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STRONG LAW OF LARGE NUMBERS FOR RANDOM VARIABLES
WITH MULTIDIMENSIONAL INDICES

BY

AGNIESZKA M. G D U L A (LUBLIN) AND ANDRZEJ K R A J K A∗ (LUBLIN)

Abstract. Let {Xn, n ∈ V ⊂ N2} be a two-dimensional random field
of independent identically distributed random variables indexed by some
subset V of lattice N2. For some sets V the strong law of large numbers

lim
n→∞,n∈V

∑
k∈V,k¬n

Xk

|n| = µ a.s.

is equivalent to

EX1 = µ and
∑

n∈V
P [|X1| > |n|] <∞.

In this paper we characterize such sets V .
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1. INTRODUCTION

Let {Xn, n = (n1, n2, . . . , nd) ∈ Nd} be a family of independent identically
distributed random variables indexed by Nd-vectors, and let us put

Sn =
∑
k¬n

Xk, n ∈ Nd,

where k ¬ n iff kj ¬ nj , j = 1, 2, . . . , d. In this paper we investigate the almost

sure behavior of the sums Sn when |n| def=
∏d

j=1 nj →∞, i.e., the strong law of
large numbers (SLLN).

∗ Corresponding author.
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In the case of d = 1 the classical Kolmogorov’s SLLN result asserts that

(1.1)
Sn

|n|
→ µ a.s.

is equivalent to

(1.2) EX = µ, E|X| <∞,

where here and in what follows X = X1. The proof of Kolmogorov’s SLLN is
based on the fact that for d = 1 the relation (1.1) is equivalent to

(1.3) ∀ϵ>0 P

[∣∣∣∣Sn

|n|
− µ

∣∣∣∣  ϵ, infinitely often
]
= 0.

This is not the case if d > 1, since (1.1) is weaker than (1.3) even for i.i.d. random
fields. Fortunately, Smythe [8] (Proposition 3.1, p. 913) observed that for i.i.d.
random fields satisfying E|X| <∞ (this is obviously necessary for (1.1) to hold)
relations (1.1) and (1.3) are equivalent. Moreover, Smythe [7] proved that (1.3) is
equivalent to

(1.4) EX = µ, E|X|(log+ |X|)d−1 <∞.

Let us notice that the sufficiency of (1.4) was obtained in a more general setting of
non-commutative ergodic transformations much earlier by Dunford [1] (see also
Zygmund [10]).

It was Gabriel [2] who first observed that if we replace the whole lattice Nd

with a sector V d
θ = {n : θni ¬ nj ¬ θ−1ni, i ̸= j, i, j = 1, 2, . . . , d}, then the

situation is completely analogous to the one-dimensional case, namely E|X| <
+∞ if and only if

lim
V

Sn

|n|
exists a.s.,

and then the limit is, of course, equal to EX. Here limV cn = c0 means that for
every ϵ > 0 we have |cn − c0| < ϵ for all but a finite number of n ∈ V. (We refer
also to [3] for the sectorial Marcinkiewicz–Zygmund laws of large numbers.)

Later, Klesov and Rychlik [6] and Indlekofer and Klesov [4] proved that for a
large class of subsets V ⊂ Nd the SLLN along V, i.e.

(1.5) lim
V

Sn

|n|
= EX a.s.,

is equivalent to

(1.6)
∑
n∈V

P [|X|  |n|] < +∞.
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The relation (1.6) can be written in terms of the Dirichlet divisors. For V ⊂ Nd let
us define

τV (n) = card{k ∈ V : |k| = n}, TV (x) =
∑
k¬x

τV (k).

By the very definition we have
∑
n∈V

P [|X|  |n|] = ETV (|X|),

hence (1.6) can be verified if we are able to determine the asymptotics of TV . For
example, using methods of number theory, one can show that

TNd(x) ∼ nwd−1(log x),

where wk−1 is a polynomial of degree k − 1. This in turn leads to (1.4) as a neces-
sary and sufficient condition for (1.1) and rediscovers a result of Smythe [8].

In fact, the results of [4] and [6] were proved for the case d = 2 only. We
shall describe them briefly. Let us introduce the following classes of nonnegative
functions on N:

F1
def
= {f : f ↗, x ¬ f(x), f(x)/x↗},

G1
def
= {g : g ↗, g(x) ¬ x, g(x)/x↘},

F2
def
= {f : f is nondecreasing, x ¬ f(x)},

G2
def
= {g : g is nondecreasing, g(x) ¬ x}.

By C(Fi, Gi), i = 1, 2, we will denote the class of subsets V ⊂ N2 of the
form

V = V (f, g) = {n = (n1, n2) : g(n1) ¬ n2 ¬ f(n1)},

where f ∈ Fi, g ∈ Gi. Then the main result of [4] states that the class C(F1, G1)
consists of good sets, i.e. such that (1.5) is equivalent to (1.6), while the paper [6]
proves that a larger class C(F2, G2) has this property as well.

The purpose of the present paper is to indicate some other classes of subsets
of N2, which are determined by classes of functions Fj and Gj , exhibiting less
regularity in comparison with C(F2, G2), but still containing C(F2, G2). In the
next section we provide three theorems, each exploiting a different direction, as
Example 2.1 shows:

(i) We smooth out the boundaries from up and down and evaluate the differ-
ence of series (1.6) for these boundaries.

(ii) We introduce the usual order for the boundaries with a finite number of
oscillations.
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(iii) We smooth on the boundaries from the bottom and evaluate the measure
of area between the smoothed and original boundaries.

Throughout the paper, c denotes the generic constants different in different
places, perhaps. All functions in the families F and G considered in this paper al-
ways satisfy additionally f(x)  x, x ∈ R+, and 0 < g(x) ¬ x, x ∈ R+, respec-
tively. We will use the inverse function for not necessarily strictly monotone and
continuous functions putting f−1(y) = inf{x ∈ R+ : f(x− 0) ¬ y ¬ f(x+ 0)}
and f−1(y) = sup{x ∈ R+ : f(x− 0) ¬ y ¬ f(x+ 0)}. Furthermore, for an ar-
bitrary graph Γ =

{(
x, f(x)

)
, x ∈ X

}
, where X ⊂ R, we define the N2 boundary

of Γ by
(1.7)

∂△f =
{
(i, j) ∈ N2 : ∃

(i1,j1),(i2,j2)∈
{(i,j),(i+1,j),(i,j+1),(i+1,j+1)}

f(i1) < j1, f(i2) > j2
}

(obviously, this definition obeys the case when f is a function). In the whole pa-
per we note x∨ y = max{x, y}, x∧ y = min{x, y}, log+ x = max{log x, 0}, and
log x denotes the natural logarithm.

2. MAIN RESULTS

For an arbitrary function f ∈ RR+
+ , we put

f(x) = inf
ux

f(u), f(x) = sup
0¬u¬x

f(u).

It is easy to check that
(i) f(x) is nondecreasing, f(x) is nondecreasing,
(ii) f(x) ¬ f(x) ¬ f(x), x ∈ R+,
(iii) for f(x) nondecreasing or f(x) nonincreasing, f(x) = f(x) = f(x).
Furthermore, for two functions f, g we put

V = V (f, g) = V (f, g),

V = V (f, g) = V (f, g)

(for fixed f, g we will often omit arguments), and for arbitrary families of the
functions F and G let us define

(2.1)
C(F,G) = {V (f, g) : f ∈ F, g ∈ G},
C(F,G) = {V (f, g) : f ∈ F, g ∈ G}.

Moreover, let us define the families of the functions {F3, G3} as follows:

F3 =

{
f :
∞∫
0

log
(
f(x)∨e
f(x)∨1

)
x ∨ 1

dx <∞

}
, G3 =

{
g :
∞∫
0

log
(
g(x)∨e
g(x)∨1

)
x ∨ 1

dx <∞

}
.
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THEOREM 2.1. The class C(F3, G3) consists of good sets.

Let Bf (y) denote the minimal family of connected subsets of the set {(x, y) :
f(x) < y} (minimal means that for every B1 ∈ Bf (y), B2 ∈ Bf (y), B1 ̸= B2,
B1 ∪B2 is disconnected). Let us note that all sets of the family Bf (y) are subsets
[0, y]× {y}. Furthermore, let Kf (y) := card{Bf (y)}. Let us define

F4 = {f : sup
n∈N

Kf (n) <∞}, G4 = {g : sup
n∈N

Kg(n) <∞}.

THEOREM 2.2. The class C(F4, G4) consists of good sets.

Now we consider the families:

F5 =
{
f : ∀x∈N,y∈(f(x),f(x)]∩N

{
⌈y − f(x)⌉ log+

(
x⌈y − f(x)⌉

)
¬ cy

or ⌈f−1(y)− x⌉ log+
(
y⌈f−1(y)− x⌉

)
¬ cx

}}
,

G5 =
{
g : ∀x∈N,y∈[g(x),g(x))∩N

{
⌈g(x)− y⌉ log+

(
x⌈g(x)− y⌉

)
¬ cy

or ⌈x− g−1(y)⌉ log+
(
y⌈x− g−1(y)⌉

)
¬ cx

}}
,

F6 =
{
f : ∀x∈N⌈f(x)− f(x)⌉ log+

(
x⌈f(x)− f(x)⌉

)
¬ cf(x)

}
,

G6 =
{
g : ∀x∈N⌈g(x)− g(x)⌉ log+

(
x⌈g(x)− g(x)⌉

)
¬ cg(x)

}
,

F7 =
{
f : ∀x∈N,y∈(f(x),f(x))∩N⌈f−1(y)− f−1(y)⌉ log+

(
y⌈f−1(y)− f−1(y)⌉

)
¬ cf−1(y)

}
,

G7 =
{
g : ∀x∈N,y∈(g(x),g(x))∩N⌈g−1(y)− g−1(y)⌉ log+

(
y⌈g−1(y)− g−1(y)⌉

)
¬ cg−1(y)

}
.

THEOREM 2.3. The class C(F5, G5) consists of good sets.

It is obvious that if F ⊂ F ′, G ⊂ G′, and the class C(F ′, G′) consists of good
sets, then the class C(F,G) consists also of good sets.

REMARK 2.1. The following inclusions are true:

F6 ∪ F7 ⊂ F5, G6 ∪G7 ⊂ G5.

Because for f nondecreasing and g nondecreasing we have f = f = f , g =
g = g and Kf (y) = 1, Kg(y) = 1, we get

COROLLARY 2.1. The following inclusions are true:

F1 ⊂ F2 ⊂ Fi and G1 ⊂ G2 ⊂ Gi for i = 3, 4, 5, 6, 7.

Therefore, all our Theorems 2.1–2.3 generalize the main results of [4] and [6].
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EXAMPLE 2.1. We will consider the class of functions

(2.2) f(x) = u(x) + g(x)
∣∣cos (h(x)π)∣∣

for nondecreasing positive functions g and u, with u(x)  x, and an arbitrary func-
tion h. Notice that we always have f(x) = u(x) + g(x) and f(x) = u(x).

(i) If u(x) = 2x(log+ x)2, g(x) = 2x, h(x) = 2x(log x)2, x ∈ R, then the
assumptions of Theorem 2.1 are satisfied, but those of Theorems 2.2 and 2.3 fail.

(ii) If u(x) = x, g(x) = x, h(x) = (x − 2k)/2k−1, x ∈ R, k = ⌈log2 x⌉,
then the assumptions of Theorem 2.2 hold, but those of Theorems 2.1 and 2.3 fail.

(iii) If u(x) = x, g(x) = x/ log x, h(x) = 2x, x ∈ R, then the assumptions
of Theorem 2.3 are satisfied, but those of Theorems 2.1 and 2.2 fail.

3. PROOFS

P r o o f o f T h e o r e m 2.1. From Theorem 1 in [4] we infer that for arbi-
trary families of the functions F,G the conditions for both the classes C(F,G) and
C(F,G) to consist of good sets are satisfied, i.e.

(i)
( ∑
n∈V

P [|X|  |n|] <∞ and EX = µ
)
⇔ lim

V

Sn

|n|
= µ,

and

(ii)
( ∑
n∈V

P [|X|  |n|] <∞ and EX = µ
)
⇔ lim

V

Sn

|n|
= µ.

If additionally we show that, for every fixed f ∈ F3, g ∈ G3,

(3.1)
∑

n∈V \V
P [|X|  |n|] <∞,

then the assertion follows from the chain of implications

( ∑
n∈V

P [|X||n|]<∞ and EX=µ
) (3.1)⇒

( ∑
n∈V

P [|X|  |n|] <∞ and EX = µ
)

(i)⇒
(
lim
V

Sn

|n|
= µ

)
⇒

(
lim
V

Sn

|n|
= µ

)
⇒

(
lim
V

Sn

|n|
= µ

)
(ii)⇒

( ∑
n∈V

P [|X||n|]<∞ and EX=µ
) (3.1)⇒

( ∑
n∈V

P [|X||n|]<∞ and EX=µ
)
,

so that it is enough to prove (3.1). From the above considerations we may and do
assume that EX = µ, i.e. E|X| <∞.
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Because for each nonincreasing function h and nondecreasing t we have

∞∑
n=1

h(n) ¬
∞∫
0

h(x) ∧ h(1)dx,
∑

n∈∂△t

P [|X|  |n|] ¬ E
√
|X|

(for the last inequality see the proof of Lemma 2 in [4]), and

∑
n∈V \V

P [|X|  |n|] ¬
∑

n∈V \V

E|X|
|n|

,

we obtain

∑
n∈V \V

P [|X|  |n|] ¬ E|X|
∫∫

{x∈R2:f(x1)¬x2¬f(x1)}

1

(x1 ∨ 1)(x2 ∨ 1)
dx1dx2

+ E|X|
∫∫

{x∈R2:g(x1)¬x2¬g(x1)}

1

(x1 ∨ 1)(x2 ∨ 1)
dx1dx2

+
∑

n∈∂△f

P [|X|  |n|] +
∑

n∈∂△
f

P [|X|  |n|]

+
∑

n∈∂△g

P [|X|  |n|] +
∑

n∈∂△g

P [|X|  |n|]

¬ E|X|I1 + E|X|I2 + 4E
√
|X|, say.

Now we show how to evaluate I1.
First we remark that because for 0 ¬ a ¬ b <∞ we have

b∫
a

1

x ∨ 1
dx =


log(b/a) if 1 ¬ a ¬ b,

log(b) + (1− a) if a < 1 ¬ b,

b− a if a ¬ b ¬ 1,

and for a < 1 we get log b∨e
a∨1  1, the following inequality holds true:

b∫
a

1

x ∨ 1
dx ¬ 2 log

b ∨ e
a ∨ 1

.

Therefore,

I1 ¬
∞∫
0

f(x1)∫
f(x1)

1

x2 ∨ 1
dx2

1

x1 ∨ 1
dx1 ¬ 2

∞∫
0

log
(
f(x)∨e
f(x)∨1

)
x ∨ 1

dx <∞,

and similarly for I2 <∞. �
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For the proof of Theorem 2.2 let us notice that the functions f and g from the
families F4 and G4, respectively, can be discontinuous. If, e.g., f(x0 − 0) = y0 <
y1 = f(x0 + 0), then we “complete” the definition putting f(x0) = [y0, y1] (the
whole interval [y0, y1]). Obviously, at this moment Γ =

{(
x, f(x)

)
, x ∈ R

}
is not

a function, but a continuous graph, and f is a relation. However, we will write later
“function f”, so that it does not cause misunderstanding. We say that the piecewise
continuous graph

{(
x, f(x)

)
, x ∈ X

}
for X ⊂ R satisfies the condition G iff

CONDITION G. If
{(

x, f(x)
)
, x ∈ (x0, x1)

}
and

{(
x, f(x)

)
, x ∈ (x2, x3)

}
are two pieces where the graph is continuous and x1 ¬ x2, then f(x0) ¬ f(x3).

For such graphs we have

PROPOSITION 3.1. Let
{(

x, f(x)
)
, x ∈ X

}
, where X ⊂ R, be a piecewise

nonincreasing graph satisfying the condition G. Then

(3.2)
∑

(i,j)∈∂△f

P [|X| > ij] ¬ 4E|X|.

P r o o f o f P r o p o s i t i o n 3.1. By Q(i, j) we denote the square {(x, y) ∈
R2 : i < x ¬ i+ 1, j ¬ y < j + 1}.

Let us consider one piece of the graph Γ =
{(

x, f(x)
)
, x ∈ (x0, x1)

}
on

which the graph is continuous (and it is not continuous or even does not exist
at x1).

The boundary of this piece of the graph can be expressed as a subset P1 (may
be empty) of the path P = [(i, j), . . . , (i + k, j − l)] for some positive integers
i, j, k, l, where if (i1, j1) and (i2, j2) are subsequent points, then (i2, j2) is equal to
(i1 + 1, j1) or (i1, j1 − 1), or (i1 + 1, j1 − 1) according to the way the graph Γ
“goes out” from Q(i1, j1) and “enters” Q(i2, j2). If the graph Γ does not “enter”
the interior Q(i2, j2), then (i2, j2) ̸∈ P1, but obviously (i2, j2) ∈ P .

For such paths P and P1 we construct a function H defined on△f and taking
values in {(x, 1) : x ∈ N} ∪ {(1, y) : y ∈ N} as follows:

H
(
(i1, j1)

)
= (i1, 1),

H
(
(ik, jk)

)
=

{
(ik, 1) if ik > ik−1,

(1, jk) if ik = ik−1.

On the piece (x0, x1) we have

H(△f |x∈(x0,x1)
)⊂{(i, 1), (i+1, 1), . . . , (i+k, 1), (1, j), (1, j−1), . . . , (1, j−l)},

and H is the injective function (in this area), where f |x∈(x0,x1) denotes the restric-
tion of the function f to the interval (x0, x1). Obviously, because for every point
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(i, j) ∈ (N\{0})2 we have ij > max{i, j}, it follows that

(3.3)
∑

(i,j)∈△f |x∈(x0,x1)

P [|X| > ij] ¬
∑

(i,j)∈H(△f |x∈(x0,x1)
)

P [|X| > ij].

It may happen then that one continuous piece of the graph Γ has a path of
boundaries [(i, j), . . . , (i + k, j − l)], whereas the next continuous piece of the
graph contains a point (i+ k, j), and in this case the projection H may transform
(i+ k, j) into the existing point (i+ k, 1) or (1, j); consequently,
(3.4)∑

(i,j)∈∂f
P [|X| > ij] ¬ 2

∑
(i,j)∈H(∂f )

P [|X| > ij] ¬ 4
∞∑
i=1

P [|X| > i] = 4E|X|,

which completes the proof. �

P r o o f o f T h e o r e m 2.2. Without loss of generality we assume EX=0.
We consider only the sector {(m,n) ∈ R2 : m ¬ n} and the family of functions
F4 since in the case G4 the proof runs similarly. For the function f : R→ R, such
that f(x) > x and every y ∈ R, we define the partition of the interval [0, y] =
Bf (y) + Af (y) by Bf (y) = {(x, y) : f(x) < y}, Af (y) = {(x, y) : f(x)  y},
and

Bf (y) = ([0, x1)× {y}) ∪
(
(x2, x3)× {y}

)
∪ . . . ∪

(
(xKf (y)−1, xKf (y))× {y}

)
=

Kf (y)∪
k=1

Bk(f, n),

Af (y) = ([x1, x2]× {y}) ∪ ([x3, x4]× {y}) ∪ . . . ∪ ([xKf (y), y]× {y})

=
Kf (y)∪
k=1

Ak(f, y), 0 < x1 < x2 < x3 < . . . < xKf (y) < y,

for some finite (the definition of the family F4) integers Kf (y) ∈ N. We put K =
sup{Kf (y) : y ∈ R}. For each y we complete the families B(f, y) = {Bk(f, y),
1 ¬ k ¬ Kf (y)} putting Bk(f, y) = ∅ for k = Kf (y) + 1,Kf (y) + 2, . . . ,K.
Immediately, from the definition of this family we have the property

∀y1<y2∀1¬i¬K∃1¬j¬kBi(f, y1) ⊂ Bj(f, y2).

Thus, on the base of the family B(f, y) we define the family

Γk(y) =
k∪

i=1

∪
1¬t¬y

∪
j:Bj(f,t)⊂Bi(f,y),1¬j¬K

Bj(f, t), 1 ¬ k ¬ K.
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Furthermore, for every 1 ¬ k ¬ K we put

A(k) =
∪
y∈R

Ak(f, y), k = 1, 2, 3, . . . ,K.

We explain the introduced families in Figure 1.

-

6
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e
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d b

A(1)

A(2)

A(1)
A(2)

A(3)

B
B
BBM

c

A(1)

Γ1(y)

Γ2(y)

Γ2(y)
y

Figure 1. The partition of the graph on the areas A(i), 1 ¬ i ¬ K

It is easy to check that Lemma 1 and the proof of Theorem 1 in [4] hold for the
sequences {nk, k ∈ N} ⊂ A(k) and the increasing sequences of sums of random
variables

Yn(k) =
∑

m∈Γk(n2)∩N2

Xm =
∑

m∈[1,n1]×[1,n2]∩B
Xm, n ∈ A(k),

iff only A(k) is not bounded for k = 1, 2, 3, . . . ,K. Some comments are required
about the fulfilling of Lemma 2 in [4] for the boundaries of our sets A(k). The
boundary of such sets can be divided by at most K graphs Ξi, 1 ¬ i ¬ K, piece-
wise continuous and increasing (in Figure 1 we mark three such graphs: a, b and
c, respectively) and at most K graphs Υi, 1 ¬ i ¬ K, piecewise continuous and
decreasing (in Figure 1 we mark two such graphs: d and e, respectively). For
each graph from the family Ξi, 1 ¬ i ¬ K, we intermediately use Lemma 2 of [4],
whereas for the graphs from the family Υi, 1¬ i¬K, we use our Proposition 3.1.

Thus, using the notation of [4],

lim
n∈A(k)

Yn(k)

|[1, n1]× [1, n2] ∩B|
= 0, k = 1, 2, 3, . . . ,K,
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and because each subsequence N = {ni ∈ A, i ∈ N} can be divided into K sub-
sequences N ∩A(k), the assertion holds. �

Note that in the above proof we use only the definitions of {Ai(f, y), Bi(f, y),
Γi(y)} for integer y’s. Therefore, we restrict ourselves in the definitions of F4 and
G4, and Kf (y) and Kg(y) for integer y’s, only.

P r o o f o f T h e o r e m 2.3. We show that if

(3.5) lim
V

Sn

n
= EX,

then

(3.6) lim
V

Sn

n
= EX.

Obviously, (3.5) follows from Theorem 1 in [4]. Then we have E|X| <∞. Fur-
thermore, we define four functions:

M1 :

{
V −→ V ,

M1

(
(k1, k2)

)
=

(
k1, ⌊f(k1)⌋

)
,

M2 :

{
V −→ V ,

M2

(
(k1, k2)

)
=

(
⌈f−1(k2)⌉, k2

)
,

M3 :

{
V −→ V ,

M3

(
(k1, k2)

)
=

(
k1, ⌈g(k1)⌉

)
,

M4 :

{
V −→ V ,

M4

(
(k1, k2)

)
=

(
⌊g−1(k2)⌋, k2

)
.

Obviously, as Mi(k1, k2) ∈ V , i = 1, 2, 3, 4, from (3.5) we have

(3.7) lim
|n|→∞,n∈V

SMi(n)

|Mi(n)|
= EX, i = 1, 2, 3, 4.

Let the sequence {nk = (n1,k, n2,k), k ∈ N} ⊂ V \V be such that |nk| → ∞,
and let

{nk, k ∈ N} =
4∪

i=1

{n(i)
k = (n

(i)
1,k, n

(i)
2,k), k ∈ N}

be four subsequences such that

⌈f(n(1)
1,k)− f(n

(1)
1,k)⌉ log+

(
n
(1)
1,k⌈f(n

(1)
1,k)− f(n

(1)
1,k)⌉

)
¬ cf(n

(1)
1,k),

⌈f−1(n(2)
2,k)− f−1(n

(2)
2,k)⌉ log+

(
n
(2)
2,k⌈f

−1(n
(2)
2,k)− f−1(n

(2)
2,k)⌉

)
¬ cf−1(n

(2)
2,k),

⌈g(n(3)
1,k)− g(n

(3)
1,k)⌉ log+

(
n
(3)
1,k⌈g(n

(3)
1,k)− g(n

(3)
1,k)⌉

)
¬ cg(n

(3)
1,k),

⌈g−1(n(4)
2,k)− g−1(n

(4)
2,k)⌉ log+

(
n
(4)
2,k⌈g

−1(n
(4)
2,k)− g−1(n

(4)
2,k)⌉

)
¬ cg−1(n

(4)
2,k).
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At least one of the above-defined subsequences is infinite (we denote the set of
such subsequences by I).

Let us remark that for x > y > 0 we have ⌊x⌋ − ⌊y⌋ ¬ ⌈x − y⌉. Indeed, if
x− y is an integer, then ⌊x⌋ − ⌊y⌋ = x− y = ⌈x− y⌉. On the other hand, since
for arbitrary z ∈ (0, 2) we have ⌊z⌋ ¬ 1, it follows that

⌊x⌋ − ⌊y⌋ =
⌊
x− ⌊y⌋

⌋
= ⌊x− y + {y}⌋

=
⌊
⌊x− y⌋+ {x− y}+ {y}

⌋
= ⌊x− y⌋+ ⌊{x− y}+ {y}⌋

¬ ⌊x− y⌋+ 1 = ⌈x− y⌉.

Therefore, the subsequences defined as above satisfy

(3.8)

lim sup
k→∞

(
|n(i)

k | − |Mi(n
(i)
k )|

)(
log+

(
|n(i)

k | − |Mi(n
(i)
k )|

)
∨ 1

)
|n(i)

k |
< c <∞, i ∈ I,

and, in consequence, because limV \V log+
(
|n(i)

k | − |Mi(n
(i)
k )|

)
= +∞ or |n(i)

k | =
|Mi(n

(i)
k )|, k ∈ N, we obtain

(3.9) lim sup
k→∞

|Mi(n
(i)
k )|

|n(i)
k |

= 1, i ∈ I.

On the other hand, let us remark that

Sn − SMi(n)
D∼ Sn−Mi(n),

and from Theorem 1 in [5] we have

lim
k→∞

S
n
(i)
k

− ES
n
(i)
k

− S
Mi(n

(i)
k )

+ ES
Mi(n

(i)
k )(

|n(i)
k | − |Mi(n

(i)
k )|

)(
log+

(
|n(i)

k | − |Mi(n
(i)
k )|

)
∨ 1

) = 0, i ∈ I.

Because for i ∈ I

(3.10) lim
k→∞

−ES
n
(i)
k

+ ES
Mi(n

(i)
k )(

|n(i)
k |−|Mi(n

(i)
k )|

)(
log+

(
|n(i)

k | − |Mi(n
(i)
k )|

)
∨ 1

)
= lim

k→∞

−EX

log+
(
|n(i)

k | − |Mi(n
(i)
k )|

)
∨ 1

= 0,
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and

lim
k→∞

S
n
(i)
k

|n(i)
k |

=

lim
k→∞

{
S
Mi(n

(i)
k )

|Mi(n
(i)
k )|
|Mi(n

(i)
k )|

|n(i)
k |

+
S
n
(i)
k

− S
Mi(n

(i)
k )(

|n(i)
k |−|Mi(n

(i)
k )|

)(
log+

(
|n(i)

k |−|Mi(n
(i)
k )|

)
∨1

)

×
(
|n(i)

k | − |Mi(n
(i)
k )|

)(
log+

(
|n(i)

k | − |Mi(n
(i)
k )|

)
∨ 1

)
|n(i)

k |

}
= EX · 1 + 0 · c = EX, i ∈ I,

and, in consequence,

(3.11) lim
k→∞

Snk

|nk|
= EX,

the proof is completed. �

P r o o f o f E x a m p l e 2.1. In all the three cases we have

∞∫
0

log
(
f(x)∨e
f(x)∨1

)
x ∨ 1

dx =
∞∫
0

log
(
(u(x)+g(x))∨e

u(x)∨1

)
x ∨ 1

dx,

⌈f(x)− f(x)⌉ log+
(
x⌈f(x)− f(x)⌉

)
=

⌈
g(x)

∣∣cos (h(x)π)∣∣⌉ log+ (
x
⌈
g(x)

∣∣cos (h(x)π)∣∣⌉).
In the case (i), because log(1 + x) ¬ x, we have

∞∫
1

log
(
1 + 1/(log x)2

)
x

dx ¬
∞∫
1

1

x(log x)2
dx <∞.

Let us define the sequence {xn, n  1} divergent to infinity, so that, for i  1,
2xi(log xi)

2 ∈ N (it is possible as the function 2x(log x)2 is continuously increas-
ing to infinity for x > 1). Then for every constant c there exists i0 such that, for
every i > i0,

⌈
2xi

∣∣cos (2xi(log xi)
2π

)∣∣⌉ log+ (
xi
⌈
2xi

∣∣cos (2xi(log xi)
2π

)∣∣⌉)
= 2xi log xi + xi2

xi log 2  c
(
2xi(log xi)

2 + 2xi
)
;
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thus the assumptions of Theorem 2.1 are satisfied, whereas the assumptions of The-
orem 2.3 fail. Let us remark that, for arbitrary x ∈ N in the interval (x, y), the func-
tion f has at least 2y(log y)2 − 2x(log x)2 − 2 oscillations, where 2y(log y)2 =
2x[(log x)2 + 1]. Therefore, for y > e,

Kf (y)  2y(log y)2 − 2x(log x)2 − 2  2x − 2,

and Kf (y)→∞ as y →∞, so that the assumptions of Theorem 2.2 fail.
In the case (ii) we have

∞∫
1

log(2)

x
dx =∞.

Furthermore, it is easy to check that
∣∣cos (h(x)π)∣∣ is equal to one only for x = 2k

or x = 3 · 2k−1 and it is equal to zero only for x = 5 · 2k−2 and x = 7 · 2k−2 for
k ∈ N. Thus, in the interval x ∈ [2k, 2k+1) the function f has two local minima at
x = 5 · 2k−2 and x = 7 · 2k−2 equal to 5 · 2k−2 and 7 · 2k−2, respectively, and two
local maxima at x = 2k and x = 3 · 2k−1 equal to 2k+1 and 3 · 2k, respectively,
so that for every x ∈ R we have Kf (x) ¬ 4, and the assumptions of Theorem 2.2
are fulfilled. Taking x = k ∈ N, we see that for every constant c there exists a
sufficiently large k ∈ N such that

⌈k|cos(kπ)|⌉ log+
(
k⌈k|cos(kπ)|⌉

)
= 2k log k > ck;

thus the assumptions of Theorem 2.3 fail.
In the case (iii) we have

∞∫
1

log(1 + 1/ log x)

x
dx =∞,

so that the assumptions of Theorem 2.1 fail. Failure of the assumptions of Theo-
rem 2.2 follows from analogous considerations to those for the point (i). From

x

log x
|cos(2xπ)| log

(
x2

log x
|cos(2xπ)|

)
¬ x

log x
log x2

= 2x ¬ 2

(
x+

x

log x
|cos(2xπ)|

)
we see that the assumptions of Theorem 2.3 are satisfied with c = 2. �
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