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Abstract. This article deals with a mean-field model. We consider a
large number of particles interacting through their empirical law. We know
that there is a unique invariant probability for this diffusion. We look at func-
tional inequalities. In particular, we briefly show that the diffusion satisfies
a Poincaré inequality. Then, we establish a so-called WJ-inequality, which
is independent of the number of particles.
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1. INTRODUCTION

1.1. Model. First, we consider a sequence (Xi
0)i1 of independent and identi-

cally distributed random variables with common law µ0 on Rd. We also consider a
sequence of independent Brownian motions (Bi)i1 on Rd. These Brownian mo-
tions are assumed to be independent of the previously introduced random variables.

The system of interacting particles that we look at evolves in the landscape
of a potential V . This potential is denoted as the confining potential. Its effect is,
roughly speaking, to locate the particles in a compact of Rd. We assume that the
confining potential V is convex at infinity but not globally convex. However, we
assume that the Hessian of V is minorated:

∇2V  −θId,

where θ is a positive constant.
We now introduce the so-called interacting potential F . We do not assume that

it is either convex or not convex. However, the following inequality is required:

∇2F  −αId.

The precise assumptions are given subsequently. We consider the following system
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of interacting particles for 1 ¬ i ¬ N :

(1.1) Xi,N
t = Xi

0 + σBi
t −

t∫
0

∇V (Xi,N
s )ds−

t∫
0

1

N

N∑
j=1

∇F (Xi,N
s −Xj,N

s )ds.

Here, N is large.
This system of N particles in Rd may be seen as one particle in RdN . Indeed,

let us define
XN
t := (X1,N

t , . . . , XN,N
t ) ∈ RdN .

Thus, the diffusion X is a simple diffusion evolving in the landscape of a potential
of RdN ,

XN
t = XN

0 + σBt −N
t∫
0

∇ΥN (XN
s )ds,

where B := (B1, . . . , BN ), and the potential ΥN is defined as

(1.2) ΥN (X1, . . . , XN ) :=
1

N

N∑
i=1

V (Xi) +
1

2N2

N∑
i=1

N∑
j=1

F (Xi −Xj).

This model has a natural application in the financial markets in which there is
a huge number of agents who act in function of the global behaviour of the system.
We can also think about the system of exchanges between banks, a classical result
being important for the interaction in the probability of bankruptcy.

With some other assumptions, these equations are used as a model for the
growth of cerebral tumors. Indeed, each of the cells tries to be alone for developing
itself.

Mean-field systems of particles are also used in social interactions (see [8]).
They also appeared quite naturally in the study of stochastic partial differential
equations, see [9].

1.2. Well-known results.

1.2.1. Existence. Basically, we make the following assumptions:
• The potential V is convex at infinity. In fact, we even have∇2V (∞) =∞.
• In the neighbourhood of infinity, the confining potential behaves as a poly-

nomial function: ⟨∇V (x);x⟩ = ∥x∥2m + o(∥x∥2m) at infinity, where m ∈ N.
• In the neighbourhood of infinity, the interacting potential behaves as a poly-

nomial function: ⟨∇F (x);x⟩ = ∥x∥2n + o(∥x∥2n) at infinity, where n ∈ N.
Then, we consider the maximal degree by putting q := max {m,n}. Thus, if

the initial law admits a moment of order 2q, that is to say, if∫
Rd

∥x∥2qµ0(dx) <∞,

there exists a unique solution to equation (1.1). We denote by (XN
t )t0 this dif-

fusion solution. Let us remark that the previous assumption for the existence of a
solution does not depend on the number N of particles.
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1.2.2. Invariant probability. There is a unique invariant probability µσ,N on
RdN for diffusion (1.1) defined by

µσ,N (dX ) := Z−1σ,N exp

{
−2N

σ2
ΥN (X )

}
dX ,

where the potential ΥN is defined in (1.2).
This potential makes sense when N goes to infinity. Indeed, it represents the

energy associated with the probability 1
N

∑N
i=1 δXi . We can observe that there is

an N in the factor so that the invariant probability and the long-time behaviour
depend on N .

1.2.3. Long-time behaviour. Thanks to Bakry et al. [2], the measure µσ,N sat-
isfies a Poincaré inequality

Varµσ,N (f) ¬
1

Cσ(N)

∫
RdN

∥∇f∥2 dµσ,N

for any f which is a smooth function from RdN to R. This inequality is equivalent
to the convergence inequality

∥PN
t f − Eµσ,N (f)∥2L2(µσ,N ) ¬ exp

{
− 2

Cσ(N)
t

}
Varµσ,N (f),

where we have put PN
t f(x) := Ex{f(XN

t )}.
Let us point out that the constant Cσ(N) which appears in the inequality does

not have any reason to be independent of the number of particles, that is, of the
dimension of the space in which the solution XN evolves.

1.2.4. Hydrodynamical limit. Intuitively, (Xi,N
t )t0 behaves as the diffusion

(X
i
t)t0 when N is large. Here, the diffusion X

i is defined by the equation

X
i
t = Xi

0 + σBi
t −

t∫
0

∇V (X
i
s)ds−

t∫
0

∇F ∗ µs(X
i
s)ds

with µs := P
X

1
s
. Indeed, we can observe that the influence of the particle j on the

particle 1 becomes small when N is large. So, roughly speaking, the particles of
the interacting system of particles become independent. However, equation (1.1)
can be written in the form

Xi,N
t = Xi

0 + σBi
t −

t∫
0

∇V (Xi,N
s )ds−

t∫
0

∇F ∗ µN
s (Xi,N

s )ds,

with µN
s := 1

N

∑N
j=1 δXj,N

s
. If the particles become independent, the measure µN

s

converges to µs, which explains why the particles Xi,N intuitively are close to X
i.



148 B. Dyda and J. Tugaut

We now assume E{∥X1
0∥8q

2} <∞, that is,∫
Rd

∥x∥8q2µ0(dx) <∞,

where we remind the reader that q is the maximum of the degrees of V and F .
Under this assumption, we have a so-called propagation of chaos:

sup
t∈[0,T ]

E{∥Xi,N
t −Xi

t∥2} → 0

for any T > 0.
See [12], [14], [11], [10], [3], [4] for propagation of chaos.

1.3. Aim of the article. The following theorem is our main result.

THEOREM 1.1. Let the assumptions listed in Subsection 1.5 hold, and let σ
be large. Then the law of the diffusion XN

t converges to the unique invariant prob-
ability µσ,N as t→∞ in the Wasserstein distance W2. Moreover, the rate of the
convergence is exponential and uniform with respect to the number of particles.

1.4. Outline of the article. First, we present the assumptions of the article.
In the next section, we justify why the diffusion satisfies a Poincaré inequality.
Then, we give some classical results on this inequality and discuss an eventual
uniform Poincaré inequality. In Section 3, we present the framework of the paper.
In Section 4, we give the main result and its proof. Finally, in the last section, we
give the proof of a technical proposition which is of crucial interest in our work.

1.5. Assumptions. Let us present the assumptions of the paper.
(A1) V is a smooth function on Rd.
(A2) V is convex at infinity: for any λ > 0, there exists Rλ > 0 such that∇2V (x)

> λId for any ∥x∥  Rλ.
(A3) There exists a convex non-negative function V0 such that ∇2V0(0) = 0 and

V (x) = V0(x)− θ
2∥x∥

2 with θ > 0.
(A4) There exist m ∈ N∗ and C > 0 such that ∥∇V (x)∥ ¬ C(1 + ∥x∥2m−1) for

all x ∈ Rd.
(A5) The inequality |V (x)| ¬ c∥x∥2 holds for ∥x∥ ¬ 1; in particular, V (0) = 0.
(A6) F (x) = G(∥x∥)− α

2 ∥x∥
2, where G is a polynomial, even and convex func-

tion with degree equal to deg(G) =: 2n  2 and G(0) = 0. Here, α is not
necessarily positive.

(A7)
∫
Rd ∥x∥8q

2
µ0(dx) <∞ with q := max{m,n}.

(A8) The entropy of the probability measure is finite. In other words, µ0 is abso-
lutely continuous with respect to the Lebesgue measure, and we have∫

Rd

u0(x) log
(
u0(x)

)
dx <∞

where u0 is the density of µ0.
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2. PRELIMINARIES

We begin by looking at a Poincaré inequality for our model. Let us remind the
reader that the invariant probability µσ,N is of the form e−U . According to [2], it
satisfies a Poincaré inequality under simple assumptions. Indeed:

PROPOSITION 2.1. Let k be a positive integer. Let µ(dx) := e−U(x)dx be a
probability measure on Rk. We assume that the potential U is C2 and bounded from
below. If there exist α > 0 and R  0 such that, for |x|  R,

⟨x;∇U(x)⟩  α|x|,

then µ satisfies a Poincaré inequality with constant

4
(
1 +

(
exp

{
1
2(αR+ 1− k)

}
+ 1

)
κR

)(
α− (k − 1)/R

)2
for any R such that α − (k − 1)/R > 0. Here, κR is the Poincaré constant of µ
restricted to the ball B (0;R).

The proof is omitted, see [2]. The general idea is the following. We can apply
Theorem 1.4 in [2]. Indeed, we consider a sequence of smooth functions Wn which
satisfies

Wn(x) =

{
exp

{
1
2

(
α− (k − 1)/R

)
|x|

}
for |x|  R,

exp
{
1
2(αR+ 1− k − 1/n2)

}
for |x| ¬ R− 1/n.

Consequently, we have the inequality

∆Wn(x)− ⟨∇Wn(x);∇U(x)⟩

¬ −1
4

(
α− k − 1

R

)2

Wn(x)

+

(
exp

{
1

2

(
αR+ 1− k − 1

n2

)}
+ 1

)
1B(0;R)(x).

We may apply this proposition to our model under the assumptions (A1)–(A7).
We now give two classical results on functional inequalities.

PROPOSITION 2.2. Let µ be a probability measure on Rk, and U be a bounded
function from Rk to R. We define the measure ν – the perturbation of µ by U – as
follows:

dν :=
eU

Z
dµ with Z :=

∫
eUdµ.

If µ satisfies a Poincaré inequality with constant C, then ν satisfies a Poincaré
inequality with constant C exp{supRk U − infRk U}.
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P r o o f. Let f be any smooth function. For a =
∫
Rk f(y)dµ(y) we have∫

Rk

(
f(x)− a

)2
dν(x) =

1

Z

∫
Rk

(
f(x)− a

)2
eU(x)dµ(x)

¬ 1

Z
exp{sup

Rk

U}
∫
Rk

(
f(x)− a

)2
dµ(x)

¬ C

Z
exp{sup

Rk

U}
∫
Rk

∥∇f(x)∥2dµ(x)

¬ C exp{sup
Rk

U}
∫
Rk

∥∇f(x)∥2e−U(x)dν(x)

¬ C exp{sup
Rk

U − inf
Rk

U}
∫
Rk

∥∇f(x)∥2dν(x).

As Varν(f) is the infimum of
∫
Rk

(
f(x) − a

)2
dν(x) for a ∈ Rk, this completes

the proof. �

Another well-known result is the tensorization one. We present it in R2 with-
out any loss of generality.

PROPOSITION 2.3. Let µ1 and µ2 be two probability measures on R. We as-
sume that both probability measures µ1 and µ2 satisfy a Poincaré inequality with
constant C. Then the probability measure on R2, µ1 ⊗ µ2, satisfies a Poincaré
inequality with constant C.

P r o o f. For any smooth function from R2 to R, one can easily prove the
inequality

Varµ1⊗µ2(f) ¬ Eµ1⊗µ2

(
Varµ1(f)

)
+ Eµ1⊗µ2

(
Varµ2(f)

)
,

where Varµ1 (respectively, Varµ2) means that the first (respectively, the second)
variable is the only one to be affected by the integration. Indeed, this inequality is
equivalent to

Eµ1⊗µ2(f
2)− Eµ1⊗µ2

[(
Eµ1(f)

)2]− Eµ1⊗µ2

[(
Eµ2(f)

)2]
+
(
Eµ1⊗µ2(f)

)2  0,

which can also be written as

Eµ1⊗µ2

[(
f − Eµ1(f)− Eµ2(f) + Eµ1⊗µ2(f)

)2]  0.

However, the Poincaré inequality implies

Varµ1(f) ¬ C
∫
R
|∇x1f |

2 dµ1 and Varµ2(f) ¬ C
∫
R
|∇x2f |

2 dµ2,

which completes the proof. �
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We proceed in a similar way for the tensorization of k measures on R.
In the model considered we have a Poincaré inequality. However, the constant

may depend on the dimension.
The following constant, which appears in Proposition 2.1, does depend on the

dimension:
4
(
1 +

(
exp

{
1
2 (αR+ 1− k)

}
+ 1

)
κR

)(
α− (k − 1)/R

)2 .

Indeed, R has to be such that α > (k − 1)/R, which means that R > (k − 1)/α.
Consequently, the constant is greater than

4(1 + 2κ(k−1)/R)(
α− (k − 1)/R

)2 .
However, we can remark that limR→∞ κR = +∞.

By using the tensorization result, we easily prove that the measure

exp

{
− 2

σ2

N∑
k=1

V (xk)

}
dx1 . . . dxN

satisfies a Poincaré inequality with a constant which does not depend on the dimen-
sion N . If we assume that F is bounded, we can use the perturbation result to prove
that the measure exp

{
− 2

σ2
NΥN (x1, . . . , xN )

}
dx1 . . . dxN satisfies a Poincaré

inequality. However, the constant just obtained does depend on the dimension.
Let us observe that we can write

NΥN (x1, . . . , xN ) =
N∑
k=1

(
V (xk) + F ∗ ηX (xk)

)
,

with ηX := 1
N

∑N
k=1 δxk

. However, we cannot use the tensorization result. Intu-
itively, the propagation of chaos means that the particles become independent so
that we have a Poincaré inequality with a constant which does not depend on the
dimension.

In the following, we deal with WJ-inequality to get inequality independent of
the dimension.

3. FRAMEWORK

Let us give the framework (definitions and basic propositions) of our paper.
We begin by introducing the Wasserstein distance.

DEFINITION 3.1. For any probability measures on Rd, µ and ν, the Wasser-
stein distance between µ and ν is

W2 (µ ; ν) :=
√
inf E{∥X − Y ∥2},
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where the infimum is taken over the random variables X and Y with law µ and ν,
respectively.

By Brenier’s theorem, see [7], the Wasserstein distance can be characterized
in the following way.

PROPOSITION 3.1. Let µ and ν be two probability measures on Rd. If µ is
absolutely continuous with respect to the Lebesgue measure, there exists a convex
function τ from Rd to R such that the following equality holds for every bounded
test function g: ∫

Rd

g(x)ν(dx) =
∫
Rd

g
(
∇τ(x)

)
µ(dx).

Then, we write
ν = ∇τ#µ,

and we have the following equality:

W2 (µ ; ν) =
√∫

Rd

∥x−∇τ(x)∥2µ(dx).

The key idea of the paper is a so-called WJV,F -inequality. Let us present the
expression that we denote by JV,F (ν | µ) if µ is absolutely continuous with respect
to the Lebesgue measure:

JV,F (ν | µ) := JV,0 (ν | µ)

+
1

2

∫ ∫
R2d

⟨
∇F

(
ξ(x, y)

)
−∇F (x− y) ; ξ(x, y)− (x− y)

⟩
µ(dx)µ(dy),

with ξ(x, y) := ∇τ(x)−∇τ(y) and

JV,0 (ν | µ) :=
σ2

2

∫
Rd

(
∆τ(x) + ∆τ∗

(
∇τ(x)

)
− 2d

)
µ(dx)

+
∫
Rd

⟨
∇V

(
∇τ(x)

)
−∇V (x) ; ∇τ(x)− x

⟩
µ(dx),

where τ∗ denotes the Legendre transform of τ . Here, we have ν = ∇τ#µ. We now
present the transportation inequality, already used in [1], [5], [6], [13], on which
the article is based.

DEFINITION 3.2. Let µ be a probability measure on Rd absolutely continu-
ous with respect to the Lebesgue measure and C > 0. We say that µ satisfies a
WJV,F (C)-inequality if the inequality

CW2
2 (ν ; µ) ¬ JV,F (ν | µ)

holds for any probability measure ν on Rd.
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In the following, we aim to establish WJ-inequality for the invariant probabil-
ity µσ,N of diffusion (1.1). It is well known that µσ,N is absolutely continuous with
respect to the Lebesgue measure. Consequently, we can apply Brenier’s theorem.
So, the WJV,F -inequality reduces to an inequality on the convex functions τ from
Rd to R.

Let us remark that a WJV,F -inequality does imply the required convergence.
Indeed, it is a consequence of Proposition 1.1 in [6].

4. MAIN RESULTS

Here we use the result from [5]. We know that a WJV,0-inequality holds
with some constant Cσ,N . Therefore, a WJV,F -inequality holds with the constant
Cσ,N − (α+ θ):

PROPOSITION 4.1. Under the assumptions (A1)–(A7), a WJV,F -inequality
holds for the measure µσ,N with the constant Cσ,N − (α+ θ), where

Cσ,N := max
R>0

Cσ(N,R),

and

(4.1) Cσ(N,R) := min

{
K(R)

3
;

σ2

72R2
exp

{
− 2

σ2
S(R)

}
;

K(R)

6

3dN − 2dN

2dN
exp

{
2

σ2

(
I(R)− S(R)

)}}
,

with

K(R) := inf
∥χ∥R

N∇2ΥN
0 (χ),(4.2)

I(R) := inf
∥χ∥¬2R

NΥN (χ),(4.3)

S(R) := sup
∥χ∥¬3R

NΥN (χ).(4.4)

In the definition of K(R), the infimum is understood as the smallest eigenvalue of
N∇2ΥN

0 (χ). Furthermore, ΥN
0 is defined as follows:

NΥN
0 (χ) :=

N∑
i=1

V0(χi) +
1

2N

N∑
i=1

N∑
j=1

G(∥χi − χj∥).

This proposition is Proposition 3.4 of [6] with explicit constants. For reader’s
convenience, in Section 5 we repeat the proof from [6], tracking the constants
carefully.

However, nothing ensures us a priori that Cσ,N − (α+ θ) is positive. This is
the aim of the next theorem:



154 B. Dyda and J. Tugaut

THEOREM 4.1. There exists σ̂c such that Cσ,N > α+ θ for any N if σ  σ̂c.

P r o o f. We will use Proposition 4.1 and the notation introduced therein.
From (A2) and (A3) we get

∇2NΥN
0 (χ)  (12α+ 12θ + 12)Id if ∥χ∥  R := R12α+11θ+12.

Therefore,

(4.5)
K(R)

3
 4(α+ θ + 1).

From (A4) and (A5) it follows that

|V (x)| ¬ C

(
∥x∥+ ∥x∥

2m

2m

)
, x ∈ Rd,

which together with (A5) implies that

(4.6) |V (x)| ¬ c(∥x∥2 + ∥x∥2m), x ∈ Rd.

On the other hand, from (A6) we get F (x) = G(∥x∥)− α
2 ∥x∥

2 =
∑n

k=1 b2k∥x∥
2k

for some b2k ∈ R. This and (4.6) give

NΥN (χ) =
N∑
i=1

V (χi) +
1

2N

N∑
i=1

N∑
j=1

F (χi − χj)(4.7)

¬ c
N∑
i=1

(∥χi∥2 + ∥χi∥2m) +
1

2N

N∑
i=1

N∑
j=1

n∑
k=1

b2k∥χi − χj∥2k.

We continue, using the elementary inequality |a− b|2k ¬ 22k−1(|a|2k + |b|2k), and
obtain

NΥN (χ) ¬ c
N∑
i=1

(∥χi∥2 + ∥χi∥2m) +
n∑

k=1

b2k2
2k−1

N∑
i=1

∥χi∥2k

¬ c(9R2 + 9mR2m) +
n∑

k=1

b2k2
2k−19kR2k ¬ c′R2q if ∥χ∥ ¬ 3R,

where q = max{m,n} and the constant c′ depends only on V and F . Thus,

(4.8) S(R) ¬ c′R2q.

Finally, to estimate I(R), we use (A3) and (A6). For ∥χ∥ ¬ 2R,

NΥN (χ)  −θ
2

N∑
i=1

∥χi∥2 −
α

4N

N∑
i=1

N∑
j=1

∥χi − χj∥2

 −2θR2 − α

4N

N∑
i=1

N∑
j=1

2(∥χi∥2 + ∥χj∥2)  −(2θ + 4α)R2,
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hence

(4.9) I(R)  −(2θ + 4α)R2.

We are now ready to estimate Cσ(N,R). The first term in the minimum on the
right-hand side of (4.1) is greater than 4(α+ θ + 1), see (4.5). The second term is
greater than

σ2

72R2
exp

{
− 2

σ2
c′R2q

}
,

see (4.8), which in turn is larger than α + θ + 1 for σ large enough. Finally, the
third term in the minimum in (4.1) is greater than

2(α+ θ + 1)
1

2
exp

{
2

σ2

(
− (2θ + 4α)R2 − c′R2q

)}
 α+ θ +

1

2

for large σ. To summarize, Cσ(N,R)  α+ θ + 1
2 and, consequently,

Cσ,N  α+ θ +
1

2

for every N ∈ N and for large σ. �

P r o o f o f T h e o r e m 1.1. From Theorem 4.1, if the diffusion coefficient
σ is large enough, a WJV,F -inequality holds with a constant which does not de-
pend on the dimension. Thus the assertion follows from Proposition 1.1 in [6]. �

5. PROOF OF PROPOSITION 4.1

Here, we consider a monotone map A on Rn, and by ∇SA := ∇A+∇AT

2 we
denote the symmetric part of its Jacobian.

We remind Lemma 3.12 of [5]:

LEMMA 5.1. Let A be a C1 monotone map on Rn for which there exist two
constants R and K > 0 such that ∇SA(x)  K for all |x|  R. Then

⟨A(x)−A(y);x− y⟩  K

3
|x− y|2

if |x|  2R or |y|  2R.

P r o o f o f P r o p o s i t i o n 4.1. We follow carefully the proof in Sec-
tion 3.5 of [5]. Next pages are an adaptation with σ ̸= 1 of Section 3.5 in [5].

Let φ be a given strictly convex function on Rn. Let us recall that, for the
Hessian operator,

∇2φ∗
(
∇φ(x)

)
=

(
∇2φ(x)

)−1
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and, in particular,
∆φ∗

(
∇φ(x)

)
= Tr

[(
∇2φ(x)

)−1]
,

Tr being the trace operator.
Let X be the subset of Rn defined by

X := {x ∈ Rn : |x| ¬ 2R, |∇φ(x)| ¬ 2R}.

S t e p 1. First of all, by monotonicity and Lemma 5.1, we have∫
Rn

⟨
A
(
∇φ(x)

)
−A(x) ; ∇φ(x)− x

⟩
exp

{
− 2

σ2
V (x)

}
dx


∫
Xc

⟨
A
(
∇φ(x)

)
−A(x) ; ∇φ(x)− x

⟩
exp

{
− 2

σ2
V (x)

}
dx

 K

3

∫
Xc

|∇φ(x)− x|2 exp
{
− 2

σ2
V (x)

}
dx.

S t e p 2. On the other hand, for θ∈Sn−1 we let Rθ := sup {r0 : rθ∈X}.
In particular, Rθθ ∈ X and Rθ ¬ 2R. Then, we let rθ ∈ [Rθ, 3R] such that

|∇φ(rθθ)− rθθ| = inf {|∇φ(rθ)− rθ| : r ∈ [Rθ, 3R]}.

In particular,

|∇φ(rθθ)| ¬ |∇φ(rθθ)− rθθ|+ |rθθ|
¬ |∇φ(Rθθ)−Rθθ|+ |rθθ|
¬ 2R+ 2R+ 3R = 7R,

since |∇φ(Rθθ)| ¬ 2R and |Rθθ| ¬ 2R for Rθθ ∈ X .
Then, for rθ ∈ X with 0 ¬ r ¬ Rθ ¬ rθ, let us write

∇φ(rθ)− rθ = ∇φ(rθθ)− rθθ +
r∫
rθ

[∇2φ(sθ)− I]θds.

Letting Hs := ∇2φ(sθ) for notational convenience, we decompose as

[Hs − I]θ = [H1/2
s −H−1/2s ]H1/2

s θ,

so that ∣∣ rθ∫
r

[Hs − I] θds
∣∣2 ¬ ( rθ∫

r

|H1/2
s −H−1/2s ||H1/2

s θ|ds
)2

¬
( rθ∫

r

|H1/2
s −H−1/2s |2 exp

{
− 2

σ2
V (sθ)

}
ds

)
×
( rθ∫

r

|H1/2
s θ|2 exp

{
2

σ2
V (sθ)

}
ds

)
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by the Hölder inequality. But

|H1/2
s −H−1/2s |2 = sup

x∈Rn

|[H1/2
s −H

−1/2
s ]x|2

|x|2
= sup

x∈Rn

⟨[Hs − 2I +H−1s ]x ; x⟩
|x|2

¬ Tr(Hs − 2I +H−1s ) = ∆φ(sθ)− 2n+ (∆φ∗)
(
∇φ(sθ)

)
,

since the eigenvalues of H − 2I +H−1 are non-negative. Moreover,

|H1/2
s θ|2 = ⟨H1/2

s θ ; H1/2
s θ⟩ = ⟨Hsθ ; θ⟩.

Hence,

|∇φ(rθ)− rθ|2 ¬ 2 |∇φ(rθθ)− rθθ|2

+ 2

(rθ∫
r

(
∆φ(sθ)−2n+∆φ∗

(
∇φ(sθ)

))
exp

{
− 2

σ2
V (sθ)

}
ds

)
×

( rθ∫
r

⟨Hsθ ; θ⟩ exp
{
2

σ2
V (sθ)

}
ds

)
,

where

rθ∫
r

⟨Hsθ ; θ⟩ ds = ⟨∇φ(rθθ)−∇φ(rθ) ; θ⟩ ¬ |∇φ(rθθ)|+ |∇φ(rθ)| ¬ 9R

for rθ ∈ X . Hence,

∫
X,|x|¬2R

|∇φ(x)− x|2 exp
{
− 2

σ2
V (x)

}
dx

¬
∫

Sn−1

Rθ∫
0

rn−1 |∇φ(rθ)− rθ|2 exp
{
− 2

σ2
V (rθ)

}
drdθ

¬ 2
∫

Sn−1

Rθ∫
0

|∇φ(rθθ)− rθθ|2 exp
{
− 2

σ2
V (rθ)

}
drdθ

+ λ(R)
∫

Sn−1

Rθ∫
0

rn−1
rθ∫
r

(
∆φ(sθ)− 2n+∆φ∗

(
∇φ(sθ)

))
× exp

{
− 2

σ2
V (sθ)

}
dsdrdθ,

where

λ(R) := 18R exp

{
2

σ2
sup {V (x) : |x| ¬ 3R}

}
.
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But,

∫
Sn−1

Rθ∫
0

rn−1
rθ∫
r

(
∆φ(sθ)− 2n+∆φ∗

(
∇φ(sθ)

))
exp

{
− 2

σ2
V (sθ)

}
dsdrdθ

¬
∫

Sn−1

Rθ∫
0

rθ∫
r

sn−1
(
∆φ(sθ)− 2n+∆φ∗

(
∇φ(sθ)

))
exp

{
− 2

σ2
V (sθ)

}
dsdrdθ

¬ 2R
∫

Sn−1

3R∫
0

sn−1
(
∆φ(sθ)− 2n+∆φ∗

(
∇φ(sθ)

))
exp

{
− 2

σ2
V (sθ)

}
dsdθ

=
4R

σ2
· σ

2

2

∫
|x|¬3R

(
∆φ(x)− 2n+∆φ∗

(
∇φ(x)

))
exp

{
− 2

σ2
V (x)

}
dx.

Hence,

(5.1)
∫

X,|x|¬2R
|∇φ(x)− x|2 exp

{
− 2

σ2
V (x)

}
dx

¬ 2 exp

{
− 2

σ2
inf{V (x) : |x| ¬ 2R}

}
(2R)n

n

∫
Sn−1

|∇φ(rθθ)− rθθ|2 dθ

+
4R

σ2
λ(R) · σ

2

2

∫
|x|¬3R

(
∆φ(x)− 2n+∆φ∗

(
∇φ(x)

))
exp

{
− 2

σ2
V (x)

}
dx.

Moreover, by Lemma 5.1 and the definition of rθ, we obtain

∫
|x|¬3R

⟨
A
(
∇φ(x)

)
−A(x) ; ∇φ(x)− x

⟩
exp

{
− 2

σ2
V (x)

}
dx


∫

2R¬|x|¬3R

⟨
A
(
∇φ(x)

)
−A(x) ; ∇φ(x)− x

⟩
exp

{
− 2

σ2
V (x)

}
dx

 K

3

∫
2R¬|x|¬3R

|∇φ(x)− x|2 exp
{
− 2

σ2
V (x)

}
dx

 K

3
exp

{
− 2

σ2
sup {V (x) : |x| ¬ 3R}

} ∫
2R¬|x|¬3R

|∇φ(x)− x|2 dx

=
K

3
exp

{
− 2

σ2
sup {V (x) : |x| ¬ 3R}

} 3R∫
2R

rn−1
∫

Sn−1

|∇φ(rθ)− rθ|2 dθdr

 K

3
exp

{
− 2

σ2
sup {V (x) : |x| ¬ 3R}

} 3R∫
2R

rn−1
∫

Sn−1

|∇φ(rθθ)− rθθ|2 dθdr.
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Hence, there exists a constant C(R,K) such that

(5.2) C(R,K)
∫

Sn−1

|∇φ(rθθ)− rθθ|2 dθ

¬
∫

|x|¬3R

⟨
A
(
∇φ(x)

)
−A(x) ; ∇φ(x)− x

⟩
exp

{
− 2

σ2
V (x)

}
dx.

Thus, we have

C(R,K) :=
K

3
exp

{
− 2

σ2
sup {V (x) : |x| ¬ 3R}

}
1

n
(3n − 2n)Rn.

It follows from (5.1) and (5.2) that

C ′(R,K)
∫

X,|x|¬2R
|∇φ(x)− x|2 exp

{
− 2

σ2
V (x)

}
dx

¬
∫

|x|¬3R

⟨
A
(
∇φ(x)

)
−A(x) ; ∇φ(x)− x

⟩
exp

{
− 2

σ2
V (x)

}
dx

+
σ2

2

∫
|x|¬3R

(
∆φ(x)− 2n+∆φ∗

(
∇φ(x)

))
exp

{
− 2

σ2
V (x)

}
dx,

where

C ′(R,K) := min

{
σ2

72R2
exp

{
− 2

σ2
S(R)

}
;

K

6

3n − 2n

2n
exp

{
2

σ2

(
I(R)− S(R)

)}}
,

with I(R) := inf |x|¬2R V and S(R) := sup|x|¬3R V .
Moreover,∫
|x|¬3R

⟨
A
(
∇φ(x)

)
−A(x) ; ∇φ(x)− x

⟩
exp

{
− 2

σ2
V (x)

}
dx

 K

3

∫
2R¬|x|¬3R

|∇φ(x)− x|2 exp
{
− 2

σ2
V (x)

}
dx,

so that

C ′′(R,K)
∫
X

|∇φ(x)− x|2 exp
{
− 2

σ2
V (x)

}
dx

¬
∫

|x|¬3R

⟨
A
(
∇φ(x)

)
−A(x) ; ∇φ(x)− x

⟩
exp

{
− 2

σ2
V (x)

}
dx

+
σ2

2

∫
|x|¬3R

(
∆φ(x)− 2n+∆φ∗

(
∇φ(x)

))
exp

{
− 2

σ2
V (x)

}
dx,
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where

C ′′(R,K) := min

{
K

3
;

σ2

72R2
exp

{
− 2

σ2
S(R)

}
;

K

6

3n − 2n

2n
exp

{
2

σ2

(
I(R)− S(R)

)}}
.

Finally, the last two integrands are non-negative maps, so we can bound from
above these last two integrals on the set {|x| ¬ 3R} by the corresponding integrals
on the whole Rn.

S t e p 3. We conclude the proof by adding the estimates in Steps 1 and 2.
Then, we replace V by NΥN . �
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