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Abstract. In this paper, we analyse a single server polling model with
two queues. Customers arrive at the two queues according to two indepen-
dent Poisson processes. There is a single server that serves both queues with
generally distributed service times. The server spends an exponentially dis-
tributed amount of time in each queue. After the completion of this residing
time, the server instantaneously switches to the other queue, i.e., there is no
switch-over time. For this polling model we derive the steady-state marginal
workload distribution, as well as heavy traffic and heavy tail asymptotic re-
sults. Furthermore, we also calculate the joint queue length distribution for
the special case of exponentially distributed service times using singular
perturbation analysis.
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1. INTRODUCTION

In this paper, we are interested in the performance analysis of a single server
polling model with a special service discipline (i.e., the criterion which determines
how many customers are served during a visit of the server to a queue). A typical
polling model consists of multiple queues, attended by a single server who visits
the queues in some order to render service to the customers waiting at the queues.
Moving from one queue to another, the server incurs a (possibly zero) switch-
over time. Once the server is at one of the queues, the server serves the customers
of that queue based on a service discipline and according to some service time
distribution.
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Polling models were initially introduced in the 1950’s but mostly gained their
popularity during the 1990’s. This popularity rise was due to the wide range of ap-
plicability of polling models, especially for the modelling of computer-communica-
tion systems and protocols, traffic signal management, and manufacturing; see,
e.g., [42], [43], [46] for a series of comprehensive surveys, and [8], [33], [41] for
extensive overviews of the applicability of polling systems.

The performance analysis of polling models has received considerable atten-
tion, see, e.g., [40]. In particular, in the polling literature much attention has been
given to determining the probability generating function (PGF) of the joint queue
length distribution under stationarity and at various epochs. A wide range of service
disciplines has been considered, including exhaustive service (per visit to a queue,
the server continues to serve all customers until it empties) and gated service (per
visit to a queue, the server serves only those customers which are already present
at the start of the visit). In [37], Resing shows that the joint queue length PGF
of polling models in which the service discipline satisfies the so-called branching
property equals the (known) PGF of a multi-type branching process with immigra-
tion. Service disciplines which satisfy the branching property include the exhaus-
tive and gated disciplines. Polling systems with disciplines which do not satisfy
the branching property usually defy an exact analysis. In our paper, we assume
that the server spends an exponentially distributed amount of time at each queue.
Upon the completion of this residing time at each queue, the server instantaneously
switches to another queue according to a cyclic order. Such a service protocol does
not exhibit the branching property, which complicates the analysis significantly.
We concentrate on the two-queue model and, whenever possible, suggest exten-
sions to the multi-queue model. A similar service discipline has been considered
in [23], [1], [48], [21], and the references therein.

Related literature. In [23], Eliazar and Yechiali consider a multi-queue polling
system under the randomly timed gated (RTG) service discipline. The RTG disci-
pline operates as follows: whenever the server enters a station, a timer is activated.
If the server empties the queue before the timer’s expiration, the server moves on
to the next queue. Otherwise (i.e., if there is still work in the station when the
timer expires), the server obeys one of the following rules, each leading to a dif-
ferent model: (1) The server completes all the work accumulated up to the timer’s
expiration and then moves on to the next node. (2) The server completes only
the service of the job currently being served, and moves on. (3) The server stops
working immediately and moves on. The model suggested in this manuscript bears
resemblance to rule (3), however, in our case, if a queue becomes empty, the server
does not switch, and only does so when the timer expires. Eliazar and Yechiali,
in [23], produce a recursive expression for the PGF of the number of customers
in the queues of the polling model, while the case of two queues is sketched in
[16] by a transformation to a boundary value problem. In [30], Katayama, using a
level-crossing approach, obtains the Laplace–Stieltjes transforms (LSTs) and the
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moment formulas for the waiting times and the sojourn times, and based on these
expressions, he also proves a decomposition property.

In [1], the authors consider a polling model with Poisson batch arrivals and
phase-type service times, and an exponential service timer. The authors establish a
relation for the PGF of the number of customers in the queue at the beginning and
at the end of the server’s visit to a queue. This is used as an input for a numerical
scheme that is used to approximate the joint queue length distribution at the server
departure instants from the queues.

In [48], Xie et al. consider a single server multi-queue system, in which the
server visits the individual queues for a fixed amount of time in a deterministic,
cyclic order. They refer to the fixed residing time as the orientation time. They ar-
gue that such a service discipline comes with two operational advantages: it enables
us to (i) keep the frequency of switching at a predetermined level (thus controlling
the total cost, if there is a switching cost), (ii) balance the time that the server
spends in each queue (since, contrary to exhaustive or gated service disciplines,
this discipline does not depend on the number of customers present in the various
queues).

In [21], the authors assume a random visit (residing) time for each queue,
which is independent of the number of customers present at each queue, and a
preemptive-repeat with resampling service strategy. This autonomous service dis-
cipline is motivated from wireless ad hoc networks with movable communication
hops. Another application is in single upstream tree-based ethernet passive opti-
cal networks, in which the central optical line terminal dedicates the channel to
a specific user (e.g., the user with the highest priority) for a random amount of
time, see [31] and the references therein. For more applications on this type of au-
tonomous service disciplines, the interested reader is referred to [2]. For all afore-
mentioned applications, we consider it natural to assume that the service strategy
is preemptive-resume and that the switch-over time is negligible in comparison to
the service time and the residing time.

Paper originality. In this paper, we initially devote attention to the individual
queues. When focusing on a single queue, the model can be interpreted as a ser-
vice system with vacations: we interpret the time that the server visits the other
queue as a vacation period. Vacation queues – and priority queues for which the
mathematical analysis is similar – are well studied in the queueing literature start-
ing with the work of White and Christie [47] (exponentially distributed service
times and vacations), Gaver [28], Thiruvengadam [45] and Avi-Itzhak and Naor [5]
(the latter three assuming generally distributed service times and vacations). All
these works assume that the service periods have an exponential distribution, but
vary for example in the assumptions regarding whether interrupted services are re-
sumed or repeated and in the metrics of interest. Takagi [42] provides an excellent
overview of vacation and priority systems. The interested reader is also referred
to Federgruen and Green [25] for phase-type distributed service periods, to Takine
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and Sengupta [44] for Markovian arrival processes, and to Fiems et al. [26] for a
more recent publication with various sorts of service disruptions. For a more ex-
tensive overview of the literature, we refer to the recent survey of Krishnamoorthy
et al. [32].

A particular feature of a large class of vacation queues is that the stationary
workload and queue length distributions obey a stochastic decomposition property,
as first observed by Gaver [28] and Miller [35]. Fuhrmann and Cooper [27] give
conditions for such a queue length decomposition to hold. Our model does not sat-
isfy these conditions, but we show that it does allow a stochastic decomposition
of the stationary workload. It is notable that the workload can be decomposed into
two independent terms: the amount of work of an M /G/1 queue, and the amount
of work when the server is not serving the first queue, due to either an idle period
or due to a visit at the second queue. The second term in the decomposition is at
first sight surprising, as one would typically expect that the decomposition is iden-
tical with that of the standard M /G/1 queue with exhaustive service and multiple
vacations, as is the case for the RTG, see [30], Remarks 2 and 4. In that respect, the
exact analysis of the marginal workload distribution was quite helpful to us. The
use of the decomposition property further facilitates our heavy traffic and heavy
tail analyses, as we can use known results for the M /G/1 queue and restrict our
attention to the second term appearing in the stochastic decomposition.

In this paper, we also devote attention to the joint workload distribution.
Using probabilistic arguments as in the analysis of the marginal workload, we show
that the joint LST of the workloads at the queues satisfies a functional equation
(6.4) below, which is, in the case of identical queues, then reduced to a Dirichlet
boundary value problem. Thus, one can numerically evaluate the mapping from
the contour defined by the kernel of the functional equation to the unit circle, and
obtain a solution to the joint distribution. However, we have to note that, depend-
ing on the service time distribution, the kernel of the functional equation does not
have the typical (quadratic) polynomial form, which complicates tremendously the
analysis and differentiates it from the known results of the literature, see, e.g., [19],
[16], [24]. In the case of exponentially distributed service times, we propose per-
turbation analysis for the calculation of the joint queue length distribution, as a
methodological alternative to the boundary value problem approach. By appropri-
ately scaling the arrival and service rates by a factor ε, the invariant probability
measure of the perturbed Markov chain is written as a power series expression in
terms of ε, whose coefficients form a geometric sequence, that can be used for both
exact and numerical calculations. Furthermore, we show that there exists a com-
putationally stable updating formula for the calculation of the perturbed invariant
measure. To approximate the joint distribution numerically, one needs to solve a
large system of equations, for which we indicate two possible approaches, but we
do not pursue these in this paper.

Paper overview. The paper is organized as follows. In Section 2, we describe
the two-dimensional polling model under consideration. In Section 3, we present
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the LSTs of the model’s marginal workload distributions in steady state at an ar-
bitrary epoch. In Section 4, we show that a single queue’s marginal workload sat-
isfies a decomposition property, and then, by using the decomposition property in
the light-tailed case, we obtain the heavy traffic limit of the marginal workload dis-
tributions in steady state. In Section 5, we discuss the heavy tail asymptotics of the
marginal workload distributions in steady state, and in that case we also discuss
the heavy traffic behavior. We then discuss, in Section 6, open problems arising
in the calculation of the joint workload distribution. Assuming exponentially dis-
tributed service times, we calculate in Section 7 the joint queue length distribution
in steady state at an arbitrary epoch using singular perturbation analysis. Several
possible future research directions are discussed in Section 8.

2. MODEL DESCRIPTION AND NOTATION

In this paper, we consider a two-queue polling model. Customers arrive at
queue i according to a Poisson process at rate λi, i = 1, 2. There is a single server
that serves both queues according to the first come, first served (FCFS) discipline.
The service times of customers in queue i are independent and identically generally
distributed positive random variables, say Bi, i = 1, 2. We denote the LST of the
service time Bi by b̃i(s) = E(e−sBi), with Re s  0, i = 1, 2.

A special feature of the polling model under consideration is that the server
spends an exponentially distributed amount of time at queue i with rate ci, i =
1, 2. Upon completion of the residing time at queue i, the server instantaneously
switches to the other queue, i.e., there is no switch-over time. Furthermore, if upon
completion of the residing time, the server is providing service to a customer, this
service is interrupted and resumed at the next visit of the server to the queue. More
explicitly, we assume that if a server resumes the service after being interrupted,
the server continues from where the service stopped instead of starting from the
beginning, i.e., the service is preemptive-resume. We denote the LST of the residing
time Ti of the server in queue i by f̃Ti(s) = E(e−sTi), with Re s  0, i = 1, 2, with
Ti exponentially distributed with rate ci and probability density function fTi(t) =
cie
−cit, t  0, i = 1, 2.

Stability condition. For the two-queue polling model under consideration the
stability condition (sufficient and necessary) is

(2.1) ρ1 <
c2

c1 + c2
and ρ2 <

c1
c1 + c2

,

with ρi = λi E(Bi), i = 1, 2.
The stability condition can be proven by appropriately adapting and extend-

ing the proof of Altman et al. in [4]. To this purpose, one would need to calculate
the expected increase of the workload during a cycle (i.e., the time between two
successive arrivals of the server at the first queue) and use an extension of Foster’s
criterion known as the positivity/regularity criterion (V2), cf. [34]. The derivations
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of the expected increase of the workload during a cycle are similar to the analysis
performed for the proof of Theorem 3.1 below. This guarantees that the stabil-
ity condition is sufficient. In order to show that it is also necessary, one may use
the expression for the expectation of the steady-state workload of each queue, cf.
equation (4.3).

REMARK 2.1. Equivalently, one can prove the stability condition by adapting
the steps presented in [15]. More concretely, the two-queue polling system under
consideration is said to be stable if the workloads at each queue, at the polling
instants (i.e., the instant when the server arrives at a queue), have a proper limiting
distribution, and the mean cycle time is finite, as time tends to infinity. By definition,
the latter always holds, as the cycle time for the polling model under consideration
is given by the sum of the two exponentially distributed residing times at the two
queues. Following an argumentation as in [15], one would need to ensure that,
under the above stability condition, each queue is stable. Note that each queue in
isolation behaves like an M/G/1 queue with a service speed governed by a two-
state Markov chain. The stability condition (in the sense that the workload has a
proper limiting distribution) of such a queueing system is studied in [6].

REMARK 2.2. Intuitively, the stability condition for the first queue can be
interpreted as follows: the long-run proportion of time the server spends in the first
queue is equal to c2/(c1 + c2), thus the long-run rate of service in the first queue
is c2/[(c1 + c2)E(B1)]. Hence, for the first queue to be stable it is needed that the
arrival rate is strictly smaller than the long-run rate of service, which corresponds
to the left-hand side of (2.1). The stability condition for the second queue can be
interpreted in an analogous manner.

3. MARGINAL WORKLOAD ANALYSIS

In this section, we derive the distribution of the marginal workload in steady
state at an arbitrary epoch. As discussed in the introductory section, the individual
queues behave as vacation systems: from the perspective of one queue, the server
is on vacation when it resides at the other queue. In this section, we give a direct
derivation of the stationary marginal workload distributions.

We let Vi(t) denote the workload at time t, t  0, of queue i, i = 1, 2, and Vi

denote the steady-state workload of queue i at an arbitrary epoch, i = 1, 2.

THEOREM 3.1. The LST of the workload of the first queue in steady state
under the stability condition (2.1) is given by
(3.1)

E(e−sV1) =
s [λ1E(B1) (c1 + c2)− c2]

[
c1 + c2 + λ1

(
1− b̃1(s)

)][(
c2 + λ1

(
1− b̃1(s)

))(
c1 + λ1

(
1− b̃1(s)

)
− s
)
− c1c2

]
(c1 + c2)

.

A symmetric formula holds for the LST of V2 under the stability condition (2.1).
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P r o o f. The derivation of the LST of the steady-state workload for the first
queue is performed by considering the renewal process at the instances the server
arrives at the first queue, i.e., the inter-renewal times are identical in distribution to
T1 + T2, with Ti ∼ Exp(ci), i = 1, 2.

To structure the exposition, the proof of the theorem is split into five steps.
A key point is the derivation of E(e−sV1(T1+T2)); this is achieved in Step 4, af-
ter we derive E

(
e−sV1(T1+T2)|V1(T1) = y

)
in Step 1, E

(
e−sV1(T1)|V1(0) = v

)
in

Step 2, and subsequently E
(
e−sV1(T1+T2)|V1(0) = v

)
in Step 3. Finally, in Step 5,

we calculate E(e−sV1) using the PASTA property and the result of Step 4.

S t e p 1. Calculation of E
(
e−sV1(T1+T2)|V1(T1) = y

)
.

During (T1, T1 + T2] the server serves only customers in the second queue, so
the workload in the first queue only increases by the sum of the service times of all
the customers that arrived within this interval. The increments occur according to
a compound Poisson process. So,

E
(
e−sV1(T1+T2)|V1(T1) = y

)
= e−syf̃T2

(
λ1

(
1− b̃1(s)

))
= e−sy

c2

c2 + λ1

(
1− b̃1(s)

) .
(3.2)

S t e p 2. Calculation of E
(
e−sV1(T1)|V1(0) = v

)
.

Note that
(3.3)

E
(
e−sV1(T1)|V1(0) = v

)
=
∞∫
t=0

c1e
−c1t

∞∫
σ=0

e−sσdP
(
V1(t) < σ|V1(0) = v

)
dt.

In order to calculate the right-hand side of (3.3), we use [18], p. 262, equation (4.99),

∞∫
σ=0

e−sσdP
(
V1(t) < σ|V1(0) = v

)
= es(t−v)−tλ1(1−b̃1(s))

− sU1(t− v)
t−v∫
u=0

e(s−λ1(1−b̃1(s)))(t−u−v)P
(
V1(u+ v) = 0|V1(0) = v

)
du,

with Re s  0, t  0, and U1(x) = 0 if x < 0, and U1(x) = 1 otherwise. Hence,
equation (3.3) in light of [18], p. 262, equation (4.99), yields

(3.4) E
(
e−sV1(T1)|V1(0) = v

)
=

c1e
−sv

c1 + λ1

(
1− b̃1(s)

)
− s

−
∞∫
t=v

sc1e
−c1t

t−v∫
u=0

e(s−λ1(1−b̃1(s)))(t−u−v)P
(
V1(u+ v) = 0|V1(0) = v

)
dudt.
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For the calculation of the integrals on the right-hand side of equation (3.4), we use
[18], p. 260, equation (4.92), for Re s  0, t  0,

∞∫
t=0

e−stP
(
V1(t) = 0|V1(0) = v

)
dt =

e−(s+(1−µ(s,1))λ1)v

s+
(
1− µ(s, 1)

)
λ1

,

with µ(s, 1) being the LST of the busy period distribution of M /G/1 queue with ar-
rival rate λ1 and service time LST b̃1(s); µ(s, 1) is the root of z= b̃1

(
s+(1−z)λ1

)
with the smallest absolute value, cf. [18], p. 250. A lengthy but straightforward
calculation, that involves interchanging the integrations, yields, for Re s0,

(3.5)
∞∫
t=v

sc1e
−c1t

t−v∫
u=0

e(s−λ1(1−b̃1(s)))(t−u−v)P
(
V1(u+ v)=0|V1(0)=v

)
dudt

=
sc1

c1 − s+ λ1

(
1− b̃1(s)

) e−(c1+(1−µ(c1,1))λ1)v

c1 +
(
1− µ(c1, 1)

)
λ1

.

Combining (3.4) and (3.5) yields

(3.6) E
(
e−sV1(T1)|V1(0) = v

)
=

c1e
−sv

c1 + λ1

(
1− b̃1(s)

)
− s
− sc1

c1 − s+ λ1

(
1− b̃1(s)

) e−(c1+(1−µ(c1,1))λ1)v

c1 +
(
1− µ(c1, 1)

)
λ1

.

S t e p 3. Calculation of E
(
e−sV1(T1+T2)|V1(0) = v

)
.

We have

(3.7) E
(
e−sV1(T1+T2)|V1(0) = v

)
=
∞∫
y=0

E
(
e−sV1(T1+T2)|V1(T1) = y

)
fV1

(
V1(T1) = y|V1(0) = v

)
dy

=
c2

c2 + λ1

(
1− b̃1(s)

) ∞∫
y=0

e−syfV1

(
V1(T1) = y|V1(0) = v

)
dy

=
c2

c2 + λ1

(
1− b̃1(s)

)[ e−svc1

c1 + λ1

(
1− b̃1(s)

)
− s

− c1e
−sv

c1 − s+ λ1

(
1− b̃1(s)

) e−(c1+(1−µ(c1,1))λ1)v

c1 +
(
1− µ(c1, 1)

)
λ1

]
,

where the second equation comes from equation (3.2), and the third from (3.6).
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S t e p 4. Calculation of E(e−sV1(T1+T2)) in steady state.
Observe that

(3.8) E(e−sV1(T1+T2)) =
∞∫
v=0

E
(
e−sV1(T1+T2)|V1(0) = v

)
fV1(0)(v)dv

=
∞∫
v=0

[
c2

c2 + λ1

(
1− b̃1(s)

)[e−sv c1

c1 + λ1

(
1− b̃1(s)

)
− s

− s
c1

c1 − s+ λ1

(
1− b̃1(s)

) e−(c1+(1−µ(c1,1))λ1)v

c1 +
(
1− µ(c1, 1)

)
λ1

]]
fV1(0)(v)dv,

with fV1(0)(v) the probability density function of V1(0). Now observe that, in
steady state, V1(T1 + T2) has the same distribution as V1(0). So we can rewrite
(3.8) as follows:

E(e−sV1(T1+T2)) =
∞∫
v=0

[
c2

c2 + λ1

(
1− b̃1(s)

)[e−sv c1

c1 + λ1

(
1− b̃1(s)

)
− s

− s
c1

c1 − s+ λ1

(
1− b̃1(s)

) e−(c1+(1−µ(c1,1))λ1)v

c1 +
(
1− µ(c1, 1)

)
λ1

]]
fV1(T1+T2)(v)dv.

Consequently,

(3.9) E(e−sV1(T1+T2))

[
c2 + λ1

(
1− b̃1(s)

)
c2

− c1

c1 + λ1

(
1− b̃1(s)

)
− s

]
= − sc1[

c1 + λ1

(
1− b̃1(s)

)
− s
](
c1 +

(
1− µ(c1, 1)

)
λ1

)
× E(e−(c1+(1−µ(c1,1))λ1)V1(T1+T2)).

Taking the limit as s→ 0 in (3.9) and using l’Hôpital’s rule yields

E(e−(c1+(1−µ(c1,1))λ1)V1(T1+T2))

= −
[λ1E(B1)c1 + λ1E(B1)c2 − c2]

(
c1 +

(
1− µ(c1, 1)

)
λ1

)
c1c2

.

Hence,
(3.10)

E(e−sV1(T1+T2)) =
s [λ1E(B1)(c1 + c2)− c2][

c2 + λ1

(
1− b̃1(s)

)][
c1 + λ1

(
1− b̃1(s)

)
− s
]
− c1c2

.
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S t e p 5. Calculation of E(e−sV1) in steady state.
Firstly, let us denote by S = 1 (respectively, S = 2) the event of the server

residing in the first (respectively, second) queue. Then,

E(e−sV1) = E(e−sV1 |S = 1)P(S = 1) + E(e−sV1 |S = 2)P(S = 2)(3.11)

= E(e−sV1 |S = 1)
c2

c1 + c2
+ E(e−sV1 |S = 2)

c1
c1 + c2

.

Because of the memoryless property of the exponential distribution it is obvious
that

E(e−sV1 |S = 1) = E(e−sV1(T1)), E(e−sV1 |S = 2) = E(e−sV1(T1+T2)).

The latter term is given by (3.10), while the former term is calculated by using the
same argument as in the derivation of equation (3.2):

(3.12) E(e−sV1(T1+T2)) = E(e−sV1(T1))
c2

c2 + λ1

(
1− b̃1(s)

) .
Substituting (3.12) for E(e−sV1(T1)), and (3.10) in equation (3.11) yields (3.1).

Similarly, we can also calculate the LST of the workload of the second queue,
which completes the proof. �

REMARK 3.1. It is not difficult to extend the above results to the case that the
T2 periods are non-exponential (see, e.g., [28], [45], [5]) and to the case that the
arrival process during those periods is a different compound Poisson process than
during the T1 periods (see, e.g., [44] and [26]). One could even allow a more gen-
eral non-decreasing Lévy process (subordinator) during those T2 periods. During
T1 periods, one could also allow the input process to be a subordinator. However,
we do note that it is considerably more complicated to consider non-exponential
T1 periods (see [25]).

4. WORKLOAD DECOMPOSITION AND HEAVY TRAFFIC ANALYSIS

In this section, we show that the steady-state workload V1 (similarly for V2)
can be decomposed into two independent terms, one corresponding to the steady-
state workload of the first queue in isolation, i.e., the M /G/1 queue with arrival
rate λ1 and service times B1 (to be called: a corresponding M /G/1 queue), and
the second corresponding to the amount of work when the server is not serving the
first queue due to either an idle period or due to a visit at the second queue.

Assuming that the first three moments of B1 are finite and then using the
decomposition of V1, we determine the mean, the variance, and the heavy traffic
limit of the workload V1. Furthermore, in this section and in the next one, we use
the decomposition to obtain various asymptotic (heavy traffic and/or heavy tail)
results.
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COROLLARY 4.1. The steady-state amount of work of the first queue, V1, is
distributed as a sum of two independent random variables VM/G/1 and Y, i.e.,

(4.1) V1
d
= VM/G/1 + Y,

where VM/G/1 is the steady-state amount of work in the corresponding M/G/1 queue,
and Y is the steady-state amount of work when the server is not serving at the first
queue. The LST of the random variable Y is given as

(4.2) E(e−sY ) =
c2 − ρ1(c1 + c2)

(1− ρ1)(c1 + c2)

×
[
1− sc1

(c2 + c1 − s)λ1

(
1− b̃1(s)

)
+
(
λ1

(
1− b̃1(s)

))2 − sc2

]
.

P r o o f. The workload decomposition result follows from [10], Theorem 2.1;
it is readily verified that all conditions of that theorem are satisfied. And the LST of
Y can be directly obtained by dividing the LST of V1 (which is given by equation
(3.1)) by the known LST of the M /G/1 queue; cf. [18], p. 257, equation (4.90). �

REMARK 4.1. E(e−sY ) could also have been obtained by writing it as a
weighted sum of two known terms: (i) 1, which is the LST of the (zero) workload
in the first queue during an idle part of the visit period, and (ii) E(e−sV1(T1+T2)),
which is given in (3.10). PASTA implies that the latter term is also the LST of the
workload in the first queue at an arbitrary epoch of a visit period of the other
queue.

We now use the decomposition result (4.1) to determine the mean and the
variance of V1.

THEOREM 4.1. The expectation of the steady-state workload of the first queue,
E(V1), is

(4.3) E(V1) =
ρ1(c1 + c2)

c2 − ρ1(c1 + c2)

[
1

2

E(B2
1)

E(B1)
+

c1
(c1 + c2)2

]
,

and the corresponding variance, Var(V1), is

(4.4) Var(V1) =
ρ1(c1 + c2)

c2 − ρ1(c1 + c2)

×
[
1

3

E(B3
1)

E(B1)
+

1

4

ρ1
1− ρ1

(
E(B2

1)
)2(

E(B1)
)2 +

c1
(c1 + c2)2

E(B2
1)

E(B1)
+

c1
(c1 + c2)3

]
.

P r o o f. The mean and variance can be obtained by using the decomposition
result (4.1). For this purpose, we can separately calculate the mean and the vari-
ance of the M /G/1 queue (cf. [18], p. 256), as well as the mean and the variance



268 M. Saxena et al.

corresponding to the random variable Y . For the latter we use equation (4.2) (af-
ter dividing its numerator and denominator by s). Combining these results yields
equations (4.3) and (4.4). �

REMARK 4.2. Equation (4.3) and equation (4.4) for c2→∞ (or, equivalently,
c1 → 0) yield the corresponding expressions for the mean and the variance of the
M/G/1 queue, cf. [18], p. 256.

Now, we study the behavior of the workload V1 in heavy traffic, i.e., when
ρ1 ↑ c2

c1+c2
. In Corollary 4.1 we have shown that V1 can be written as the sum of

the independent random variables VM /G/1 and Y . Since most of the results related
to the M /G/1 queue are already known, we take a closer look at E(e−sY ), with
the assumption that the first three moments of B1 are finite. Substituting b̃1(s) =

1 − sE(B1) +
s2

2 E(B
2
1) − s3

3!E(B
3
1) + o(s3) in (4.2) and rearranging the terms

yields, for s ↓ 0,

E(e−sY ) =
A0

1− ρ1

[
1− c1

c1 + c2

(
1

A0 + sA1 − s2

2 A2 + o(s2)

)]
,(4.5)

with

A0 =
c2

c1 + c2
− ρ1, A1 =

ρ1
c1 + c2

(
1− ρ1 +

c1 + c2
2

E(B2
1)

E(B1)

)
,(4.6)

A2 =
ρ21

c1 + c2

(
1− 2ρ1

ρ1

E(B2
1)

E(B1)
+

c1 + c2
3ρ1

E(B3
1)

E(B1)

)
.(4.7)

Equation (4.5) will play a very important role in the proof of Theorem 4.2 and also
in the next section where we study the tail behavior of the workload V1.

THEOREM 4.2. Assume that E(B2
1) <∞. For ρ1 ↑ c2

c1+c2
,

(4.8)
(

c2
c1 + c2

− ρ1

)
V1

d−→ Z,

where Z is an exponentially distributed random variable with mean

c1c2
(c1 + c2)3

+
c2

c1 + c2

1

2

E(B2
1)

E(B1)
.

P r o o f. To obtain the heavy traffic limit of V1, one can use the workload
decomposition. Corollary 4.1 implies that

(4.9) E(e−sV1) = E(e−sVM /G/1)E(e−sY ).
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Replacing s by sA0 = s
(

c2
c1+c2

− ρ1
)

(cf. (4.6)) in the above equation and taking
the limit ρ1 ↑ c2

c1+c2
yields

(4.10) lim
ρ1↑ c2

c1+c2

E
(
exp

(
− s

(
c2

c1 + c2
− ρ1

)
V1

))
= lim

ρ1↑ c2
c1+c2

E
(
exp

(
− s

(
c2

c1+c2
−ρ1

)
VM /G/1

))
E
(
exp

(
−s
(

c2
c1+c2

−ρ1
)
Y

))
.

The first term on the right-hand side obviously tends to one for ρ1 ↑ c2
c1+c2

, as the
corresponding M /G/1 queue is in heavy traffic only when ρ1 ↑ 1. To calculate the
limit for the second term in (4.10), we replace s by sA0 = s

(
c2

c1+c2
− ρ1

)
(cf. (4.6))

in (4.5), which yields

(4.11) E
(
exp

(
−s
(

c2
c1 + c2

− ρ1

)
Y

))
=

1

1− ρ1

[
A0 +

c1
c1 + c2

(
1

1 + sA1 − s2

2 A0A2 + o (s2A0)

)]
.

Taking the limit ρ1 ↑ c2
c1+c2

in (4.11), we obtain

(4.12) lim
ρ1↑ c2

c1+c2

E
(
exp

(
−s
(

c2
c1 + c2

− ρ1

)
Y

))
=

1

1 + sA1
,

where A1 is given in (4.6). The statement of the theorem follows from (4.12), (4.6),
and (4.10) by noticing that the right-hand side of (4.12) corresponds to the LST of
an exponentially distributed random variable with mean A1. �

REMARK 4.3. By letting c2 →∞, Theorem 4.2 indicates that the heavy traffic
result reduces to that of an ordinary M/G/1 queue.

5. HEAVY TAIL ASYMPTOTICS

In this section, we discuss the tail behavior of the workload in the case of
heavy-tailed service time distributions. We also study the heavy traffic behavior
of the workload V1 when the service time distribution B1 is regularly varying. To
do this analysis, we now introduce the definition of a regularly varying random
variable/distribution.

DEFINITION 5.1. The distribution function of a random variable B1 on [0,∞)
is called regularly varying of index −ν, with ν ∈ R, if

(5.1) P(B1 > x) ∼ L(x)x−ν , x ↑ ∞,

with L(x) a slowly varying function at infinity, i.e., lim
x→∞

L(αx)
L(x) = 1 for all α > 1.
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THEOREM 5.1. If the service time distribution of the random variable B1 is
regularly varying of index−ν, with ν ∈ (1, 2), then the workload of the first queue
under the stability condition (2.1) is regularly varying at infinity of index 1 − ν.
More precisely,

(5.2) P (V1 > x) ∼ ρ1
c2

c1+c2
− ρ1

1

E(B1)(ν − 1)
x1−νL (x) , x ↑ ∞.

P r o o f. To prove that V1 is regularly varying at infinity, one can again use
the decomposition property of the workload V1. From Corollary 4.1 we get

(5.3) P(V1 > x) = P(VM /G/1 + Y > x).

In the M /G/1 queue, it follows from [17] that P(VM /G/1 > x) is regularly varying
of index 1 − ν at infinity if and only if the tail of the service time distribution
P(B1 > x) is regularly varying of index −ν at infinity, and we have

(5.4) P (VM /G/1 > x) ∼ ρ1
ρ1 − 1

1

E(B1)(1− ν)
x1−νL (x) , x ↑ ∞.

Now we have to compute P(Y > x) for x ↑ ∞. Our main tool is the Tauberian
theorem of [7], Theorem 8.1.6, which relates the behavior of a regularly varying
function at infinity and the behavior of its LST near zero. Applying this theorem to
(5.1) gives

b̃1(s)− 1 + sE(B1) ∼ −Γ (1− ν) sνL

(
1

s

)
, s ↓ 0,

and hence

(5.5)
λ1

(
1− b̃1(s)

)
s

= ρ1

(
1 +

Γ (1− ν)

E(B1)
sν−1L

(
1

s

))
, s ↓ 0.

Substituting equation (5.5) in (4.2) yields, for s ↓ 0,

E(e−sY )

=
c2 − ρ1(c1 + c2)

(1− ρ1)(c1 + c2)

1− c1

(c1 + c2)ρ1

(
1 + Γ(1−ν)

E(B1)
sν−1L

(
1
s

))
− c2 +O(s)


=

c2 − ρ1(c1 + c2)

(1− ρ1)(c1 + c2)

×

1 + c1(
c2 − ρ1(c1 + c2)

) (
1− ρ1(c1+c2)

c2−ρ1(c1+c2)
Γ(1−ν)
E(B1)

sν−1L
(
1
s

))
+O(s)
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=
c2 − ρ1(c1 + c2)

(1− ρ1)(c1 + c2)

+
c1

(1− ρ1)(c1 + c2)

(
1 +

ρ1(c1 + c2)

c2 − ρ1(c1 + c2)

Γ (1− ν)

E(B1)
sν−1L

(
1

s

)
+O(s)

)
.

Simplifying, we get

E(e−sY )− 1 =
ρ1c1

(1− ρ1)
(
c2 − ρ1(c1 + c2)

) Γ (1− ν)

E(B1)
sν−1L

(
1

s

)
, s ↓ 0.

Applying the Tauberian theorem of [7], Theorem 8.1.6, once again, now in the
reverse direction, yields

(5.6) P (Y > x)∼− 1

Γ (2−ν)
ρ1c1

(1− ρ1)
(
c2 − ρ1(c1 + c2)

) Γ (1− ν)

E(B1)
x1−νL (x)

=
ρ1c1

(1− ρ1)
(
c2 − ρ1(c1 + c2)

) 1

E(B1)(ν − 1)
x1−νL(x), x ↑ ∞.

From (5.4) and (5.6) we see that both VM /G/1 and Y are regularly varying random
variables of index 1 − ν. Using the workload decomposition property (4.1) and
a well-known result regarding the tail behavior of the sum of two independent
regularly varying random variables of the same index (see [38]) yields

(5.7) P (V1 > x) ∼ (C1 + C2)x
1−νL(x), x ↑ ∞,

with C1 and C2 the coefficients of the tail x1−ν for VM /G/1 and Y in (5.4) and (5.6),
respectively. Substituting the coefficients from (5.4) and (5.6) concludes the proof
of the theorem. �

REMARK 5.1. Letting c2 →∞ in relation (5.7) yields

(5.8) P (V1 > x) ∼ ρ1
1− ρ1

1

E(B1)(ν − 1)
x1−νL(x), x ↑ ∞,

which is, as expected, the result for an ordinary M/G/1 queue.

REMARK 5.2. Theorem 5.1 is closely related to Theorem 4.1 in [14] for a
single server queue with alternating high and low service speeds. In [14] both the
service time distribution and the distribution of the periods of low service speed
are regularly varying. If the latter tail is less heavy than the tail of the service
time distribution, then our formula (5.2) displays exactly the same tail behavior as
formula (4.1) in [14].

In the next theorem we discuss how Theorem 5.1 can be generalized to the
case of subexponential (residual) service times.
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DEFINITION 5.2. A distribution function P(B1 ¬ x), x  0, is called subex-
ponential if

P(B11 + . . .+B1n > x) ∼ nP(B11 > x), x ↑ ∞,

for any n  2, with B11, . . . , B1n independent and identical copies of B1.

THEOREM 5.2. If the distribution of the residual service time requirement,
say Br

1, is subexponential, then V1 is also subexponential and

(5.9) P (V1 > x) ∼ ρ1
c2

c1+c2
− ρ1

P(Br
1 > x), x ↑ ∞.

H e u r i s t i c p r o o f. The asymptotic relation in (5.9) can be proved formally
by using sample-path techniques along the following lines. We assume the system
is in stationarity and focus on the workload at time t = 0. If the workload level
V1 at this time is very large, then that is most likely due to the prior arrival of
a customer with a large service requirement B1, at some time t = −y. We can
observe that from time t = −y onward, the workload decreases nearly linearly
with rate c2

c1+c2
− ρ1. So in order for the workload at time t = 0 to exceed the

level x, the service requirement B1 must be larger than x+ y
(

c2
c1+c2

− ρ1
)
. Since

customers arrive according to a Poisson process with rate λ1, the distribution of
the workload V1 for large x can be computed as

(5.10) P (V1 > x) ∼
∞∫
y=0

P
(
B1 > x+ y

(
c2

c1 + c2
− ρ1

))
λ1dy.

A change of variable z := x+ y
(

c2
c1+c2

− ρ1
)

in (5.10) yields

P (V1 > x) ∼ λ1
c2

c1+c2
− ρ1

∞∫
z=x

P (B1 > z) dz(5.11)

=
λ1E(B1)
c2

c1+c2
− ρ1

∞∫
z=x

P (B1 > z)

E(B1)
dz =

ρ1
c2

c1+c2
− ρ1

P(Br
1 > x),

which leads to relation (5.9).
This proof can be made rigorous by providing lower and upper bounds for

P(V1 > x) that in the limit coincide. The lower bound is easily obtained by using
the law of large numbers. The upper bound is more difficult; one has to give a
formal version of the statement “exceedance of a high level x happens as a conse-
quence of a single big jump”, and one has to show that other exceedance scenarios
(like two rather big jumps) do not contribute to the asymptotics of the exceedance
probability. We refer to [49], Section 2.4, for a detailed exposition of this technique.

REMARK 5.3. Note that, indeed, relation (5.9) contains the result of Theo-
rem 5.1 as a special case, since B1 being regularly varying at infinity of index −ν,
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with ν ∈ (1, 2), has a subexponential distribution. In this regularly varying case,
we have

P (Br
1 > x) =

∞∫
z=x

P (B1 > z)

E(B1)
dz ∼ 1

E(B1)

∞∫
z=x

z−νL(z)dz, x ↑ ∞.

In the above equation, by applying the regular varying function property from [7]
(p. 26, Proposition 1.5.8) we get

(5.12) P (Br
1 > x) ∼ 1

E(B1)(ν − 1)
x1−νL(x), x ↑ ∞.

Combining (5.11) and (5.12), we obtain Theorem 5.1.

Now we concentrate on a heavy traffic limit theorem for V1 in the heavy-tailed
case. To do this analysis, we first scale V1 by the coefficient of contraction ∆(ρ1).
Similarly to [11], p. 188, equation (4.24), we define the coefficient of contraction
∆(ρ1) as the unique root of the following equation in x:

(5.13) xν−1L

(
1

x

)
=

c2
c1+c2

− ρ1

ρ1
, x > 0,

such that ∆(ρ1) ↓ 0 for ρ1 ↑ c2
c1+c2

.

THEOREM 5.3. If the service time distribution of the random variable B1

is regularly varying of index −ν, with ν ∈ (1, 2), then the heavy traffic limiting
distribution of workload V1 of the first queue in the heavy-tailed case is given by
the Mittag–Leffler distribution:

(5.14) lim
ρ1↑ c2

c1+c2

E(e−s∆(ρ1)V1) =
1

1 +
(
E(B1)

)ν−1
sν−1

.

P r o o f. We can obtain the heavy traffic limit in the heavy-tailed case by using
the workload decomposition property (4.1) and its LST version (4.9). The heavy
traffic limit can be computed by replacing s by s∆(ρ1) in equation (4.9) and taking
the limit ρ1 ↑ c2

c1+c2
, which yields

(5.15) lim
ρ1↑ c2

c1+c2

E(e−s∆(ρ1)V1) = lim
ρ1↑ c2

c1+c2

E(e−s∆(ρ1)VM /G/1)E(e−s∆(ρ1)Y ).

Just as in the light-tailed case (cf. Theorem 4.2), the contribution of VM /G/1 becomes
negligible compared to the contribution of Y . To calculate the limit for the second
factor in (5.15), we use (4.2). We have

(5.16) E(e−s∆(ρ1)Y )

=
c2

c1+c2
− ρ1

1− ρ1

1− c1
c1 + c2

1

f(s∆(ρ1))
s∆(ρ1)

− f(s∆(ρ1))
c1+c2

+ s∆(ρ1)
c1+c2

(
f(s∆(ρ1))
s∆(ρ1)

)2
− c2

c1+c2

,
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with f
(
s∆(ρ1)

)
= ρ1(1−b̃1(s∆(ρ1)))

E(B1)
. Taking the limit ρ1 ↑ c2

c1+c2
in (5.16) yields

(5.17)

lim
ρ1↑ c2

c1+c2

E(e−s∆(ρ1)Y ) = − lim
ρ1↑ c2

c1+c2

c1

(
c2

c1+c2
− ρ1

)
(c1 + c2)(1− ρ1)

1
f(s∆(ρ1))
s∆(ρ1)

− c2
c1+c2

,

since s∆(ρ1)
c1+c2

(
f(s∆(ρ1))
s∆(ρ1)

)2
→ 0, f

(
s∆(ρ1)

)
→ 0, and ∆(ρ1) → 0 as ρ1 ↑ c2

c1+c2
.

After rearranging the terms of (5.17) we get

(5.18) lim
ρ1↑ c2

c1+c2

E(e−s∆(ρ1)Y )

= − lim
ρ1↑ c2

c1+c2

c1
(c1 + c2)(1− ρ1)

1

1
c2

c1+c2
−ρ1

[
f(s∆(ρ1))
s∆(ρ1)

− c2
c1+c2

] .
Since B1 is regularly varying, we get, by using [11], Lemma 5.1 (iv),

(5.19) lim
ρ1↑ c2

c1+c2

1
c2

c1+c2
− ρ1

[
f
(
s∆(ρ1)

)
s∆(ρ1)

− c2
c1 + c2

]

= − lim
ρ1↑ c2

c1+c2

(
1 +

ρ1
c2

c1+c2
− ρ1

[
1−

1− b̃1
(
s∆(ρ1)

)
sE(B1)∆(ρ1)

])
.

Using [11], p. 188, equation (4.22), we know that

(5.20)

1−
1− b̃1

(
s∆(ρ1)

)
sE(B1)∆(ρ1)

∼
(
E(B1)s∆(ρ1)

)ν−1
L

(
1

sE(B1)∆(ρ1)

)
, s ↓ 0.

From the definition of the coefficient of contraction ∆(ρ1) as the unique root of
equation (5.13) such that ∆(ρ1) ↓ 0 for ρ1 ↑ c2

c1+c2
, we have

(5.21)
(
∆(ρ1)

)ν−1
L

(
1

∆(ρ1)

)
=

c2
c1+c2

− ρ1

ρ1
.

Furthermore, from the definition of a slowly varying function L(·) we get

L
(
1/
(
sE(B1)∆(ρ1)

))
L
(
1/∆(ρ1)

) → 1, as ∆(ρ1) ↓ 0.

Now, by combining (5.18)–(5.21), we obtain

(5.22) lim
ρ1↑ c2

c1+c2

E(e−s∆(ρ1)Y ) =
1

1 +
(
E(B1)

)ν−1
sν−1

.

Substituting (5.22) in equation (5.15) concludes the proof of the theorem. �
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REMARK 5.4. In [11], a class of service time distributions is considered that
is slightly larger than the class of regularly varying distributions. Theorem 5.3 can
be seen to hold under these conditions as well.

REMARK 5.5. At this stage it may be appropriate to discuss some of the ad-
vantages and disadvantages of working with timers instead of traditional polling
disciplines like exhaustive, gated or k-limited. An advantage of working with timers
appears to be the following. It is proven in [12] for N -queue cyclic polling models
with exhaustive or gated service that if the heaviest service time distribution (say,
at QM ) is regularly varying of index −ν, then all waiting time distributions are
regularly varying of index 1 − ν. This is intuitively clear. Indeed, there is a pos-
itive probability of a customer in Q1 arriving during a service time of QM , and
then its waiting time includes a residual type-M service time – which is regularly
varying of index 1 − ν. That intuition also indicates that a similar tail behavior
will occur for disciplines like k-limited.

On the contrary, in our model with exponential timers, the service time distri-
bution at one queue has no effect at all on the waiting time distribution or workload
distribution at the other queue (for the workload, this is also seen from formula
(3.1), which does not involve b̃2(s)). In particular, the waiting time distribution at
Q1 will asymptotically behave exponentially if the service time tail is exponential;
and if the service time distribution at Q1 is regularly varying of index−ζ while the
service time distribution at Q2 is regularly varying of index−ν with ζ > ν, then the
waiting time distribution at Q1 will be regularly varying of index 1− ζ < 1− ν.

Next to protection against heavy tails at other queues, there is also some pro-
tection against long mean service times at other queues. If E(B2) is much larger
than E(B1), then a type-1 customer in an ordinary polling model may experience
a long mean delay because of the presence of type-2 customers. However, when
timers are used, a customer of type 1 with a short service time will not suffer much
from the presence of type-2 customers with long mean service times. This is a sim-
ilar protection phenomenon as round robin or processor sharing protecting short
customers against having to wait long for a customer with a very long service time.

A disadvantage of using timers is that the system is not work conserving, and
hence operates in a sense less efficient than one would wish. This is revealed in
the fully symmetric case. It follows from (4.3) that the mean workload at Q1, in
the fully symmetric case (equal arrival rates, service time distributions, and mean
visit periods), equals

(5.23) E(V1) =
ρ

1− ρ

E(B2
1)

2E(B1)
+

1

4c1
,

so that the mean total workload equals

(5.24) E(V1) + E(V2) = 2
ρ

1− ρ

E(B2
1)

2E(B1)
+

1

2c1
.



276 M. Saxena et al.

On the other hand, in a symmetric two-queue polling model with, e.g., exhaustive
or gated service, one has work conservation, and hence the mean total workload
equals

(5.25) E(Vtotal) =
ρ

1− ρ

E(B2
1)

2E(B1)
.

This is less than half the value of E(V1) + E(V2). The main reason for this is the
fact that the server is sometimes idle although there is work at the other queue.
This even holds when c1 = c2 →∞; Q1 operates effectively as if the server works
at half speed for it, or as if the service times are twice as long.

6. JOINT WORKLOAD DISTRIBUTION

So far we have focused on the marginal workload distribution at the first
queue. A much harder problem is to determine the steady-state joint workload
distribution. In this section, we begin the exploration of this problem, outlining a
possible approach as well as the mathematical complications arising.

Let ṽ(s1, s2) := E(e−s1V1(T1+T2)−s2V2(T1+T2)) be the steady-state joint work-
load LST at endings of visit periods at the second queue. Reiterating Steps 1–4
of Section 3, but now taking both workloads into account, leads after lengthy cal-
culations to the following functional equation:

ṽ(s2, s1) =
c1

c1 − s1 + λ1

(
1− b̃1(s1)

)
+ λ2

(
1− b̃2(s2)

)
×
[
ṽ(s1, s2)−

s1
ω1(s2)

ṽ
(
ω1(s2), s2

)]
, Re s1, Re s2  0,

(6.1)

where ω1(s2) := c1 + λ2

(
1− b̃2(s2)

)
+ λ1

(
1− µ(ζ, 1)

)
; as before, µ(s, 1) is the

busy period LST of the M /G/1 queue in isolation corresponding to the first queue.
Let us now restrict ourselves to the fully symmetric case c1 = c2 = c, λ1 =

λ2 = λ, b̃1(s) = b̃2(s) = b̃(s). Formula (6.1) then becomes

ṽ(s2, s1) =
c

c− s1 + λ
(
1− b̃(s1)

)
+ λ

(
1− b̃(s2)

)
×
[
ṽ(s1, s2)−

s1
ω1(s2)

ṽ
(
ω1(s2), s2

)]
.

(6.2)

Taking s1 = s2 in (6.2) allows us to express ṽ
(
ω1(s2), s2

)
in terms of ṽ(s2, s2),

thus reducing (6.2) to

ṽ(s2, s1) =
c

c− s1 + λ
(
1− b̃(s1)

)
+ λ

(
1− b̃(s2)

)
×
[
ṽ(s1, s2)−

s1
s2

s2 − 2λ
(
1− b̃(s2)

)
c

ṽ(s2, s2)

]
.

(6.3)
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Interchanging all indices, one obtains a mirrored equation of (6.3), and the two
equations combined yield

(6.4) K(s1, s2)ṽ(s1, s2)

=
s2
s1

(
s1 − 2λ

(
1− b̃(s1)

))(
c− s1 + λ

(
1− b̃(s1)

)
+ λ

(
1− b̃(s2)

))
ṽ(s1, s1)

+
s1
s2

c
(
s2 − 2λ

(
1− b̃(s2)

))
ṽ(s2, s2), Re s1, Re s2  0,

with
K(s1, s2) = c2 −

(
c− s1 + λ

(
1− b̃(s1)

)
+ λ

(
1− b̃(s2)

))
×
(
c− s2 + λ

(
1− b̃(s1)

)
+ λ

(
1− b̃(s2)

))
.

This is a so-called boundary value problem equation. Equations of this type have
been studied in the monograph [19]. There an approach is outlined that, for the
present problem, amounts to the following global steps:

S t e p 1. Let us consider the zeros of the kernel equation K(s1, s2), that have
Re s1,Re s2  0. For such pairs (s1, s2), ṽ(s1, s2) is analytic, and hence, for those
pairs, the right-hand side of (6.4) is equal to zero.

S t e p 2. For the pairs (s1, s2) satisfying Step 1, one needs to translate the
fact that the right-hand side of equation (6.4) is zero into a Riemann or Riemann–
Hilbert boundary value problem. The solution of such a problem yields ṽ(s1, s1)
and ṽ(s2, s2). Then ṽ(s1, s2) follows via (6.4).

Unfortunately, the above steps do not constitute a simple, straightforward
recipe. For example, several choices of zero pairs are possible in the present prob-
lem, and it is not a priori clear what is the best choice. A natural choice, due to the
symmetry of the underlying problem, seems to be to restrict oneself to complex
conjugate points, i.e., choose (s1, s2) = (z, z̄). The kernel then becomes

K(z, z̄) = c2 −
(
c− z + 2λRe

(
1− b̃(z)

))(
c− z̄ + 2λRe

(
1− b̃(z)

))
.

Taking
(6.5)
c− z + 2λRe

(
1− b̃(z)

)
=ceiθ, c− z̄ + 2λRe

(
1− b̃(z)

)
=ce−iθ, θ∈ [0, 2π],

indeed yields K(z, z) = K
(
z(θ), z(θ)

)
= 0 for all θ ∈ [0, 2π], while it is readily

checked that for each such θ there is a unique z(θ) with Re z(θ)  0.
Turning to Step 2, one sees that the z(θ) satisfying (6.5) describe a closed

contour, say L, in the right half-plane, for θ : 0→ 2π, while the fact that the right-
hand side of (6.4), after a division by s1s2 = zz̄, is zero for all these (s1, s2) =(
z(θ), z(θ)

)
translates into the relation

(6.6) Re

[
1

z

(
1− ρb̃r(z)

)
ṽ(z, z)e

1
2
iθ

]
= 0, z ∈ L,
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with ṽ(z, z) and b̃r(z) =
(
1− b̃(z)

)
/
(
zE(B)

)
being analytic inside L. The factor

exp
(
1
2 iθ
)

in the expression inside the square brackets of (6.6) is a complicating
factor. Otherwise, the expression would have been analytic inside L, apart from
the pole at z = 0, and we would have had a similar boundary value problem to
that treated in [13]. The solution of such a problem is known when L is the unit
circle. For other closed contours, one needs a conformal mapping of that contour
onto the unit circle; several procedures are available for obtaining such conformal
mappings.

REMARK 6.1. In a future study we aim to handle all the technicalities which
arise in treating this boundary value problem with a pole. When we manage to
solve the present symmetric problem, we are still faced with the more general asym-
metric two-queue problem. Subsequently, one could turn to the joint queue length
distribution. However, a complication there is that a switch between queues might
occur during a service time, forcing one to keep track of the length of the residual
service time. From that perspective, workload seems to be an easier quantity than
queue length.

7. JOINT QUEUE LENGTH DISTRIBUTION

In this section, we turn our attention to the steady-state joint queue length dis-
tribution, restricting ourselves to exponential service requirement distributions in
both queues, with rates µi = 1/E(Bi), i = 1, 2, respectively. Under this assump-
tion, we do not need to keep track of the residual service times, which simplifies the
analysis. However, a direct analytic derivation of the joint queue length distribution
(or its PGF) turns out to be as challenging as the analysis presented in Section 6.
To address this issue, in this section, we explore the use of parametric perturbation
for the derivation of the joint queue length distribution. In what follows, we use
the framework developed in Altman et al. [3]; we perturb the service and arrival
rates by a common parameter, denoted by ε  0, i.e., the perturbed service rate
of the customers in queue i is εµi, i = 1, 2, and arrivals occur according to two
independent Poisson processes with perturbed rates ελi, i = 1, 2. The parameters
that are not perturbed are ci, i = 1, 2, i.e., the rates of the exponentially distributed
durations that the server spends in each queue. Note that the stability condition
(2.1) is not affected by this scaling.

The perturbed process is a continuous time Markov chain defined on the state
space

S =
{
(n1, n2, k); n1, n2 ∈ N, k ∈ {1, 2}

}
,

in which ni denotes the queue length in queue i, i = 1, 2, and the third element in
the state space description reports the queue in which the server is active. Fur-
thermore, let G(ε) denote the generator of the perturbed Markov process. We
decompose this perturbed generator into the unperturbed generator G(0) and the
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perturbation matrix G(1),

(7.1) G(ε) = G(0) + εG(1),

so as to investigate the dependence of the stationary joint queue length distribu-
tion on the parameter ε. The unperturbed generator G(0) corresponds to the states
depicting a change of the state of the server from one queue to the other; it is
given by

(7.2) G(0) =

 C 02×2 · · ·
02×2 C · · ·

...
...

. . .

, where C =

[
−c1 c1
c2 −c2

]
,

02×2 being a 2 × 2 matrix of zeros. Throughout the remainder of the paper we
use this notation with subscripts to indicate the dimension when needed. When the
dimension is clear from the context, the index is omitted; note that the dimension
can be infinite.

The perturbation matrix G(1) is defined in terms of its elements, with n1  0,
n2  0, k = 1, 2,

(7.3)


G

(1)
(n1,n2,k),(n1+1,n2,k)

= λ1, G
(1)
(n1,n2,k),(n1,n2+1,k) = λ2,

G
(1)
(n1+1,n2,1),(n1,n2,1)

= µ1, G
(1)
(n1,n2+1,2),(n1,n2,2)

= µ2,

G
(1)
(n1,n2,k),(n1,n2,k)

= −(λ1 + λ2 + µk11{nk1}),

where 11{nk1} is an indicator function taking value 1 if nk  1, and 0 otherwise.
In order to implement the framework of Altman et al. [3], first it is convenient

to define the transition probability matrix

P (ε) = I +∆G(ε)

of the corresponding (uniformized) discrete time perturbed Markov chain (I being
the identity matrix). In order to simplify the notation, in what follows we assume
without loss of generality that

(7.4) λ1 + λ2 + µ1 + c1 ¬ 1 and λ1 + λ2 + µ2 + c2 ¬ 1.

Note that, indeed, this assumption simply entails a scaling of time. Still, it allows
us to take ∆ = 1 and it ensures that

(7.5) P (ε) = I +G(ε)

is a probability matrix for all ε ∈ [0, 1], which is convenient. We remind the reader
that our ultimate goal is to find (or approximate) the stationary measure belonging
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to G(1) (and, equivalently, of the discrete time counter part P (1)). In order to
achieve that, we first establish the analyticity of the stationary distribution for ε in
a punctured neighborhood of zero, cf. Theorem 7.1 below. We emphasize that it
is not guaranteed that the stationary distribution will be analytic up to ε = 1. The
analysis in [3] gives a lower bound for the radius of convergence, which in general
turns out to be rather conservative.

Note that the perturbed transition probability matrix P (ε) can also be decom-
posed into the unperturbed probability matrix P (0) and the perturbation matrix
G(1), with P (0) = I +G(0), i.e.,

P (0) =

I2×2 +C 02×2 · · ·
02×2 I2×2 +C · · ·

...
...

. . .

.(7.6)

It is evident that the unperturbed process consists of several ergodic classes, making
our setting fit the singular perturbation approach in [3].

7.1. Singular perturbation analysis: Outline. Following the analysis perform-
ed in [3], we now formulate four conditions based on which the invariant proba-
bility measure of the perturbed Markov chain, denoted by π(ε), is derived. These
four conditions guarantee the analyticity of π(ε) in ε in a punctured neighbor-
hood of zero. Furthermore, they guarantee that the coefficients of the power series
π(ε) =

∑∞
m=0 ε

mπ(m) form a geometric sequence and, hence, that there exists a
computationally stable updating formula for π(ε), see [3].

In this subsection we only formulate the four conditions and give the main re-
sult of the section. The detailed mathematical proofs follow in the next subsection.

ASSUMPTION 7.1. The unperturbed Markov chain consists of several (denu-
merable) ergodic classes and there are no transient states.

There is an ergodic class for each i ∈ {(n1, n2), n1, n2 ∈ N}, i.e., in an er-
godic class, the numbers of customers in both queues are fixed. All ergodic classes
are identical, and consist of two states, k ∈ {1, 2}, indicating the queue being
served.

ASSUMPTION 7.2. The Markov chains corresponding to the ergodic classes
of the unperturbed Markov chain are uniformly Lyapunov stable, i.e., for each er-
godic class there exist a strongly aperiodic state α ∈ {1, 2} (with a strictly positive
probability on the corresponding diagonal element of the transition matrix I +C,
where C is the matrix given in (7.2)), constants 0 < δ < 1 and b < ∞, and a
Lyapunov function u = (u1 u2)

′, with ui  1, i = 1, 2, such that

(7.7) (I +C)u ¬ δu+ beα,

where eα is a vector with one in the entry belonging to state α and zero in the other
entry.
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For the next condition, we first introduce the aggregated Markov chain (see
[20], [22], [36]) with generator Γ, given in the matrix form as follows:

(7.8) Γ = V G(1)W ,

where V and W are defined as in [3], p. 844; V (respectively, W ) is a matrix
whose rows (columns) correspond to the ergodic classes and its columns (rows) to
the states in S. The i-th row of V is the invariant measure of the unperturbed
Markov chain, given that the process starts in the i-th ergodic class, with i ∈
{(n1, n2), n1, n2 ∈ N}, i.e.,

(7.9) V =


C̃ 01×2 01×2 · · ·

01×2 C̃ 01×2 · · ·
01×2 01×2 C̃ · · ·

...
...

...
. . .

,
where C̃ = [c2/(c1 + c2) c1/(c1 + c2)]. The j-th column of W has ones in the
components corresponding to the j-th ergodic class and zeros in the other compo-
nents, with j ∈ {(n1, n2), n1, n2 ∈ N}, i.e.,

(7.10) W =


12×1 02×1 02×1 · · ·
02×1 12×1 02×1 · · ·
02×1 02×1 12×1 · · ·

...
...

...
. . .

, where 12×1 =

[
1
1

]
.

Hence, for n1  0, n2  0, the elements of the generator matrix Γ are
(7.11)

Γ(n1,n2),(n1+1,n2) = λ1, Γ(n1,n2),(n1,n2+1) = λ2,

Γ(n1+1,n2),(n1,n2) = µ1
c2

c1+c2
, Γ(n1,n2+1),(n1,n2) = µ2

c1
c1+c2

,

Γ(n1,n2),(n1,n2) = −
(
λ1 + λ2 + µ1

c2
c1+c2

11{n11} + µ2
c1

c1+c2
11{n21}

)
.

It is convenient to think of the aggregated Markov chain as the limiting joint queue
length process as ε→ 0. In this limit, the server moves infinitely fast between the
two queues, making them two independent M /M /1 queues with arrival rates λi

and service rates µi
c1c2/ci
c1+c2

, i = 1, 2. Based on this remark, one can immediately
deduce that the invariant probability measure of the aggregated Markov chain is

π̄(n1, n2) = (1− ρ̃1)ρ̃
n1
1 (1− ρ̃2)ρ̃

n2
2 , n1, n2  0,(7.12)

with ρ̃i =
λici(c1+c2)

µic1c2
, i = 1, 2.

We are now ready to state the third condition.
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ASSUMPTION 7.3. The aggregated Markov chain is irreducible and Lyapunov
stable, i.e., there exist a strongly aperiodic state ᾱ = (n1, n2) (with a strictly pos-
itive probability on the diagonal of the transition matrix I + Γ, where Γ is the
matrix given in (7.11)), constants 0 < δ < 1, b < ∞, and a Lyapunov function
u = (u(n1,n2))(n1,n2)∈N2 with elements u(n1,n2)  1, for all n1, n2  0, such that

(7.13) (I + Γ)u ¬ δ̄u+ b̄eα.

ASSUMPTION 7.4. The perturbation matrix G(1) is ũ-bounded (for ũik =
uiuk with i ∈ {(n1, n2); n1, n2 ∈ N} and k = 1, 2) or, equivalently,

∥G(1)∥ũ := sup
s∈S

ũ−1s

∑
s∈S
|G(1)

s,s|ũs(7.14)

is bounded by some constant g > 0; cf. [3], p. 841.

Note that, because of the repetitive structure of G(0), this assumption implies
that P (ε) is ũ-bounded for all ε  0.

We can now state the main theorem of the section, which is based on Theo-
rem 4.1 in [3], p. 845.

THEOREM 7.1. Under the Assumptions 7.1–7.4, the perturbed Markov chain
has a unique invariant probability measure, π(ε), which is an analytic function of
ε in a neighborhood of zero,

(7.15) π(ε) =
∞∑

m=0

εmπ(m), π(m) = π̄V Um,

where π̄ is the invariant probability measure of the aggregated Markov chain (cf.
(7.12)), and

(7.16) U = G(1)H(I +G(1)W ΦV ),

V and W are given by (7.9) and (7.10), respectively, and H and Φ, the devia-
tion matrices of the unperturbed and aggregated Markov chains, respectively, are
given by

(7.17) H = − 1

(c1 + c2)
2G

(0)

and

(7.18) Φ =
∞∑

m=0

[(I + Γ)m − γ].

Here γ is the ergodic projection of the aggregated Markov chain, with generator
Γ given in (7.11), i.e.,

γ = lim
n→∞

1

n

n∑
m=1

(I + Γ)m.
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REMARK 7.1. We do not discuss the radius of convergence of the series de-
fined in (7.15). Theorem 4.1 of [3] gives a (rather conservative) bound for the
analyticity region.

REMARK 7.2. The invariant probability measure of the perturbed Markov
chain can be calculated by the updating formula

(7.19) π(ε) = π(0) (I − εU)−1,

with ε in a neighborhood of zero (cf. [3], p. 845, Theorem 4.1).

REMARK 7.3. In order to calculate the deviation matrix Φ, one may use the
following equations:

ΦΓ = ΓΦ = γ − I,

γΦ = Φγ = 0.

We briefly describe two approaches to obtain the deviation matrix Φ: an analytic
one involving PGFs and a numerical one. Both approaches require some addi-
tional work. The analytic approach, which involves the consideration of generat-
ing functions, leads to a boundary value problem for which we can employ Steps 1
and 2 discussed in Section 6. Performing these steps reveals a problem similar to
the combinatorial random walk in the quadrant with transitions to the West, North,
and South-East (cf. [9], Section 5.2). In order to obtain the expression for Φ, we
need to invert the obtained PGF. A numerical approach is to truncate the state
space and solve numerically the corresponding finite system of equations above.
We do remark that truncating the state space is a delicate task since the entries of
Φ corresponding to states far from the origin are unbounded. We do not further
investigate this in this paper.

7.2. Singular perturbation analysis: Verification of the assumptions. It re-
mains to prove that Assumptions 7.1–7.4 are satisfied and also to indicate how the
deviation matrix of the unperturbed Markov chain, H , is calculated.

Ve r i f i c a t i o n o f A s s u m p t i o n 7.1. As explained in the previous sec-
tion, this condition follows directly from equation (7.6).

Ve r i f i c a t i o n o f A s s u m p t i o n 7.2. Obviously, all ergodic classes are
identical and contain two states (k = 1, 2), thus this condition is trivially met, but
for the construction in the remainder it is useful to specify the Lyapunov function
used.

First note that the strong aperiodicity follows from the uniformization condi-
tion (7.4). We can choose any of the two states as the strongly aperiodic state; in the
following we choose α := 1. To construct the Lyapunov function, first we choose
the constants δ and b as δ ∈

(
1− c2, 1− c1c2/(c1 + c2)

)
, b = 1− δ+ c21/c2. Then
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we can verify that the Lyapunov function

(7.20) u =

[
1

1 + c1/c2

]
satisfies (7.7). It also follows that, indeed, δ ∈ (0, 1), 0 < b < ∞, and uk  1,
k = 1, 2.

Ve r i f i c a t i o n o f A s s u m p t i o n 7.3. From the definition of the gener-
ator of the aggregated Markov chain (cf. (7.11)) and the stability condition (2.1),
it is immediately evident that the aggregated Markov chain is ergodic since it be-
haves as two independent ergodic M /M /1 queues with arrival rate λi and service
rate µi

ci
c1c2
c1+c2

, i = 1, 2.
Now, by using the uniformization condition (7.4), state (0, 0) is strongly ape-

riodic, i.e., we may choose ᾱ = (0, 0). We proceed to describe the Lyapunov func-
tion u and the constants δ̄ ∈ (0, 1) and b̄ which satisfy Assumption 7.3. Note that
relation (7.13) is written as follows for n1, n2  0:(

1−
(
λ1 + λ2 + µ1

c2
c1 + c2

11{n11} + µ2
c1

c1 + c2
11{n21}

))
u(n1,n2)

+ λ1u(n1+1,n2) + λ2u(n1,n2+1) + µ1
c2

c1 + c2
11{n11}u(n1−1,n2)

+ µ2
c1

c1 + c2
11{n21}u(n1,n2−1)

¬ δ̄u(n1,n2) + b̄11{(n1,n2)=(0,0)}.

Solving the above equations with equality, after choosing

(7.21) u(n1,n2) =

(√
µ1c2

λ1(c1 + c2)

)n1
(√

µ2c1
λ2(c1 + c2)

)n2

,

yields the solution for δ̄ and b̄. We choose

δ̄ = 1−
(√

λ1 −
√
µ1

c2
c1 + c2

)2

−
(√

λ2 −
√

µ2
c1

c1 + c2

)2

+max

{
µ2

c1
c1 + c2

(
1−

√
λ2(c1 + c2)

µ2c1

)
, µ1

c2
c1 + c2

(
1−

√
λ1(c1 + c2)

µ1c2

)}

and

b̄ = 1− δ̄ + λ1

(√
µ1c2

λ1(c1 + c2)
− 1

)
+ λ2

(√
µ2c1

λ2(c1 + c2)
− 1

)
.
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Note that due to the uniformization condition (7.4), indeed, δ̄ ∈ (0, 1), 0 < b̄ <∞,
and u(n1,n2)  1 for all n1, n2  0.

Ve r i f i c a t i o n o f A s s u m p t i o n 7.4. To verify this assumption, we ap-
ply the definition (cf. (7.14)) and show that

∥G(1)∥ũ ¬ max{g1, g2},
with

g1 =

(
µ1c2

λ1(c1 + c2)

)−1/2(
µ1 +

µ1c2 + µ2c1
c1 + c2

)
,

g2 =

(
µ2c1

λ2(c1 + c2)

)−1/2(
µ2 +

µ1c2 + µ2c1
c1 + c2

)
.

In order to do so, we use the ũ-norm

ũ(n1,n2,k) = u(n1,n2)uk, (n1, n2, k) ∈ S,

with u(n1,n2) given in (7.21), and uk given in (7.20).
D e r i v a t i o n o f t h e d e v i a t i o n m a t r i x o f t h e u n p e r t u r b e d

M a r k o v c h a i n. It follows from Assumption 7.1 that the deviation matrix of
the unperturbed Markov chain, H , has the following block diagonal structure:

(7.22) H =

H2×2 02×2 · · ·
02×2 H2×2 · · ·

...
...

. . .

,
with H2×2 the deviation matrix of each ergodic class of the unperturbed Markov
chain, i.e.,

(7.23) H2×2 =
∞∑
j=0

[(I +C)j − c],

where C is given in (7.2), and c is the ergodic projection of the unperturbed
Markov chain determined as

c =


c2

c1 + c2

c1
c1 + c2

c2
c1 + c2

c1
c1 + c2

,
cf. [39], p. 64, equation (4.1).

We evaluate (7.23) using the spectral decomposition (eigendecomposition) of
matrices I +C and c; the diagonal matrices containing the eigenvalues are

DI+C = diag{1, 1− (c1 + c2)} =
[
1 0
0 1− (c1 + c2)

]
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and

Dc = diag{1, 0} =
[
1 0
0 0

]
,

respectively, and the corresponding matrix of eigenvectors is

M =

[
1 −c1
1 c2

]
.

Naturally, in dimension two, both matrices produce the same eigenvectors because
c is the ergodic projection of I +C. Therefore, equation (7.23) can be written as

(7.24) H2×2 = M
( ∞∑
m=0

[Dm
I+C −Dc]

)
M−1 = − 1

(c1 + c2)
2C.

Combining (7.24) and (7.22) yields equation (7.17).

8. POSSIBLE FUTURE DIRECTIONS

We have studied a single server two-queue polling model with a random resid-
ing time service discipline. More concretely, we considered that customers arrive
at the two queues according to two independent Poisson processes. There is a sin-
gle server that serves both queues with generally distributed service times. The
server spends an exponentially distributed amount of time in each queue. After the
completion of this residing time, the server instantaneously switches to the other
queue, i.e., there is no switch-over time. A service discipline with a random resid-
ing time does not satisfy the so-called branching property [37], which significantly
complicates the underlying analysis.

For this polling model, we derived the steady-state marginal workload dis-
tribution and used it to obtain several asymptotic results. We also discussed the
complications arising in the calculation of the joint workload distribution. Further-
more, restricting ourselves to the case of exponential service times, we have cal-
culated the joint queue length distribution using (singular) perturbation analysis. It
is a topic for further research to determine how to efficiently truncate the system
without inducing too large errors. The insights gained for the two-queue polling
model, specifically for the derivation of the marginal workload (cf. Section 3), can
be also used in the case of N queues, N > 2. In addition, one may generalize the
compound Poisson input to a Lévy subordinator input process.

Another interesting topic for future research is to develop the framework for
the derivation of the bivariate LST of the joint workload distribution, in particular
in the asymmetric case (cf. Section 6), and for the derivation of the bivariate PGF
of the joint queue length distribution in the case of exponential service require-
ments. In particular, the objective in such a setting is to develop an approach to
the transformation of equation (6.4), and its version for the asymmetric case, into a
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Riemann or Riemann–Hilbert boundary value problem. This requires that we first
choose the zeros of the kernel equation K(s1, s2), so as to define a closed smooth
contour. Thereafter, we need to show that equation (6.4) on the contour reduces to
the study of an analytic function (probably with the exception of one pole) with a
known boundary condition. An interesting alternative direction would be to extend
the framework developed by Fayolle et al. [24] of the systematic use of the kernel
method using the group of birational transformations that leave the kernel equation
unchanged. The challenge in our case is that the kernel K(s1, s2) does not have the
regular structure indicated in [24], but this does not seem to impose an insuperable
obstacle, see, e.g., [29].
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