest.

LEMMA 4.1. Let the processes X and Y be tangential, increasing or condi-
tionally symmetric. Then for any c, x > 0,

(i) P{(∆X)∗ > x} ¬ 2P{(∆Y )∗ > x};
(ii) P{X∗ > x} ¬ 3P{Y ∗ > cx}+ 4c.

P r o o f. (i) Let ξ and η be the jump point processes of X and Y . Fix any
x > 0, and introduce the optional time

τ = inf{t > 0; |∆Yt| > x}.
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Since the set (0, τ ] is predictable by Lemma 25.1 in [12], we get

P{(∆X)∗ > x} ¬ P{τ <∞}+ E ξ
(
(0, τ ]× [−x, x]c

)
¬ P{τ <∞}+ E η

(
(0, τ ]× [−x, x]c

)
= 2P{τ <∞} = 2P{(∆Y )∗ > x}.

(ii) Fix any c, x > 0. When X and Y are increasing, we form X̂ and Ŷ by
omitting all jumps greater than 2cx, which clearly preserves the tangential relation.
If X and Y are instead conditionally symmetric, we form X̂ and Ŷ by omitting all
jumps of modulus greater than 2cx. The symmetry implies that X̂ and Ŷ are local
L2-martingales with jumps a.s. bounded by 4cx. They also remain tangential, and
the tangential relation carries over to the quadratic variation processes [X̂] and [Ŷ ].

Now introduce the optional time

τ = inf{t > 0; |Ŷt| > cx}.

For increasing X and Y , the tangential property of (X̂, Ŷ ) yields

xP{X̂τ > x} ¬ EX̂τ = EŶτ

= EŶτ− + E∆Ŷτ ¬ 3cx.

If instead X and Y are conditionally symmetric, we may use the Bernstein–Lévy
and Jensen inequalities (cf. Proposition 7.15 and Lemma 3.5 in [12]), integration
by parts (cf. Theorem 26.6 (vii) in [12]), and the tangential properties and bounds
to get

(xP{X̂∗τ > x})2 ¬ (E|X̂τ |)2 ¬ EX̂2
τ

= E[X̂]τ = E[Ŷ ]τ = EŶ 2
τ

¬ E(|Ŷτ−|+ |∆Ŷτ |)2 ¬ (4cx)2.

Thus, in both cases P{X̂∗τ > x} ¬ 4c.
By the definitions of X̂ and Ŷ ,

(4.1)
{(∆X)∗ ¬ 2cx} = {X = X̂},

{(∆Y )∗ ¬ 2cx} = {Y = Ŷ }.

Using the second relation and noting that Y ∗ ­ 1
2
(∆Y )∗, we get

{τ <∞} = {Ŷ ∗ > cx}
⊂ {Ŷ ∗ > cx, Y = Ŷ } ∪ {(∆Y )∗ > 2cx}
⊂ {Y ∗ > cx}.
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Combining with the previous tail estimate along with (4.1) and (i), we obtain

P{X∗ > x} ¬ P{(∆X)∗ > 2cx}+ P{X̂∗ > x}
¬ 2P{(∆Y )∗ > 2cx}+ P{τ <∞}+ P{X̂∗τ > x}
¬ 3P{Y ∗ > cx}+ 4c. �

P r o o f o f T h e o r e m 4.1. For any c, x > 0, we introduce the optional
times

τ = inf{t > 0; |Xt| > x},
σ = inf{t > 0; P [(θtY )∗ > cx| Ft] > c}.

Since θτX and θτY remain conditionally tangential given Fτ , Lemma 4.1 (ii)
yields a.s. on {τ < σ}

P [ (θτX)∗ > x| Fτ ] ¬ 3P [(θτY )∗ > cx| Fτ ] + 4c ¬ 7c,

and since {τ < σ} ∈ Fτ by Lemma 25.2 in [12], we get

P{X∗ > 3x, (∆X)∗ ¬ x, σ =∞} ¬ P{(θτX)∗ > x, τ < σ}
= E

[
P [(θτX)∗ > x| Fτ ]; τ < σ

]
¬ 7c P{τ <∞} = 7c P{X∗ > x}.

Furthermore, by Lemma 4.1 (i),

P{(∆X)∗ > x} ¬ 2P{(∆Y )∗ > x} ¬ 2P{Y ∗ > x/2},

and the Bernstein–Lévy inequality (Proposition 7.15 in [12]) yields

P{σ <∞} = P{ supt P [(θtY )∗ > cx| Ft] > c}
¬ P{ supt P [Y ∗ > cx/2| Ft] > c}
¬ c−1P{Y ∗ > cx/2}.

Combining the last three estimates, we obtain

P{X∗ > 3x}
¬ P{X∗ > 3x, (∆X)∗ ¬ x, σ =∞}+ P{(∆X)∗ > x}+ P{σ <∞}
¬ 7c P{X∗ > x}+ 2P{Y ∗ > x/2}+ c−1P{Y ∗ > cx/2}.

Since φ is non-decreasing of moderate growth, we have φ(rx) ¬ h(r)φ(x) for
some function h > 0, and so

(h−13 − 7c)Eφ(X∗) ¬ Eφ(X∗/3)− 7cEφ(X∗)

¬ 2Eφ(2Y ∗) + c−1Eφ(2Y ∗/c)

¬ (2h2 + c−1h2/c)Eφ(Y
∗).

We may finally choose c < (7h3)
−1 to get Eφ(X∗) <

⌢
Eφ(Y ∗).
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Now let φ be a convex function of moderate growth, and note that the function
φ(x1/2) is again of moderate growth. For any weakly tangential local martingales
X and Y , the processes [X] and [Y ] are non-decreasing and strictly tangential, and
so by the previous result and a version of the BDG-inequalities (cf. [1]), we obtain

Eφ(X∗) ≍ Eφ([X]1/2∞ ) ≍ Eφ([Y ]1/2∞ ) ≍ Eφ(Y ∗),

which proves the last assertion. �

The conditional symmetry of X and Y seems to be needed only for the proof
of Lemma 4.1 (ii), which uses the fact that the jumps of size greater than 2cx are
self-compensating, in the sense that the truncated processes X̂ and Ŷ are again
local martingales for arbitrary c and x. Otherwise, we would need to subtract the
compensated jumps, which would violate the set inclusions (4.1). In general, it is
hard to think of a truncation (even in discrete time, cf. [21], pp. 115ff.) that would
both preserve the martingale property and satisfy (4.1). Yet one might hope that
the last theorem would remain true under more general conditions.

We continue with a one-sided comparison, which extends the discrete-time
version in [21], p. 134.

THEOREM 4.2. Let us consider some tangential semi-martingales X and Y,
where Y has conditionally independent increments. Then for any continuous, non-
decreasing function φ of moderate growth, we have

Eφ(X∗) <
⌢
Eφ(Y ∗),

where the domination constant depends only on φ.

P r o o f. Let ρ denote the local characteristics of X . Proceeding as in Theo-
rem 3.1, we may construct two tangential processes Y ′ and Y ′′ with conditionally
independent increments, such that Y ′, Y ′′, and F are conditionally independent
given ρ. Since Y ′ d

= Y ′′
d
= Y and the processes X − Y ′ and Y ′ − Y ′′ are condi-

tionally symmetric and tangential by Lemma 3.4, we see from the growth property
of φ and Theorem 4.1 that

Eφ(X∗) <
⌢
Eφ ◦ (X − Y ′)∗ + Eφ(Y ′

∗
)

<
⌢
Eφ ◦ (Y ′ − Y ′′)∗ + Eφ(Y ′

∗
)

<
⌢

2Eφ(Y ′
∗
) + Eφ(Y ′′

∗
)

= 3Eφ(Y ∗),

where the domination constants depend only on φ. �

The previous results yield some useful comparisons of boundedness or conver-
gence for suitable pairs of strictly or weakly tangential processes. We begin with
the following equivalences.
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THEOREM 4.3. Let (X,Y ) and (Xn, Yn), n ∈ N, be pairwise tangential, in-
creasing or conditionally symmetric processes, or weakly tangential local martin-
gales with uniformly bounded jumps. Then

(i) {X∗ <∞} = {Y ∗ <∞} a.s.;

(ii) X∗n
P→ 0 ⇔ Y ∗n

P→ 0.

Note that (i) is stronger than the equivalence

X∗ <∞ a.s. ⇔ Y ∗ <∞ a.s.,

which follows from (ii) with Xn = X/n and Yn = Y/n. Applying (ii) to the pro-
cesses Xn = θnX −X(n) and Yn = θnY − Y (n), we note that also

X converges a.s. ⇔ Y converges a.s.

P r o o f. (i) First let X and Y be tangential, increasing or conditionally sym-
metric. Fixing any n ∈ N, we consider the optional time

τ = inf{t > 0; |Xt| > n}.

For any a > 0, we may apply Theorem 4.1 to the tangential, increasing or condi-
tionally symmetric processes aXτ and aY τ and the function φ(x) = x ∧ 1 with
associated domination constant c > 0 to get

P{X∗ ¬ n, Y ∗ =∞} = P{τ =∞, Y ∗τ =∞}
¬ P{Y ∗τ =∞} ¬ E(aY ∗τ ∧ 1)
¬ cE(aX∗τ ∧ 1).

Since X∗τ ¬ n + |∆Xτ | <∞ a.s., the right-hand side tends to zero as a→ 0 by
dominated convergence, and so

P{X∗ <∞, Y ∗ =∞} ¬
∑
n­1

P{X∗ ¬ n, Y ∗ =∞} = 0,

which means that Y ∗ <∞ a.s. on {X∗ <∞}. By symmetry we may interchange
the roles of X and Y .

Next let X and Y be weakly tangential local martingales with jumps bounded
by b. For τ as above, the last statement of Theorem 4.1 yields EX∗τ ≍ EY ∗τ , and
so for any a > 0 we get as before

P{X∗ ¬ n, Y ∗ =∞} = P{τ =∞, Y ∗τ =∞}
¬ P{Y ∗τ =∞} ¬ aEY ∗τ
¬ acEX∗τ
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for some constant c > 0. Since a > 0 was arbitrary and X∗τ ¬ n + b < ∞, the
probability on the left equals zero. The proof may now be completed as before.

(ii) The statement for tangential, increasing or conditionally symmetric pro-
cesses is immediate from Theorem 4.1 with φ(x) = x ∧ 1. Now let Xn and Yn
be weakly tangential local martingales with jumps bounded by b. Suppose that
X∗n

P→ 0, and introduce the optional times

τn = inf{t > 0; |Xn(t)| > 1}, n ∈ N.

Since X∗n(τn) ¬ 1 + b, and EX∗n(τn) ≍ EY ∗n (τn) by Theorem 4.1, we get

E[Y ∗n ∧ 1] ¬ P{τn <∞}+ EY ∗n (τn)

<
⌢
P{X∗n > 1}+ EX∗n(τn)→ 0,

which shows that Y ∗n
P→ 0. By symmetry we may interchange the roles of X

and Y . �

For any local martingale X and constant r > 0, we may write X = X ′ +X ′′,
where X ′ is the sum of all compensated jumps in X of modulus greater than r.
Recall from Lemma 26.5 in [12] that X ′ has locally integrable variation, whereas
X ′′ is a local martingale with jumps bounded by 2r. The following preliminary
result, of some independent interest, shows that we may sometimes separate the
large and small jumps.

LEMMA 4.2. Let X and X1, X2, . . . be local martingales with conditionally
symmetric or independent increments, and write X = X ′ +X ′′ and Xn = X ′n +
X ′′n, where X ′ and X ′n are the sums of all compensated jumps in X and Xn of size
greater than one. Then

(i) {X∗ <∞} = {X ′∗ +X ′′∗ <∞} a.s.;

(ii) X∗n
P→ 0 ⇔ X ′n

∗ +X ′′n
∗ P→ 0.

Since trivially X∗ ¬ X ′∗ +X ′′∗ and X∗n ¬ X ′n
∗ +X ′′n

∗, the main contribu-
tions are the inclusion and implication to the right.

P r o o f. (i) First let X be a local martingale with conditionally independent
increments. Conditioning on the local characteristics, we may reduce to the case
whereX is centered with strictly independent increments. Since each side has then
probability 0 or 1 by Kolmogorov’s 0-1 law, it suffices to show that X∗ <∞ a.s.
implies X ′∗ + X ′′∗ < ∞ a.s. Thus, we need to show that X∗ < ∞ a.s. implies
X ′′∗ < ∞ a.s. Letting X̃ and X̃ ′′ be symmetrizations of X and X ′′, respective-
ly, we note that X∗ < ∞ a.s. implies X̃∗ < ∞ a.s., and so X̃ ′′∗ < ∞ a.s. by
Lemma 2.2 (i). Since X ′′ has bounded jumps, Corollary 2.1 (i) shows that even
X ′′∗ <∞ a.s.
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If X is instead conditionally symmetric, then by Theorem 3.1 we may choose
Y to be tangential toX with conditionally independent increments. Introducing the
corresponding decomposition Y = Y ′+ Y ′′, we note that Y ′ and Y ′′ are tangential
to X ′ and X ′′, respectively. Hence, the tangential case of Theorem 4.3 (i) yields
a.s. the equalities

{X∗ <∞} = {Y ∗ <∞},
{X ′∗ +X ′′

∗
<∞} = {Y ′∗ + Y ′′

∗
<∞},

which reduces the proof to the previous case of processes with conditionally inde-
pendent increments.

(ii) If the Xn are conditionally symmetric, then by Theorem 3.1 we may
choose Y1, Y2, . . . to be pairwise tangential to X1, X2, . . . with conditionally in-
dependent increments. Writing Yn = Y ′n + Y ′′n as before, we note that Y ′n and Y ′′n
are tangential to X ′n and X ′′n, respectively. The tangential case of Theorem 4.3 (ii)
yields

X∗n
P→ 0 ⇔ Y ∗n

P→ 0,

X ′n
∗
+X ′′n

∗ P→ 0 ⇔ Y ′n
∗
+ Y ′′n

∗ P→ 0,

which reduces the proof to the case of processes with conditionally independent
increments. By the same argument, we may further assume that the processes Xn

are conditionally independent, given the local characteristics of the whole family
(Xn).

In the latter case, we may turn to subsequences to ensure a.s. convergence,
and then condition on the set of local characteristics, to reduce to the case of pro-
cesses with strictly independent increments. Introducing the symmetrizations X̃n

and X̃ ′′n, we note as before that X∗n
P→ 0 implies X̃∗n

P→ 0, which yields X̃ ′′n
∗ P→ 0

by Lemma 2.2 (ii). Then X ′′n
∗ P→ 0 by Corollary 2.1 (ii), and so X ′n

∗ + X ′′n
∗ ¬

X∗n + 2X ′′n
∗ P→ 0. �

Say that two local martingales X and Y are semi-tangential if there exists a
constant r > 0 with corresponding decompositions X = X ′ +X ′′ and Y = Y ′ +
Y ′′, such that X ′ and Y ′ are tangential while X ′′ and Y ′′ are weakly tangential.
More generally, let us say that two sequences of local martingales X1, X2, . . . and
Y1, Y2, . . . are pairwise uniformly semi-tangential ifXn and Yn are semi-tangential
for every n ∈ N with a truncation level r > 0 independent of n.

Using the previous lemma, we may now supplement Theorem 4.3 by some
one-sided implications.

THEOREM 4.4. Let (X,Y ) and (Xn, Yn), n ∈ N, be pairwise uniformly semi-
tangential local martingales such that X and all Xn are conditionally symmetric.
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Then
(i) {X∗ <∞} ⊂ {Y ∗ <∞} a.s.;

(ii) X∗n
P→ 0 ⇒ Y ∗n

P→ 0.
The same properties hold when the processes (X,Y ) and (Xn, Yn) are pairwise
tangential semi-martingales such that X and all Xn have conditionally indepen-
dent increments.

P r o o f. (i) Write X = X ′ + X ′′ and Y = Y ′ + Y ′′, where X ′ and Y ′ are
the sums of all compensated jumps in X and Y , respectively, of modulus greater
than r, and assume that X ′ and Y ′ are strictly tangential whereas X ′′ and Y ′′

are weakly tangential. Using Theorem 4.3 (i) and Lemma 4.2 (i), and noting that
Y ∗ ¬ Y ′ ∗ + Y ′ ∗, we get a.s.

{X∗ <∞} = {X ′ ∗ <∞} ∩ {X ′′ ∗ <∞}
= {Y ′ ∗ <∞} ∩ {Y ′′ ∗ <∞} ⊂ {Y ∗ <∞}.

(ii) Assume that X∗n
P→ 0. Writing Xn = X ′n + X ′′n and Yn = Y ′n + Y ′′n as

before, we see from Lemma 4.2 (ii) that X ′n
∗ P→ 0 and X ′′n

∗ P→ 0, and so by Theo-
rem 4.3 (ii) we have Y ′n

∗ P→ 0 and Y ′′n
∗ P→ 0, which implies Y ∗n

P→ 0.
To prove the last statement, use Theorem 4.2 and proceed as in the proof of

Theorem 4.3. �

The preceding theory leads to important principles of decoupling and sym-
metrization. Thus, to determine for a non-decreasing or conditionally symmetric
process X whether the maximum X∗ is finite or infinite, we may assume that
X has conditionally independent increments. By a further conditioning, we may
reduce to the case of strictly independent increments, where the problem is ele-
mentary and the solution is essentially known. Under certain conditions, we may
also reduce the problem for general martingales to one for martingales with sym-
metric jumps. Similar remarks apply to the criteria for convergence X∗n

P→ 0 and
associated tightness.

5. STOCHASTIC INTEGRATION

When applying the results of the previous sections to stochastic integrals, we
need to know to what extent the tangential and other properties are preserved by
stochastic integration. Recall the notation

(V ·X)t =
t∫
0

V dX, t ­ 0.
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LEMMA 5.1. Consider some semi-martingales X and Y and a predictable
process V, such that the stochastic integrals below exist, and in case of (ii) are
even integrable.

(i) If X and Y are tangential, so are V ·X and V · Y .
(ii) If X and Y are centered, weakly tangential, so are V ·X and |V | · Y .
(iii) If X and Y are semi-tangential, so are V ·X and V · Y for bounded V .
(iv) If X is conditionally symmetric, so is V ·X .
(v) If X̃ has conditionally independent increments given F , so has V · X̃ .

P r o o f. (i) Recall that if ξ is a marked point process with compensator ξ̂,
and the process V ­ 0 is predictable, then V · ξ has compensator V · ξ̂. Further,
note that if X has jump point process ξ, then the jump point process of −X is the
reflection of ξ, whose compensator is obtained by reflection of ξ̂. Combining those
facts, we see that if the point processes ξ and η are tangential, then so are V · ξ
and V · η. For the continuous martingale component M of X , we have [V ·M ] =
V 2 · [M ]. We also note that if X has a predictable drift component A, then the
process V · A is again predictable. The assertion for X and Y now follows easily
by combination.

(ii) If X and Y are weakly tangential, then [X] and [Y ] are strictly tangential,
and hence so are [V ·X] = V 2 · [X] and [|V | · Y ] = V 2 · [Y ] by part (i). Further-
more, the centering of X and Y is clearly preserved by stochastic integration.

(iii) If |∆X| ¬ b and |V | ¬ c, then |∆(V · X)| ¬ bc, and similarly for Y .
Now apply (i) and (ii).

(iv) It is enough to consider the jump point process ξ, where symmetry means
that the compensator ξ̂ is symmetric. The latter symmetry is clearly preserved by
the integration V · ξ when V ­ 0, and also by a change of sign, since the reflected
version of ξ has the same compensator ξ̂. The assertion now follows by combi-
nation.

(v) Conditioning on F , we may reduce to the case where X̃ has independent
increments and V is non-random, in which case clearly V · X̃ has again indepen-
dent increments. �

We may now give conditions for the validity of

(5.1) {(V ·X)∗ <∞} ⊂ {(V · Y )∗ <∞} a.s.

along with the corresponding relation with a.s. equality. This is especially useful
when X has conditionally independent increments, since precise criteria for the
condition on the left can then be inferred from the results in Section 2.

COROLLARY 5.1. LetX and Y be semi-martingales, whereX has condition-
ally independent increments, and let V be a predictable process such that V ·X
and V · Y exist. Then the inclusion in (5.1) holds a.s. under each of the conditions
(i) or (ii),
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(i) X and Y are tangential,
(ii) X and Y are semi-tangential, X is conditionally symmetric, and V is

bounded,
whereas a.s. equality holds in (5.1) under each of the following conditions:

(iii) X and Y are tangential increasing, and V ­ 0,

(iv) X and Y are tangential and conditionally symmetric,
(v) X and Y are centered, weakly tangential with bounded jumps, and V is

bounded.

P r o o f. (i) The processes V · X and V · Y are again tangential by Lem-
ma 5.1 (i), and Lemma 5.1 (v) shows that V ·X has again conditionally indepen-
dent increments. Relation (5.1) now follows by Theorem 4.4 (i).

(ii) Here V ·X and V · Y are again semi-tangential by Lemma 5.1 (iii), and
Lemma 5.1 (iv) shows that V ·X is again conditionally symmetric. Hence, (5.1)
follows again by Theorem 4.4 (i).

(iii) Here Lemma 5.1 (i) shows that V · X and V · Y are again tangential
increasing, and so equality holds in (5.1) by Theorem 4.3 (i).

(iv) From Lemma 5.1 (i) and (iv) we see that V · X and V · Y are again
tangential and conditionally symmetric, and so equality holds in (5.1) by Theo-
rem 4.3 (i).

(v) Here Lemma 5.1 (ii) shows that V ·X and V ·Y are again centered, weakly
tangential with bounded jumps, and so we have again equality in (5.1) by Theo-
rem 4.3 (i). �

By similar arguments, here omitted, we obtain sufficient conditions for the
implication

(5.2) (Vn ·Xn)
∗ P→ 0 ⇒ (Vn · Yn)∗

P→ 0,

along with the corresponding equivalence.

COROLLARY 5.2. For each n ∈ N, letXn and Yn be semi-martingales,where
Xn has conditionally independent increments, and let Vn be a predictable process
such that Vn ·Xn and Vn · Yn exist. Then (5.2) holds under each of the conditions
(i) or (ii),

(i) the Xn and Yn are tangential,
(ii) the Xn and Yn are uniformly semi-tangential, the Xn are conditionally

symmetric, and the Vn are uniformly bounded,
whereas equivalence holds in (5.2) under each of the following conditions:

(iii) the Xn and Yn are tangential increasing, and Vn ­ 0,

(iv) the Xn and Yn are tangential and conditionally symmetric,
(v) the Xn and Yn are centered, weakly tangential with uniformly bounded

jumps, and the Vn are uniformly bounded.
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We conclude with a decoupling property for divergence to infinity.

THEOREM 5.1. For every n ∈ N, consider a T -marked point process ξn on
(0,∞) with compensator ηn and p-thinnings ξpn, a predictable process Vn on
(0,∞)× T, and a ξn-tangential process ζn⊥⊥ηnVn with conditionally independent
increments. Let ξ̃n and ζ̃n be symmetrized versions of ξn and ζn. Then

(i) ξpn V 2
n

P→∞, p ∈ (0, 1] ⇒ ζnV
2
n

P→∞;

(ii) (Vn · ξ̃pn)∗
P→∞, p ∈ (0, 1] ⇒ (Vn · ζ̃n)∗

P→∞.

P r o o f. (i) Put Un = V 2
n and Ûn = Un ∧ 1. For fixed r > 0, we introduce

the optional times

τn = inf{t ­ 0; (Ûn · ηn)t > r}, n ∈ N.

Using Chebyshev’s inequality, the conditional independence ξpn⊥⊥ξnUn, and the
compensation property of ηn, we get

P{(Un · ξpn)τn ­ 1} = P{(Ûn · ξpn)τn ­ 1}
¬ E(Ûn · ξpn)τn = pE(Ûn · ξn)τn
= pE(Ûn · ηn)τn ¬ p (r + 1),

and so

P{ηnÛn ¬ r} = P{τn =∞}
¬ P{ξpn Un < 1}+ P{(Un · ξpn)τn ­ 1}
¬ P{ξpn Un < 1}+ p (r + 1).

Since ξn Un
P→∞, we obtain P{ηnÛn ¬ r} → 0 as n→∞ and then p→ 0, and

r being arbitrary, we get ηnÛn
P→ ∞. Then for every subsequence N ′ ⊂ N we

have ηnÛn →∞ a.s. along a further subsequence N ′′. Since ζn has conditionally
independent increments and intensity ηn, given (ηn, Un), Lemma 2.1 (iii) yields

ζnUn
P→ ∞, conditionally along N ′′. The corresponding unconditional property

follows by dominated convergence, and the convergence extends to N since N ′

was arbitrary.
(ii) Here we put instead V̂n = 2Vn/(|Vn| ∨ 2), and consider for every r > 0

the optional times

τn = inf{t ­ 0; (V̂ 2
n · ηn)t > r}, n ∈ N.

Using a BDG-inequality and proceeding as before, we get

P{(Vn · ξ̃pn)∗τn ­ 1} = P{(V̂n · ξ̃pn)∗τn ­ 1} ¬ E(V̂n · ξ̃pn)∗2τn
= p2E(V̂n · ξ̃n)∗2τn <⌢ p2E(V̂ 2

n · ξn)τn
= p2E(V̂ 2

n · ηn)τn ¬ p2(r + 4),
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and so

P{ηnV̂ 2
n ¬ r} = P{τn =∞}

¬ P{(Vn · ξpn)∗ < 1}+ P{(Vn · ξpn)∗τn ­ 1}
<
⌢
P{(Vn · ξpn)∗ < 1}+ p2(r + 4),

which implies ηnV̂ 2
n

P→∞. We may now complete the proof as before, except that
now we need to use Lemma 2.2 (iii). �

6. MULTIPLE STOCHASTIC INTEGRALS

The tangential methods of Sections 3−5 will now be used to extend the exis-
tence and convergence criteria of Section 2.2 to multiple integrals ξ1 . . . ξdf with
respect to arbitrary marked point processes. Our main conclusion is that the previ-
ous results remain valid if we replace the intensities µk = Eξk in the independence
case by certain sequential compensators η1, . . . , ηd, defined as below. This essen-
tially solves the existence and convergence problems for arbitrary non-decreasing
processes.

Given some T -marked point processes ξ1, . . . , ξd on (0,∞) adapted to a filtra-
tion F , we take η1 to be the F-compensator of ξ1. Continuing recursively, suppose
that η1, . . . , ηk−1 have already been defined for some k ¬ d. Then let ηk be the
compensator of ξk with respect to the extended filtration

Fk
t = Ft ∨ σ(η1, . . . , ηk−1), t ­ 0, k = 1, . . . , d.

We may also introduce the sequentially tangential processes ξ̃1, . . . , ξ̃d, where each
ξ̃k is Fk-tangential to ξk with conditionally independent increments and intensity
ηk, and the ξ̃k are conditionally independent, given η1, . . . , ηd. (The existence is
clear from Theorem 3.1, applied recursively, though in each step we may need to
replace the underlying filtration by a suitable standard extension.)

We may now state our basic existence and convergence criteria. Here a func-
tion f on (R+ × T )d is said to be tetrahedral if it is supported by the set where
t1 < . . . < td.

THEOREM 6.1. Let ξ1, . . . , ξd be F-adapted, T -marked point processes on
(0,∞) with associated sequentially tangential processes ξ̃1, . . . , ξ̃d, and similarly
for ξn1 , . . . , ξ

n
d and ξ̃n1 , . . . , ξ̃

n
d . Then for any tetrahedral functions f, f1, f2, . . . ­ 0

on (R+ × T )d, we have
(i) ξ1 . . . ξdf <∞ a.s.⇔ ξ̃1 . . . ξ̃df <∞ a.s.;

(ii) ξn1 . . . ξ
n
d fn

P→ 0⇔ ξ̃n1 . . . ξ̃
n
d fn

P→ 0.

When the processes ξ1, . . . , ξd are independent with independent increments
and intensities µ1, . . . , µd, we may define

Cd(µ1, . . . , µd) = {f ­ 0; ξ1 . . . ξdf <∞ a.s.},
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which is essentially given by Lemma 2.4 above. Assertion (i) is then equivalent to

ξ1 . . . ξdf <∞ a.s. ⇔ f ∈ Cd(η1, . . . , ηd) a.s.

Similarly, we may restate part (ii) in terms of the conditions in Lemma 2.4 (ii).
Both assertions follow easily from the following comparison lemma.

LEMMA 6.1. Let ξ1, . . . , ξd and ξ̃1, . . . , ξ̃d be such as in Theorem 6.1. Then
for any tetrahedral function f ­ 0 on (R+ × T )d and increasing function φ ­ 0
of moderate growth, we have

Eφ(ξ1 . . . ξdf) ≍ Eφ(ξ̃1 . . . ξ̃df),

where the domination constants depend only on φ and d.

P r o o f. The assertion for d = 1 follows from Theorem 4.1. Now assume the
statement to be true in dimension d − 1. In d dimensions, Lemma 3.5 shows that
the processes ξ̃2, . . . , ξ̃d are sequentially tangential with respect to the filtration F2

and probability measure P [ ·| η1], and so the induction hypothesis yields a.s.

(6.1) E[φ(ξ2 . . . ξd g)| η1] ≍ E[φ(ξ̃2 . . . ξ̃d g)| η1],

simultaneously for all measurable functions g ­ 0 on (R+ × T )d−1. Since f is
tetrahedral, the partial integral ξ2 . . . ξdf is predictable in the remaining argument,
and so the associated integrals with respect to ξ1 and ξ̃1 are again tangential. Using
Theorem 4.1, the disintegration Theorem 6.4 in [12], the conditional independence

ξ̃1⊥⊥η1 (ξ2, . . . , ξd, ξ̃2, . . . , ξ̃d),

and relation (6.1) with g replaced by the partial integral µf , we get

Eφ(ξ1 . . . ξdf) ≍ Eφ(ξ̃1ξ2 . . . ξdf)
= EE[φ(µξ2 . . . ξdf)|η1, ξ̃1]µ=ξ̃1

= EE[φ(µξ2 . . . ξdf)|η1]µ=ξ̃1

≍ EE[φ(µξ̃2 . . . ξ̃df)|η1]µ=ξ̃1

= EE[φ(µξ̃2 . . . ξ̃df)|η1, ξ̃1]µ=ξ̃1

= Eφ(ξ̃1ξ̃2 . . . ξ̃df),

where we note that, in both approximation steps, the domination constants depend
only on φ and d. This completes the induction. �

P r o o f o f T h e o r e m 6.1. Taking φ(x) = x∧ 1, we see from Lemma 6.1
that, under the given conditions,

E( ξ1n . . . ξ
d
nfn ∧ 1) ≍ E( ξ̃1n . . . ξ̃

d
nfn ∧ 1),

which yields the stated equivalence. The assertions now follow, since ξ1 . . . ξdf
<∞ a.s. iff ξ1 . . . ξd(cf)

P→ 0 as c→ 0, and similarly for ξ̃1 . . . ξ̃df . �
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The previous results simplify when the processes ξ1, . . . , ξd are independent.
Though the independence may not carry over to the associated compensators
η1, . . . , ηd, we do have a simple criterion in terms of some mutually independent
random measures η̃k

d
= ηk.

COROLLARY 6.1. Consider some independent, adapted, T -marked point pro-
cesses ξ1, . . . , ξd on (0,∞), having compensators η1, . . . , ηd with mutually inde-
pendent copies η̃1, . . . , η̃d, and similarly for processes indexed by n. Then for any
functions f, f1, f2, . . . ­ 0 on (R+ × T )d,

(i) P{ξ1 . . . ξdf <∞} = P{f ∈ Cd(η̃1, . . . , η̃d)};
(ii) ξn1 . . . ξ

n
d fn

P→ 0⇔ ξ̃n1 . . . ξ̃
n
d fn

P→ 0.

P r o o f. (i) Consider some independent copies ξ′1, . . . , ξ
′
d of ξ1, . . . , ξd and

η̃1, . . . , η̃d of η1, . . . , ηd, and conditionally on η̃1, . . . , η̃d, let ξ̃′1, . . . , ξ̃
′
d be inde-

pendent of ξ1, . . . , ξd and mutually independent with independent increments and
intensities η̃1, . . . , η̃d. Then Theorem 4.3 (i) yields

P{ξ1 . . . ξdf <∞} = P{ξ1ξ′2 . . . ξ′df <∞}
= P{ξ̃1ξ′2 . . . ξ′df <∞}
= P{ξ̃′1ξ2 . . . ξdf <∞}.

Since ξ̃′1⊥⊥(ξ2, . . . , ξd), we may continue recursively in d steps to get

P{ξ1 . . . ξdf <∞} = P{ξ̃′1 . . . ξ̃′df <∞},

which is equivalent to the asserted relation.
(ii) Proceeding as before, we get for any non-decreasing function φ ­ 0 of

moderate growth
Eφ(ξn1 . . . ξ

n
d fn) ≍ Eφ(ξ̃n1 . . . ξ̃nd fn),

where the domination constants depend only on φ and d. Now let n→∞. �

The signed case is more difficult, since existence is then defined by a Cauchy
criterion for the final values, whereas the tangential comparison is stated in terms
of the maximum values. This is why we need the tangent processes ξ̃1, . . . , ξ̃d
to satisfy the maximum property in Corollary 2.3. Another complication is that
a possible martingale property of ξ1, . . . , ξd is not preserved, in general, by the
sequential tangent processes ξ̃1, . . . , ξ̃d. Here we give only the following one-sided
result:

THEOREM 6.2. Let ξ1, . . . , ξd be signed, marked point processes, such that
the maximum property holds for the associated sequential tangent processes
ξ̃1, . . . , ξ̃d, and fix any measurable functions f, f1, f2, . . . Then

(i) ξ̃1 . . . ξ̃df exists ⇒ ξ1 . . . ξdf exists;

(ii) ξ̃1 . . . ξ̃dfn
P→ 0⇒ ξ1 . . . ξdfn

P→ 0.

In (ii) it is understood that the integrals on the left exist.
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P r o o f. First we prove (ii) for functions of bounded supports. Putting φ(x) =
|x| ∧ 1, we may write the assertion as

Eφ(ξ̃1 . . . ξ̃dfn)→ 0 ⇒ Eφ(ξ1 . . . ξdfn)→ 0,

which we prove by induction. For d = 1, the maximum property yields

Eφ(ξ̃fn)→ 0 ⇒ Eφ
(
(fn · ξ̃)∗

)
→ 0,

and so, by Theorem 4.2,

Eφ(ξfn) ¬ Eφ ◦ (fn · ξ)∗ <⌢ Eφ ◦ (fn · ξ̃)∗ → 0.

Assuming the truth in dimension d − 1, we turn to the d-dimensional case.
Using Lemma 3.5, we get as before

(6.2) E[φ(ξ̃2 . . . ξ̃dgn)| η1]→ 0 ⇒ E[φ(ξ2 . . . ξdgn)| η1]→ 0,

outside a fixed P -null set. Now suppose that Eφ(ξ̃1 . . . ξ̃dfn)→ 0, so that

EE[φ(µ ξ̃2 . . . ξ̃dfn)| η1]µ=ξ̃1
→ 0,

by the disintegration theorem. Then for every subsequence N ′ ⊂ N we have

E[φ(µ ξ̃2 . . . ξ̃dfn)| η1]µ=ξ̃1
→ 0 a.s.

along a further subsequence N ′′ ⊂ N ′, which implies

E[φ(µ ξ2 . . . ξdfn)| η1]µ=ξ̃1
→ 0 a.s.

by (6.2). By dominated convergence and the disintegration theorem we get
Eφ(ξ̃1 ξ2 . . . ξdfn) → 0, and so by Lemma 5.1 (v), Theorem 4.2, and the maxi-
mum property of ξ̃1, we have along N ′′

Eφ(ξ1 . . . ξdfn) ¬ Eφ ◦
(
(ξ2 . . . ξdfn) · ξ1

)∗
<
⌢
Eφ ◦

(
(ξ2 . . . ξdfn) · ξ̃1

)∗ → 0

(cf. Corollary 5.2 (i)). Since N ′ was arbitrary, this completes the induction. We
may now proceed to the general case.

(i) Suppose that ξ̃1 . . . ξ̃df exists, and consider any functions f1, f2, . . . with
bounded supports and |fn| ¬ |f | such that fn → f . Then ξ̃1 . . . ξ̃dfn

P→ ξ̃1 . . . ξ̃df ,
and so the sequence of integrals ξ̃1 . . . ξ̃dfn is Cauchy in probability. By the special
case of (ii), so is the sequence ξ1 . . . ξdfn, which then converges to some limiting
random variable. Considering alternating sequences of the form f1, g1, f2, g2, . . .,
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we see that the limit is a.s. independent of the choice of sequence (fn), and hence
can be used to define the integral ξ1 . . . ξdf .

(ii) Suppose that ξ̃1 . . . ξ̃dfn
P→ 0. Then for each n we may choose some func-

tions fnk with bounded supports and |fnk| ¬ |fn| such that fnk → fn as k →∞.
By (i) and linearity, we get

ξ̃1 . . . ξ̃d(fn − fnk)
P→ 0, ξ1 . . . ξd(fn − fnk)

P→ 0.

Writing ψ(x) = |x| ∧ 1, we may choose k = kn so large that the functions f ′n =
fn,kn satisfy

(6.3) Eψ
(
ξ̃1 . . . ξ̃d(fn − f ′n)

)
∨ Eψ

(
ξ1 . . . ξd(fn − f ′n)

)
< n−1.

Then
ξ̃1 . . . ξ̃df

′
n = ξ̃1 . . . ξ̃dfn − ξ̃1 . . . ξ̃d(fn − f ′n)

P→ 0,

and so, by (6.3) and the special case of (ii),

ξ1 . . . ξdfn = ξ1 . . . ξdf
′
n + ξ1 . . . ξd(fn − f ′n)

P→ 0. �
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