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Abstract. In this contribution we discuss the relation between
Pickands-type constants defined for certain Brown–Resnick stationary pro-
cess W (t), t ∈ R, as

Hδ
W = lim

T→∞
T
−1E{ sup

t∈δZ∩[0,T ]
e
W (t)}, δ  0

(set 0Z = R if δ = 0) and the extremal index of the associated max-stable
stationary process ξW . We derive several new formulas and obtain lower
bounds for Hδ

W if W is a Gaussian or a Lévy process. As a by-product
we show an interesting relation between Pickands constants and lower tail
probabilities for fractional Brownian motions.
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1. INTRODUCTION

The motivation for this contribution comes from the importance and the in-
triguing properties of the classical Pickands constants Hδ

W which are defined for
any δ  0 by (interpret 0Z as R)

(1.1) Hδ
W = lim

T→∞

1

T
E{ sup

t∈δZ∩[0,T ]
eW (t)},

where

W (t) =
√
2Bα(t)− |t|α , t ∈ R,
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with Bα a standard fractional Brownian motion with Hurst index α ∈ (0, 2], that
is a centered Gaussian process with stationary increments and variance function
Var

(
Bα(t)

)
= |t|α, t ∈ R.

It is well known (but not trivial to prove) that Hδ
W is finite and positive for

any δ  0. The only values known for Hδ
W are for δ = 0 and α ∈ {1, 2}, see,

e.g., [41], [42]. Surprisingly, Pickands and related constants appear in numerous
unrelated asymptotic problems, see, e.g., the recent papers [17], [25], [26], [15].

The contribution [19] derived a new formula for Pickands constants, which in
fact indicates a direct connection between those constants and max-stable station-
ary processes, see [12]. The definition ofHδ

W in (1.1) is extended in [12] for some
general process W provided that it defines a max-stable and stationary process.
More precisely, assume throughout in the sequel that

(1.2) W (t) = B(t)− lnE{eB(t)}, t ∈ R,

where B(t), t ∈ R, is a random process on the space D of càdlàg functions f :
R→ R with

(1.3) B(0) = 0, E{eB(t)} <∞, t ∈ R.

Hence X(t) = eW (t) satisfies X(0) = 1 almost surely, and E {X(t)} = 1, t ∈ R.
If Π =

∑∞
i=1 εPi is a Poisson point process (PPP) with intensity x−2dx on (0,∞),

and Xi = eWi , i  1, are independent copies of the random process X = eW being
independent of Π, then the random process ξW defined by

(1.4) ξW (t) = max
i1

PiXi(t) = max
i1

Pie
Wi(t), t ∈ R,

has unit Fréchet marginals and is max-stable. Here εx denotes the unit Dirac mea-
sure at x ∈ R. Adopting the definition from [30], we shall refer to W as the
Brown–Resnick stationary process whenever the associated max-stable process
ξW is stationary. Note that stationarity of ξW means that {ξW (t), t ∈ R} and
{ξW (t+ h), t ∈ R} have the same distribution for any h ∈ R.

In the sequel, for the case δ = 0 we shall assume that

E{sup
t∈K

eW (t)} <∞

for any compact K ⊂ R. A direct consequence of stationarity of ξW and the fact
that for any t1, . . . , tn ∈ R and x1, . . . , xn > 0 (see, e.g., [18], [39])

(1.5) P {ξW (ti) ¬ xi,∀i ¬ n} = exp
(
−E{max

1¬i¬n
(eW (ti)/xi)}

)
is that, for any b  0, δ  0, T > 0, we have

Hδ
W ([0, T ]) := E{ sup

t∈δZ∩[0,T ]
eW (t)} = E{ sup

t∈δZ∩[b,b+T ]
eW (t)}.
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Consequently,Hδ
W defined in (1.1) exists and is given by (see [12])

(1.6) Hδ
W = inf

T>0

1

T
Hδ

W ([0, T ]) ∈ [0,∞).

Note that if δ > 0, then (1.6) implies that

Hδ
W ¬

Hδ
W ([0, δ − ε])

δ − ε
=

1

δ − ε

for any ε ∈ (0, δ), hence letting ε tend to zero yieldsHδ
W ∈ [0, 1/δ].

Interestingly,Hδ
W is related to the extremal index of the stationary process

ξδW (t) = ξW (δt), t ∈ Z, δ > 0,

where we set ξδW (t) = ξW (t) if δ = 0. Indeed, by (1.5),

(1.7) lim
T→∞

P{ max
i∈δZ∩[0,T ]

ξW (t) ¬ Tx}

= exp
(
− lim

T→∞
E{ max

i∈δZ∩[0,T ]
(eW (i)/T )}x−1

)
= (e−1/x)H

δ
W , x > 0.

Thus the Fréchet limit result in (1.7), which is already shown in [50] (see also
Proposition 3.1 in [10] and [18]), states that the extremal index of the stationary
process ξδW (t), t ∈ Z, is given for any δ > 0 by

(1.8) θδW = δHδ
W ∈ [0, 1].

Clearly, the constant Hδ
W is positive if and only if the extremal index θδW of the

stationary process ξδW is positive.
Numerous papers in the literature have discussed the calculation and estima-

tion of extremal index of stationary processes, see, e.g., the recent articles [46],
[10], [38], [35], [33], [21] and the references therein. The primary goal of this
contribution is to study Pickands-type constants Hδ

W by exploring the properties
of the extremal index θδW . In particular, we are interested in establishing tractable
conditions that guarantee the positivity ofHδ

W .
By our assumptions it is clear that ξδW is stationary and jointly regularly vary-

ing, hence in view of Theorem 2.1 in [5] (see also [29]), there exists a so-called tail
process

Y δ(i), i ∈ Z,

of the stationary process X , which was introduced in [5]. It turns out that for any
m ¬ n,m, n ∈ Z, we have the stochastic representation

(1.9)
(
Y δ(m), . . . , Y δ(n)

) d
=

(
PXδ(m), . . . ,PXδ(n)

)
,
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where Xδ(i) := eW (δi), i ∈ Z, with P a unit Pareto random variable with survival
function 1/x, x > 1, being independent of the process X .

Under the finite mean cluster size condition (see Condition 2.1 below) and
condition A(an) (see [5], [4], [32]) it follows that θδW is positive, see the seminal
contribution [5].

We shall show the positivity of the extremal index under a weaker condition,
namely supposing that

(1.10) lim
|z|→∞,z∈Z

W (zδ) = −∞

holds almost surely for δ ∈ (0,∞). In our derivations the following simple result
is crucial:

LEMMA 1.1. If rn, n  1, are positive integers such that

lim
n→∞

rn = lim
n→∞

n/rn =∞,

then for any δ ∈ (0,∞) we have

(1.11) θ̃δW := lim
n→∞

n

rn
P{ max

i∈{0,δ,...,δrn}
ξW (t) > n} = θδW ∈ [0,∞).

In the next section we shall show that the new expression for the extremal
index in (1.11) is positive under (1.10). Using the explicit form of the tail process,
we shall derive several new interesting formulas forHδ

W .
Brief outline of the rest of the paper is the following. In Section 2 we give our

main results which establish the positivity of the Pickands-type constants and some
new formulas. In Section 3 we shall discuss the connection with mixed moving
maxima (M3) representation of Brown–Resnick processes. Then we derive some
explicit lower bounds for Hδ

W in case that B in (1.2) is a Gaussian or a Lévy pro-
cess, and discuss the relation betweenH0

W and the mean cluster index. Further, we
shall show that the classical Pickands constants are related to a small ball problem.
All the proofs are relegated to Section 4.

2. MAIN RESULTS

We keep the same setup as in the Introduction, and denote additionally by E a
unit exponential random variable which is independent of everything else. Accord-
ing to [5] a candidate for the extremal index is given by the formula

(2.1) θ̂δW = lim
m→∞

P{ max
1¬i¬m

Y δ(i) ¬ 1},

where Y δ(i), i ∈ Z, is the tail process of ξδW , see [5]. As in the aforementioned
paper we shall impose the finite mean cluster size condition of [5], Condition 4.1:
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CONDITION 2.1. Given δ > 0, there exists a sequence of positive integers
rn, n ∈ N, satisfying limn→∞ rn/n = 1/ limn→∞ rn = 0 such that

(2.2) lim
m→∞

lim sup
n→∞

P
{

max
m¬|k|¬rn

ξW (kδ) > nx
∣∣ξW (0) > nx

}
= 0

holds for any x > 0.

By Proposition 4.2 in [5] we infer that θ̂δW > 0 follows from Condition 2.1.
Our main result below establishes new formulas for Hδ

W . Moreover, from the
above-mentioned reference, Condition 2.1 together with well-knownA(an) condi-
tions of Hsing and Davis implies that the candidate for the extremal index is equal
to the extremal index, i.e., θ̂δW = θδW > 0. It is well known that A(an) is implied
by the strong mixing of ξδW . However, our results derived below do not require
strong mixing but just mixing of ξδW .

THEOREM 2.1. Let X(t) = eW (t), t ∈ R, with W as in (1.2) be such that
(1.3) holds and ξW (t), t ∈ R, is max-stable and stationary. Then (1.10) holds for
δ > 0 if and only if Condition 2.1 holds. Moreover, if (1.10) holds for δ > 0, then
we have consecutively

Hδ
W =

1

δ
P{sup

i<0
W δ(i) < 0 = sup

i∈Z
W δ(i)},(2.3)

Hδ
W =

1

δ
P
{
sup
i1

(
E +W δ(i)

)
¬ 0

}
,(2.4)

Hδ
W =

1

δ
[E{sup

i0
eW

δ(i)} − E{sup
i1

eW
δ(i)}] ∈ (0, 1/δ),(2.5)

where W δ(t) = W (tδ), t ∈ Z, and E is a unit exponential random variable inde-
pendent of W .

REMARK 2.1. (a) If P
{
W δ(i) = 0

}
= 0 for any negative integer i, then

P{ sup
−m¬i<0

W δ(i) < 0 = sup
−m¬j¬m

W δ(j)} = P{ sup
−m¬j¬m

W δ(j) = 0}

holds for any integer m > 1. Consequently, by (2.3) we have

Hδ
W =

1

δ
lim

m→∞
P{ sup
−m¬i<0

W δ(i) < 0 = sup
−m¬j¬m

W δ(j)}(2.6)

=
1

δ
P{sup

i∈Z
W δ(i) = 0} > 0,

which has been shown in [19] for the case where B is a standard fractional Brow-
nian motion. The assumption W (0) = 0 can be removed (see [27]).
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(b) We assumed above that ξW has càdlàg sample paths in order to define
H0

W . For the results of Theorem 2.1, this assumption is not needed.
(c) In [12] it is shown that under the assumptions of Theorem 2.1 we have

(2.7) Hδ
W = E

{
supt∈δZ e

W (t)

δ
∑

t∈δZ
eW (t)

}
.

According to (2.5), for calculation of Hδ
W it suffices to know W (t), t ∈ δZ, t > 0,

i.e., only the values of W for positive t matter. This is not the case for formula
(2.7). Both (2.7) and (2.5) are given in terms of expectations and not as limits,
which is a great advantage for simulations. To this end, we mention that simulation
of Pickands constants has been the topic of many works (see, e.g., [9], [36], [19]).

(d) If X(t) = eW (t), t ∈ R, is Brown–Resnick stationary, i.e., the associated
max-stable process with ζW is max-stable and stationary, then the time reversed
process V (t) = W (−t), t ∈ R, also defines Brown–Resnick stationary processes.
Moreover, for any δ  0

Hδ
W = Hδ

V .

Consequently, the formulas in Theorem 2.1 can be stated with V instead of W, for
instance we have

Hδ
W =

1

δ
P
{
sup
i¬−1

(
E +W δ(i)

)
¬ 0

}
(2.8)

=
1

δ
P{W δ(i) < 0, i ∈ N;W δ(i) ¬ 0, i ∈ Z}.

(e) If W (t) =
√
2tL − t2 with L an N(0, 1) random variable with distribu-

tion Φ and probability density function φ, by (2.4) we have

Hδ
W =

1

δ

∞∫
0

P
{
E + sup

i1

(√
2δib− (δi)2

)
¬ 0

}
φ(b)db(2.9)

=
1

δ

δ/
√
2∫

−δ/
√
2

φ(b)db =
1

δ

[
Φ(δ/
√
2)− Φ(−δ/

√
2)
]

for any δ > 0. Consequently, letting δ → 0 we obtain the well-known result

H0
W =
√
2φ(0) =

1√
π
.

A canonical example for W with representation (1.2) is the case when B is
a centered Gaussian process with stationary increments, continuous sample paths,
and variance function σ2. Then the max-stable process ξW is stationary, see [40].
Using a direct argument, we establish in the next theorem the positivity ofH0

W .
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THEOREM 2.2. If

lim inf
t→∞

σ2(t)

ln t
> 8,

thenH0
W > 0.

Since (2.2) implies (1.10) (see Corollary 2.4 in [34] or [30]), usingH0
W  Hδ

W
for any δ > 0 we immediately establish the positivity ofH0

W .
Indeed, the positivity of H0

W is crucial for the study of extremes of Gaussian
processes. Condition (2.2) can be easily checked, e.g., if W (t) =

√
2Bα(t)− |t|α.

Consequently, the classical Pickands constants Hδ
W are positive for any δ  0.

This fact is highly non-trivial; after announced in Pickands’ pioneering work [41],
correct proofs were obtained later by Pickands himself, and in [7], [43], see, e.g.,
Theorem B3 in [8]. We note in passing that under general conditions on σ2 the
positivity ofH0

W is established in [11].
Apart from the alternative proof for the positiveness of the original Pickands

constants, Theorem 2.1 extends to non-Gaussian processes W . For the above Gaus-
sian setup, direct calculations show the positivity of Hδ

W under a slightly weaker
condition than (2.2).

3. DISCUSSIONS AND EXTENSIONS

3.1. Relation with lower tail probabilities. For the classical case of Piterbarg
constants HBα , i.e., for W (t) =

√
2Bα(t) − |t|α , t ∈ R, α ∈ (0, 2], we show be-

low that (2.6) implies a nice relation with a small ball problem.

PROPOSITION 3.1. For any α ∈ (0, 2] we have

lim
η→0

η−2/αP{∀k∈Z\{0}Bα(1/k) ¬ η} = 21/αHBα .

The above result strongly relates to the self-similarity property of fractional
Brownian motion. In case of a general Gaussian W , ξW is still stationary if W has
stationary increments. However, fBm is the only centered Gaussian process with
stationary increments being further self-similar. Hence, no obvious extensions of
the above relation with lower tails can be derived for general W .

3.2. Non-Gaussian W . The classical Pickands constants are defined for W (t)
=
√
2Bα(t) − |t|α with Bα a standard fBm with Hurst index α/2 ∈ (0, 1]. The

more general case where Bα is substituted by a centered Gaussian process with
stationary increments is discussed in detail in [11].

Our setup clearly allows for any random process W , not necessarily Gaussian,
which is Brown–Resnick stationary. Along with the Gaussian case of W , the Lévy
one has also been dealt already in the literature. In view of [23], [49], if B(t), t  0,
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is a Lévy process such that

(3.1) Φ(1) <∞, Φ(θ) := lnE{eθB(1)},

then W (t) = B(t)−Φ(1)t, t  0, is Brown–Resnick stationary, i.e., ξW (t), t  0,
is max-stable stationary with unit Gumbel marginals.

In [31] an important constant appears in the asymptotic analysis of the max-
imum of standardised increments of random walks, which in fact is the Pickands
constantHδ

W , δ > 0, introduced here for W as above. In [31], Lemma 5.16, a new
formula for Hδ

W is derived, which is identical with our formula in (2.8). Another
instance of the Pickands constant given by formula (2.3) is displayed in [44], The-
orem 5.3. With the notation of that theorem, for δ = 1 we have

W (i) =
i∑

j=1

Ai,

where Ai’s are i.i.d. with the same distribution as ZI(U ¬ e−ηZ) for some η > 0
with U uniformly distributed on (0, 1) being independent of Z which has some pdf
symmetric around zero.

Pickands constants appear also in the context of semi-min-stable processes,
see [51]. In view of the aforementioned paper, several results derived here for max-
stable processes are extendable to semi-min-stable processes.

3.3. Finite mean cluster size condition. As noted in [45], Condition 2.1 is
implied by the following so-called short-lasting exceedance condition:

CONDITION 3.1. Given δ > 0, there exists a sequence of integers rn, n ∈ N,
satisfying limn→∞ rn/n = 1/ limn→∞ rn = 0 such that

(3.2) lim
m→∞

lim sup
n→∞

rn∑
k=m

P
{
ξW (kδ) > nx

∣∣ξW (0) > nx
}
= 0

is valid for any x > 0.

This latter condition is a rephrasing of the so-called B condition (see, e.g.,
[1], [13], [2]) which was formulated by discretising the original Berman’s condi-
tion, see [6]. Condition 3.1 is weaker than the D′(xn) condition of Leadbetter as
discussed in [22], Section 5.3.2.

Commonly, Condition 2.1 assumed for x = 1 is referred to as the anti-cluster-
ing condition, see, e.g., [46], [47]. Clearly, the finite mean cluster size condition is
stronger than the anti-clustering condition. The latter appears in various contexts
related to extremes of stationary processes, see, e.g., [3], [37], [46], [5], [47] and
the references therein.
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3.4. M3 representation. Since we assume that ξW is max-stable stationary
with càdlàg sample paths, and W with representation (1.2) is such that B satisfies
(1.3), it follows that assuming the almost sure convergence

W (t)→ −∞

as |t| → ∞ is equivalent to the fact that ξW has a mixed moving maxima repre-
sentation (for short, M3), see [20], Theorem 3, and [52]. More specifically, under
(3.4) we have the equality of finite-dimensional distributions

ξW (t)
d
= max

i1
Pie

Fi(t−Ti), t ∈ R,(3.3)

between the right-hand side and the left-hand side in (3.3), where the Fi’s are
independent copies of a measurable càdlàg process FW (t), t ∈ R, satisfying almost
surely

(3.4) sup
t∈R

FW (t) = FW (0) = 0,

and
∑∞

i=1 ε(Pi,Ti) is a PPP in (0,∞)× R with intensity CW · p−2dp · dt with

(3.5) CW =
(
E
{ ∫

R
eFW (t) dt

})−1 ∈ (0,∞).

Moreover, ξδW , the restriction of ξW on δZ, has an M3 representation for any δ > 0,
see [12] for more details. Denote the corresponding constant in the intensity of this
PPP by Cδ

W > 0 (and thus C0
W is just CW given in (3.5)).

In view of [12], Proposition 1, if ξδW , δ > 0, admits an M3 representation as
mentioned above, then

(3.6) Hδ
W = Cδ

W ,

provided that (1.10) holds. Hence Theorem 2.1 presents new formulas for Cδ
W .

Note in passing that (3.6) has been shown in [40]. Therein it is proved that Cδ
W

is given by the right-hand side of (2.6) assuming further that W (t) = B(t) −
E{elnB(t)}, t ∈ R, with B a centered Gaussian process with stationary increments
satisfying W (0) = 0 almost surely.

In view of [12], Theorem 1, if (1.10) holds, then we have

(3.7) Hδ
W = E

{
M δ

Sδ

}
= Cδ

W ,

with M δ := maxi∈Z e
W (iδ) and Sδ := δ

∑
t∈δZ e

W (t). ThusHδ
W > 0.

The representation of Hδ
W as an expectation of the ratio M δ/Sδ is crucial for

its simulation. Such a representation has initially been shown in [19] for classical
Pickands constants.
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3.5. Lower bounds. In Theorem 2.1 we present new formulas forHδ
W , which

in turn establish the positivity ofHδ
W and thus the positivity for the extremal index

of ξδW . If only the positivity of Hδ
W is of primary interest, then the conditions of

Theorem 2.1 can be relaxed. Next, we consider two important classes of processes
for B, that is, centered Gaussian processes with stationary increments and Lévy
processes. Results for the Lévy case have already been given in [12].

For particular values of δ, we show that it is possible to derive a positive lower
bound forHδ

W and thus establishing the positivity ofHδ
W . Let x+ := max(x, 0).

THEOREM 3.1. (i) Let W (t) = B(t)− σ2(t)/2, t  0, where B(t) is a cen-
tered Gaussian process with stationary increments and variance function σ2 such
that σ(0) = 0. Then for any δ > 0

(3.8) Hδ
W 

1

δ
max

(
0, 1−

∞∑
k=1

exp

(
−σ

2(δk)

8

))
.

(ii) Let W (t) = B(t)−Φ(1)t, t  0, where B(t) is a Lévy process satisfying
the condition (3.1). Then for any δ > 0

(3.9) Hδ
W 

1

δ

max
(
0, 1− 2 exp

((
Φ(1/2)− 1

2Φ(1)
)
δ
))

1− exp
((
Φ(1/2)− 1

2Φ(1)
)
δ
) .

REMARK 3.1. (a) It follows from (i) of Theorem 3.1 that if σ(δk)  C(δk)κ/2

for all k ∈ N and some κ > 0, then

(3.10) Hδ
W 

1

δ

(
1− 1

δ

Γ(1/κ)

κ (C2/8)1/κ

)
.

SinceH0
W  Hδ

W for any δ > 0, the above impliesH0
W > 0.

(b) If B is a Lévy process as in (ii) of Theorem 3.1, then (see the proof in
Section 4)

(3.11) H0
W 

1

8
[Φ(1)− 2Φ(1/2)] > 0.

3.6. Case δ = 0. Since (1.7) holds also for δ = 0 and H0
W  Hδ

W , it follows
that the extremal index of the continuous process ξW is

θ̃W = H0
W  0,

which is positive provided that (1.10) holds. In the special case where W (t) =√
2Bα(t)− |t|α we have

(3.12) lim
δ↓0
Hδ

W = H0
W =: HW ,
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hence for such W and for any α ∈ (0, 2]

(3.13) θ̃W = lim
δ↓0

θδW
δ

.

Recall that we denote by θδW , δ > 0, the extremal index of ξδW . Using the terminol-
ogy of [28] we refer to HW defined by (assuming that the limit exists)

lim
δ↓0

θδW
δ

= lim
δ↓0
Hδ

W = HW

as the mean cluster index of the process W . Since for any T > 0 and δ > 0

0 ¬ E{ sup
t∈δZ∩[0,T ]

eW (t)} =: H0
W ([0, T ]),

we have clearly HW ∈ [0,HW ].
We show next that if ξW has an M3 representation, then HW is positive.

PROPOSITION 3.2. Suppose ξW is max-stable and stationary with W (0) = 0.
If ξW has an M3 representation and HW exists, then

(3.14) HW  E
{
supt∈R eW (t)

η
∑

t∈ηZ
eW (t)

}
> 0

holds for any η > 0.

REMARK 3.2. (a) In view of Theorems 2 and 3 in [12] we have for some
general W as in (1.2), with B being a Gaussian or Lévy process,

(3.15) H0
W = E

{
supt∈R eW (t)

η
∑

t∈ηZ
eW (t)

}
= E

{
supt∈R eW (t)∫
t∈R eW (t) dt

}

for any η > 0. Consequently, under these conditions and the setup of Proposi-
tion 3.2,

(3.16) H0
W = HW .

(b) If W (t) =
√
2Bα(t)− |t|α , t ∈ R, by (3.12) and (2.4) for any α ∈ (0, 2]

(3.17) H0
W = HW = lim

δ↓0

1

δ
P
{
sup
i1

(
E +W δ(i)

)
¬ 0

}
,

with E a unit exponential random variable independent of W . Expression (3.17)
of the classical Pickands constant was initially derived in [1] for some general W,
(see also a recent contribution [2]). In [28], Proposition 3, or the formula in [24],
p. 44, the classical Pickands constant is the limit of a cluster index.
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4. PROOFS

P r o o f o f L e m m a 1.1. Since limn→∞ rn = ∞, by (1.7) and (1.8) we
obtain

lim
n→∞

r−1n E{ max
i∈{0,δ,...,δrn}

eW (i)} = δHδ
W = θδW .

For any n ∈ N we have

P{maxi∈{0,δ,...,δrn} ξW (i) > n}
rnP {ξW (0) > n}

=
P{maxi∈{0,δ,...,δrn} ξW (i) > n}

rn[1− e−1/n]

∼ nr−1n [1− P{ max
i∈{0,δ,...,δrn}

ξW (i) ¬ n}]

= nr−1n [1− e−cn/n], cn := E{ max
i∈{0,δ,...,δrn}

eW (i)},

where the last equality follows from (1.5). The assumption limn→∞ n/rn = ∞
and E{eW (i)} = 1, i ∈ δZ, imply

(4.1)
cn
n
¬ 1

n
E
{ ∑

i∈{0,δ,...,δrn}
eW (i)

}
=

rn + 1

n
→ 0, n→∞.

Consequently,

P{maxi∈{0,δ,...,δrn} ξW (i) > n}
rnP {ξW (0) > n}

∼ r−1n E{ max
i∈{0,δ,...,δrn}

eW (i)} ∼ θδW , n→∞,

hence the claim follows. �

P r o o f o f T h e o r e m 2.1. We show first the stochastic representation (1.9).
Recall that X(t) = eW (t) and for δ > 0 we set

W δ(t) = W (δt), Xδ(t) = eW
δ(t), t ∈ Z.

By (1.5), the fact that P {ξW (0) ¬ x} = e−1/x, x > 0, and the assumption that
X(0) = 1 almost surely, for any y1, . . . , yn positive and y0 > 1 we have

P
{
ξδW (i) ¬ Tyi, i = 0, . . . , n

∣∣ξδW (0) > T
}

=
1− P

{
ξδW (0) ¬ T, ξδW (i) ¬ Tyi, i ∈ {0, . . . , n}

}
P{ξδW (0) > T}

−
1− P

{
ξδW (i) ¬ Tyi, i ∈ {0, . . . , n}

}
P{ξδW (0) > T}

=
1− exp

(
−E

{
max

(
Xδ(0),maxi∈{1,...,n}X

δ(i)/yi
)}

T−1
)

1− e−1/T
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−
1− exp

(
−E{maxi∈{1,...,n}X

δ(i)/yi}T−1
)

1− e−1/T

∼ T

[
1−

[
1− 1

T
E
{
max

(
1, max

i∈{0,...,n}
Xδ(i)/yi

)}]
−
(
1−

[
1− 1

T
E{ max

i∈{0,...,n}
Xδ(i)/yi}

])]
→ E

{(
1− max

i∈{0,...,n}
Xδ(i)/yi

)
+

}
, T →∞,

= P
{
P ¬ y0,PXδ(i) ¬ yi, ∀i ∈ {1, . . . , n}

}
,

where P is a unit Pareto random variable with survival function 1/s, s > 1, inde-
pendent of the process X . Hence the claim in (1.9) follows by Theorem 2.1 (ii)
in [5]. Next, by the above derivations for any sequence of integers rn > m ∈ N for
any x > 0 (recall Xδ(0) = 1 almost surely), we have

1− P
{

max
m¬|i|¬rn

ξδW (i) > nx
∣∣ξδW (0) > nx

}
=

P{maxm¬|i|¬rn ξ
δ
W (i) ¬ nx, ξδW (0) > nx}

P{ξδW (0) > nx}

=
1− exp

(
−E

{
max

(
Xδ(0),max|i|∈{m,...,rn}X

δ(i)
)}

(nx)−1
)

1− e−1/(nx)

−
1− exp

(
−E{max|i|∈{m,...,rn}X

δ(i)}(nx)−1
)

1− e−1/(nx)

∼ nx

[
1−

[
1− 1

nx
E
{
max

(
1, max
|i|∈{m,...,rn}

Xδ(i)
)}]

−
(
1−

[
1− 1

nx
E{ max
|i|∈{m,...,rn}

Xδ(i)}
])]

∼ E
{(

1− max
|i|∈{m,...,rn}

Xδ(i)
)
+

}
,

where we used the fact that, as in (4.1), the condition limn→∞ rn = limn→∞
n
rn

=∞ implies

lim
n→∞

1

n
E
{
max

(
Xδ(0), max

|i|∈{m,...,rn}
Xδ(i)

)}
= 0,

and

lim
n→∞

1

n
E{ max
|i|∈{m,...,rn}

Xδ(i)} = 0.
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Consequently,

lim
m→∞

lim sup
n→∞

P
{

max
m¬|i|¬rn

ξδW (i) > nx
∣∣ξδW (0) > nx

}
= lim

m→∞
lim sup
n→∞

[
1− E

{(
1− max

|i|∈{m,...,rn}
Xδ(i)

)
+

}]
= 1− lim

m→∞
E
{(

1− max
|i|∈Z,im

Xδ(i)
)
+

}
= 0,

where we used the assumption (1.10). Hence Condition 2.1 holds.
By Proposition 4.2 in [5], we see that Condition 2.1 implies (1.10). Moreover,

since
P {ξW (0) > n} = 1− e−1/n ∼ 1

n
, n→∞,

Proposition 4.2 in [5] and Lemma 1.1 imply

θδW = θ̃δW = θ̂δW > 0.

Consequently,

(4.2) θ̂δW = P{sup
i1

Y δ(i) ¬ 1} = lim
n→∞

P{P sup
ni1

Xδ(i) ¬ 1},

and so

θ̂δW = lim
n→∞

E
{(

1− sup
ni1

Xδ(i)
)
+

}
= E

{(
1− sup

i1
Xδ(i)

)
+

}
= E{sup

i0
Xδ(i)− sup

i1
Xδ(i)} ∈ (0, 1],

where the second last equality follows from the monotone convergence theorem.
In fact, the above claim readily follows also from Remark 4.7 in [5]. Further from
(4.2) we obtain

lim
n→∞

P{P sup
ni1

Xδ(i) ¬ 1} = lim
n→∞

P
{

sup
ni1

(
lnP + lnXδ(i)

)
¬ 0

}
= lim

n→∞
P
{

sup
ni1

(
E +W δ(i)

)
¬ 0

}
= P

{
sup
i1

(
E +W δ(i)

)
¬ 0

}
,

with E = lnP a unit exponential random variable independent of X .
Next, (2.3) follows from eq. (16) in [45]. Since further we assume (1.2), we

infer that (2.3) implies

(4.3) Hδ
W ∈ (0, 1/δ)

for any δ > 0, which completes the proof. �
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P r o o f o f T h e o r e m 2.2. By our assumption, for all large k we get

σ2(δk)

8
> ln(δk)a.

Consequently, by (3.8) we have for all δ large and some a > 1

H0
W  Hδ

W 
1

δ

(
1−

∞∑
k=1

exp

(
−σ

2(δk)

8

))
 1

δ

(
1− 1

δa

∞∑
k=1

1

ka

)
> 0.

Hence the proof is complete. �

P r o o f o f P r o p o s i t i o n 3.1. Since Bα(0) = 0 almost surely, in view
of (2.6) (see also [19], Proposition 4) we obtain

lim
δ→0

δ−1P{∀k∈Z\{0}Bα(δk) ¬ |δk|α/
√
2} = HBα .

Moreover, by the self-similarity of Bα, we have

P{∀k∈Z\{0}Bα(δk) ¬ |δk|α/
√
2} = P

{
∀k∈Z\{0}|δk|αBα

(
1

δk

)
¬ |δk|α/

√
2

}
= P

{
∀k∈Z\{0}Bα

(
1

δk

)
¬ 1/
√
2

}
= P

{
∀k∈Z\{0}Bα

(
1

k

)
¬ δα/2/

√
2

}
,

hence the proof follows easily. �

P r o o f o f T h e o r e m 3.1. (i) The proof is based on a technique devel-
oped in Lemma 16 and Corollary 17 in [16] and in Lemma 7 in [48], therefore
we omit some details. For any δ > 0 and T a positive integer, using Bonferroni’s
inequality, we have for any process W such that E

{
eW (kδ)

}
= 1, k  1,

E{ sup
t∈δZ∩[0,δT ]

eW (t)}

=
∫
R
esP{ sup

t∈δZ∩[0,δT ]
W (t) > s}ds 

∫
R
esP {∃1¬k¬TW (kδ) > s} ds


T∑

k=1

∫
R
esP {W (kδ) > s} ds−

T−1∑
k=1

T∑
l=k+1

∫
R
esP {W (kδ) > s,W (lδ) > s} ds


T∑

k=1

E{eW (kδ)}
T−1∑
k=1

T∑
l=k+1

∫
R
esP {W (kδ) +W (lδ) > 2s} ds,

and so

E{ sup
t∈δZ∩[0,δT ]

eW (t)} = T −
T−1∑
k=1

T∑
l=k+1

∫
R
esP {W (kδ) +W (lδ) > 2s} ds(4.4)
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= T −
T−1∑
k=1

T∑
l=k+1

E
{
exp

(
W (kδ) +W (lδ)

2

)}
= T −

T−1∑
k=1

T∑
l=k+1

exp

(
−σ

2(δ |k − l|)
8

)
 T − T

T∑
k=1

exp

(
−σ

2(δk)

8

)
,

where the last equality follows by the stationarity of increments of the random
process B. Along the lines of the proof in [14] we obtain

Hδ
W = lim

T→∞

1

T
E{ sup

t∈δZ∩[0,T ]
eW (t)}  lim

T→∞

1

T
⌊T/δ⌋

(
1−

∞∑
k=1

exp

(
−σ

2(δk)

8

))
+

=
1

δ

(
1−

∞∑
k=1

exp

(
−σ

2(δk)

8

))
+

.

(ii) In view of (4.4), in order to establish the proof we need to calculate

akl =
∫
R
esP {W (δk) +W (δl) > 2s} ds.

By independence of the increments and the fact that W (δl)−W (δk)
d
=W

(
δ(l−k)

)
,

we have

akl = E
{
exp

(
W (δk) +W (δl)

2

)}
= E{eW (δk)}E

{
exp

(
W (δl)−W (δk)

2

)}
= E{eW (δk)}E

{
exp

(
W

(
δ(l − k)

)
2

)}
= E

{
exp

(
B
(
δ(l − k)

)
− Φ(1)δ(l − k)

2

)}
= exp

(
− δ(l − k)λ

)
,

where λ := 1
2Φ(1) − Φ(1/2) > 0 by Jensen’s inequality and the independence

and stationarity of increments of the Lévy process B. Consequently, for N ∈ N
we obtain ∫

R
esP{ sup

t∈δZ∩[0,N ]
W (t) > s}ds  N

δ

(
1−

∞∑
k=1

e−δkλ
)

(4.5)

=
N

δ

1− 2 exp (−δλ)
1− exp (−δλ)

,

which leads to

Hδ
W 

1

δ

1− 2 exp (−δλ)
1− exp (−δλ)

,

and thus the proof is complete. �
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P r o o f o f (3.11). By (4.5) and letting λ = 1
2Φ(1)− Φ(1/2) > 0, we have

H0
W  lim

N→∞

1

N

∫
R
esP{ sup

t∈δZ∩[0,N ]
W (t) > s}ds

 1

δ

(
1−

∞∑
k=1

e−δkλ
)
 1

δ

(
1−

∞∫
0

e−δxλdx
)
=

1

δ

(
1− 1

δλ

)
 λ

4
> 0,

establishing the proof. �

P r o o f o f P r o p o s i t i o n 3.2. By [12], for any δ > 0 and any integer
k ∈ N we have

Hδ
W  E

{
supt∈δZ e

W (t)

kδ
∑

t∈kδZ
eW (t)

}
,

hence choosing δn = ηl−n with η > 0 and l > 1 some integer and for k = ln

which is clearly integer for any n  1, we have

Hδn
W  E

{
supt∈δnZ e

W (t)

kδn
∑

t∈kδnZ
eW (t)

}

= E
{
supt∈δnZ e

W (t)

η
∑

t∈ηZ
eW (t)

}
→ E

{
supt∈R eW (t)

η
∑

t∈ηZ
eW (t)

}
, n→∞,

where the last limit follows by the monotone convergence theorem and the fact that
W has continuous sample paths. Since, by construction, Hδn

W is non-decreasing in
n, and we assume that limδ↓0Hδ

W = HW , the claim follows. �
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