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1. INTRODUCTION

We consider a model of two-dimensional risk process with renewal input:
claims σ⃗n = (σn,1, σn,2) arrive in a random input at arrival epochs {tn} with in-
terarrival times {τn}. There are two insurance companies, company i has initial
capital xi and premium rate pi, and covers claims σn,i, i = 1, 2. We assume that
the two sequences {σ⃗n} and {τn} are mutually independent and that each of them
consists of i.i.d. random variables.

Let N(t) be the number of claims by time t  0,

N(t) = max{n : tn ¬ t};
then

S⃗(t) =
(
S1(t), S2(t)

)
:=

N(t)∑
n=1

σ⃗n
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is the vector of total claim sizes by time t. Further, let

b⃗(t) =
(
b1(t), b2(t)

)
:= x⃗+ p⃗t

be the sum of initial capitals and of total premiums by time t, here x⃗ = (x1, x2)
and p⃗ = (p1, p2). Introduce ruin probabilities of two types: for any T ∈ (0,∞],
these are

ψ∧(x⃗, T ) = P{S1(t) > b1(t) or S2(t) > b2(t) for some t ¬ T},
ψ∨(x⃗, T ) = P{S1(t) > b1(t) and S2(t) > b2(t) for some t ¬ T}.

Here ψ∧(x1, x2, T ) describes the ruin probability of at least one insurance com-
pany, while ψ∨(x1, x2, T ) corresponds to the ruin of the both insurance companies.

There are several papers – see, e.g., Konstantinides and Li [16] and the list
of references therein – where it is assumed that the pairs (σn,1, σn,2) are i.i.d. and
have a multivariate regularly varying distribution. We like to consider claim sizes
with distributions from a more general subexponential class that includes Pareto
and also log-normal and Weibull distributions. We are unaware of any reasonable
concept of subexponentiality here. So only two extreme options seem to be doable:
either (i) σn,1 and σn,2 are independent or (ii) they are dependent deterministically,
say

σn,1 = l(σn) and σn,1 = σn − l(σn),

where 0 ¬ l(x) ¬ x and σn is the cumulative claim of the client n that is covered
by the two insurance companies together.

There are several papers that study related problems in direction (i) – see, e.g.,
Li et al. [18], Chen et al. [8], Chen, Wang, Wang [6], [7], Wang et al. [22], Jiang
et al. [15], Hu and Jiang [14], Lu and Zhang [20], see also references therein. In
particular, in the paper by Lu and Zhang [20], a uniform asymptotics over finite
intervals has been obtained under some restrictive assumptions on distributions.

Avram et al. [3], [4] studied boundary crossing probabilities of a stochastic
process with light-tailed increments. This study was also motivated by ruin prob-
abilities of two insurance companies with proportional claims and the steady state
distribution of a tandem queue with two servers (see [19]). Similar considerations
were done in Badila et al. [5] (for mutidimensional risk process) and in [14] (for
the two-dimensional risk process with constant interest rate).

The key message of this paper is that in both cases results on the uniform
asymptotics may be obtained for a general class of strong subexponential distri-
butions, no further restrictions are needed. We only consider the second direction
using approach developed in a series of works of Denisov, Foss, Korshunov, Pal-
mowski, and Zachary (see, e.g., [9], [11]–[13], [17]); similar arguments apply in
the first direction.

To make it simple, we assume l(x) to be linear, l(x) = lx for some l ∈ (0, 1).
Then, after some transformations we can reformulate the problem as follows. Let
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us define

(1.1) St =
Nt∑
i=1

σi,

where Nt is a renewal process with positive i.i.d. interarrival times τi, and the
claim sizes σi are positive i.i.d. random variables that do not depend on N(t)
and have a common distribution function F (x). Note also that Nt = max{k  0 :
tk ¬ t} for a random walk constructed from the interarrival times:

tn =
n∑

k=1

τk.

Let the boundaries b1 and b2 be given by

b1(t) = b1(t;x1) = x1 + p1t, b2(t) = b2(t;x2) = x2 + p2t.

We assume that Eσ <∞, Eτ <∞ and that

(1.2) p1 > p2, p2 > ρ := E[σ]/E[τ ]

for generic τ and σ. In this paper, for T > 0, we will consider the boundary cross-
ing probabilities

ψ∧(x1, x2, T ) = P{τ∧(x1, x2) ¬ T},

ψ∨(x1, x2, T ) = P{τ∨(x1, x2) ¬ T}

for

τ∧(x1, x2) = inf{t  0 : St > b1(t) ∧ b2(t)},(1.3)

τ∨(x1, x2) = inf{t  0 : St > b1(t) ∨ b2(t)},(1.4)

where x ∧ y = min{x, y} and x ∨ y = max{x, y}.
The ψ∧(x1, x2, T ) describes the ruin probability of at least one insurance com-

pany before time T ; if T =∞, then

ψ∧(x1, x2) := ψ∧(x1, x2,∞)

is a ruin probability of at least one company. The ψ∨(x1, x2, T ) and

ψ∨(x1, x2) := ψ∨(x1, x2,∞)

correspond to the ruin of both insurance companies. The first assumption in (1.2)
means that the second company has a smaller premium rate than the first company,
and the second assumption is the condition under which reserves of both insurance
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companies tend to infinity. The solutions to the “degenerate two-dimensional” ruin
problems strongly depend on the relative position of the vector of premium rates
p = (p1, p2) with respect to the proportions vector (1, 1). Namely, if the initial
reserves satisfy x2 ¬ x1, the two lines do not intersect. It follows therefore that
ψ∧ and ψ∨ are ruin probabilities of the second and first companies, respectively.
In this case the asymptotics follows from one-dimensional ruin theory, see, e.g.,
Rolski et al. [21]. Therefore, we focus here on the opposite case where

(1.5) x1 < x2.

In this paper we derive the exact first order asymptotics of these ruin probabil-
ities if x1, x2 tend to infinity and when the claims follow a subexponential distribu-
tion. We model the claims by subexponential distributions since many catastrophic
events like earthquakes, storms, terrorist attacks, etc. are used in their description.
Insurance companies use, e.g., the log-normal distribution (which is subexponen-
tial) to model car claims – see Foss et al. [11], Rolski et al. [21] or Embrechts et al.
[10] for the further background.

The paper is organized as follows. In the next section we present the main
results which will be proved in Section 3.

2. MAIN RESULTS

In order to state our results we recall basic notation and notions. Hereinafter
we write f(x, y) ∼ g(x, y) if f(x, y)/g(x, y)→ 1 as x, y →∞ and f(x) ∼ g(x)
if f(x)/g(x)→ 1 as x→∞. For a distribution F , F denotes the tail distribution
function given by F (x) = 1− F (x).

A distribution F on R+ is called subexponential (F ∈S) if and only if F (x)>0
for all x and

(2.1) F ∗2(x) ∼ 2F (x) as x→∞,

where F ∗2 is the convolution of F with itself.
A distribution F on R+ is called strong subexponential (F ∈ S∗) if and only

if F (x) > 0 for all x and

(2.2)
x∫
0

F (x− y)F (y) dy ∼ 2mFF (x) as x→∞,

where

mF =
∞∫
0

F (x) dx

is the expectation of F . It is known that the property F ∈ S∗ is a tail property of
F , namely, if F1 ∈ S∗ and F 1(x) ∼ F 2(x) as x→∞, then F2 ∈ S∗. Further, if
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F ∈ S∗, then F ∈ S and also F s ∈ S , where

F s(x) = min
(
1,
∞∫
x

F (t) dt
)

is the integrated tail distribution function determined by F ; see [11] for details.
Let us put

(2.3) mi = piEτ − Eσ, i = 1, 2.

Since p1 > p2, we have m1 > m2.

THEOREM 2.1. Assume that the distribution F of generic σ  0 is strong
subexponential. Then, as x1, x2 →∞,

(2.4) ψ∧(x1, x2, T ) ∼ HT (x1, x2) :=
ENT∫
0

F (min{x1 + tm1, x2 + tm2})dt

and

(2.5) ψ∨(x1, x2, T ) ∼ UT (x1, x2) :=
ENT∫
0

F (max{x1 + tm1, x2 + tm2})dt

hold uniformly for all T > 0.

COROLLARY 2.1. In conditions of Theorem 2.1, as x1, x2 and T →∞,

(2.6) ψ∧(x1, x2, T ) ∼
T/Eτ∫
0

F (min{x1 + tm1, x2 + tm2})dt

and

(2.7) ψ∨(x1, x2, T ) ∼
T/Eτ∫
0

F (max{x1 + tm1, x2 + tm2})dt.

COROLLARY 2.2. Assume that F is strong subexponential and a < 1 is fixed.
Then we have the following asymptotics as x→∞:

(2.8) ψ∧(ax, x) ∼ H(x) :=
∞∫
0

F (min{ax+ tm1, x+ tm2})dt

and

(2.9) ψ∨(ax, x) ∼ U(x) :=
∞∫
0

F (max{ax+ tm1, x+ tm2})dt.
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We can also identify the joint distribution of the ruin times (1.3) and (1.4) and
the position at the moment at these ruin times. To do this we will require additional
assumptions. Let e(x) be a function tending to infinity as x→∞. For fixed y  0
and v  0 we write

(2.10) Hy,v(x) =
∞∫

ye(x)

F
(
min{ax+ tm1, x+ tm2}+ ve(x)

)
dt

and

(2.11) Uy,v(x) =
∞∫

ye(x)

F
(
max{ax+ tm1, x+ tm2}+ ve(x)

)
dt.

Note that H(x) = H0,0(x) and U(x) = U0,0(x). We will assume that there exists
some continuous distribution function G such that

(2.12) lim
x→∞

Hy,v(x)

H(x)
= G(m1y + v)

and that

(2.13) lim
x→∞

Uy,v(x)

U(x)
= G(m2y + v).

THEOREM 2.2. Assume that there exist a function e(x) ↑ ∞ and a continuous
probability distribution G on the positive half-line (0,∞) such that (2.12) and
(2.13) are satisfied. Then, for a < 1, we have
(2.14)

lim
x→∞

P
{
τ∧(ax, x)

e(x)
 y,

Sτ∧(ax,x) − b∧(t)
e(x)

 v
∣∣∣τ∧(ax, x) <∞}

=G(m1y + v)

and
(2.15)

lim
x→∞

P
{
τ∨(ax, x)

e(x)
 y,

Sτ∨(ax,x) − b∨(t)
e(x)

 v
∣∣∣τ∨(ax, x) <∞}

=G(m2y+ v).

For similar statements for a linear boundary, see Asmussen and Klüppelberg
[2] and Foss et al. [11] in the case of i.i.d. jumps, and Asmussen and Foss [1] in
the case of Markov modulation.

REMARK 2.1. To provide examples where assumptions (2.12) and (2.13) are
satisfied, we choose strong subexponential distribution F for which F s is self-
neglecting. That is, let us assume that there exist a function e(x) ↑ ∞ and a contin-
uous probability distribution G on the positive half-line (0,∞) such that, for any
y > 0,

(2.16)
F

s(
x+ ye(x)

)
F

s
(x)

→ G(y) as x→∞.
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From [10], Theorem 3.4.5, p. 158, it follows that F s is either in the domain of
attraction of Fréchet distribution or in the domain of attraction of Gumbel distribu-
tion. In the first case,
(2.17)
F ∈ RV(α+ 1), F s ∈ RV(α), G(y) = (1 + α−1y)−α, e(x) = α−1x,

with α > 0 (then Eσ <∞) for the family RV(α + 1) of regularly varying distri-
butions. In the second case,

(2.18) G(y) = e−y, e(x) =
mFF

s
(x)

F (x)
.

To check (2.12) it is convenient to use the representation

Hy,v(x) =
1

m1
F

s(
ax+ (m1y + v)e(x)

)
(2.19)

+

(
1

m2
− 1

m1

)
F

s(
ax+m1T̂ + ve(x)

)
+

1

m2
F

s(
x+m2T̂ + ve(x)

)
for the moment when two lines ax+m1t and x+m2t cut each other:

T̂ =
(1− a)x
m1 −m2

.

Recall also thatH(x) = H0,0(x). Now one can check that if (2.17) holds true, then
indeed (2.12) is satisfied. Similarly, one can prove that in this case the assumption
(2.12) is also satisfied.

The case (2.18) is much more advanced and it should be analysed case by case
using, for example, [10], Example 3.3.35, p. 149.

In our proof of Theorem 2.1, we use the following simple result that may be
of use in other settings.

LEMMA 2.1. Let z(t)  0 be an increasing function, F a distribution, and
Nt a renewal process. Then

(2.20) E
NT∫
0

F
(
x+ z(t)

)
dt ¬

ENT∫
0

F
(
x+ z(t)

)
dt for all x and T > 0

and

(2.21) E
NT∫
0

F
(
x+ z(t)

)
dt ∼

ENT∫
0

F
(
x+ z(t)

)
dt as x, T →∞.
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If, in addition, the distribution F is long-tailed, then
(2.22)

E
NT∫
0

F
(
x+ z(t)

)
dt ∼

ENT∫
0

F
(
x+ z(t)

)
dt as x→∞ uniformly for all T > 0.

Notice that, in general, the last result is not applicable to an upper limit Nϱ,
where ϱ is a stopping time like in (3.16) and (3.17) below.

3. PROOFS

3.1. Proof of Theorem 2.1. As discussed above, it is sufficient to consider the
case x2 > x1. For any x > 0 and T̂ > 0, let x̂ = x+ p1T̂ and

b̂(t) :=

{
x+ p1t for t ¬ T̂ ,
x̂+ p2(t− T̂ ) for t > T̂ ,

which is a continuous piecewise linear function. Then both assertions of the the-
orem, (2.4) and (2.5), will hold if the following tail asymptotics is proven for all
p1 > 0 and p2 > 0, without assumption p2 < p1:

ψ(x, T̂ , T ) := P{St > b̂(t) for some t ¬ T}(3.1)

∼
ENT∫
0

F
(
x̂(t)

)
dt as x→∞ uniformly for all T̂ and T,

where

x̂(t) :=

{
x+m1t for t ¬ T̂ /Eτ,
x+m1T̂ /Eτ +m2(t− T̂ /Eτ) for t > T̂/Eτ.

Since F ∈ S∗, F is particularly subexponential and long-tailed. For any fixed
T , the random variable NT has a light tail, that is, it has a finite exponential mo-
ment. In addition, NT is independent of σ’s. Hence, by Theorem 3.37 in [11], for
every fixed T ,

(3.2) P
{ ∑
i:ti¬T

σi > x
}
=
∞∑
j=0

P{NT = j}F ∗j(x) ∼ ENTF (x) as x→∞,

and this equivalence holds uniformly on any T -compact set. This observation to-
gether with the lower and upper bounds

P
{ ∑
i:ti¬T

σi > x+max{p1, p2}T
}
¬ ψ(x, T̂ , T ) ¬ P

{ ∑
i:ti¬T

σi > x
}
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and long-tailedness of F implies that, uniformly on any T -compact set,

ψ(x, T̂ , T ) ∼ ENTF (x) as x→∞.

Taking into account that

NTF (x+max{m1,m2}T ) ¬
NT∫
0

F
(
x̂(t)

)
dt ¬ NTF (x)

and that F is long-tailed, we prove that (3.1) holds as x → ∞ uniformly on T -
compact sets.

Therefore, it remains to prove (3.1) for the case T →∞. If T ¬ T̂ , then

(3.3) ψ(x, T̂ , T ) = P
{ n∑
j=1

σj > x+ p1tn for some n ¬ NT

}
,

so, as proven in [17], Theorem 3, for the supremum of a compound renewal process
with negative drift Eσ/Eτ − p1 = −m1/Eτ , as x→∞ uniformly for T ¬ T̂ ,

ψ(x, T̂ , T ) ∼ 1

m1

m1ENT∫
0

F (x+ t)dt(3.4)

=
ENT∫
0

F (x+m1t)dt ∼
ENT∫
0

F
(
x̂(t)

)
dt,

where the last equivalence follows because ENT ∼ T/Eτ as T →∞ and, for any
ε > 0,

(3.5) (1− ε)
T/Eτ∫
0

F (x+m1t)dt ¬
(1−ε)T/Eτ∫

0

F (x+m1t)dt

¬
(1+ε)T/Eτ∫

0

F (x+m1t)dt ¬ (1 + ε)
T/Eτ∫
0

F (x+m1t)dt,

and similar bounds for the integral of F
(
x̂(t)

)
.

Let us now consider the case T →∞ and T > T̂ . If T̂ is bounded, then we
make use of the inequalities

P{St > x+ p1T̂ + p2t for some t ¬ T} ¬ ψ(x, T̂ , T )
¬ P{St > x− p1T̂ + p2t for some t ¬ T},

which reduce – due to long-tailedness of F – the problem to the case T̂ = T , a
particular case of that considered above.
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The case where T →∞, T̂ →∞ and T > T̂ , but T − T̂ is bounded, is very
similar. Indeed, in this case it is enough to notice that

P{St > x+ p2(T − T̂ ) + p1t for some t ¬ T} ¬ ψ(x, T̂ , T )
¬ P{St > x− p2(T − T̂ ) + p1t for some t ¬ T}.

Let us now consider the last remaining case where T → ∞, T̂ → ∞, and
T − T̂ →∞. We demonstrate two approaches, where the first one is based on the
uniform equivalences in the case of linear functions obtained in [17] and the second
on the discrete time results from [12].

3.2. Proof based on [17]. Since F is particularly long-tailed, there exists an
increasing function h(x)→∞ such that h(x) = o(x) and

(3.6) F
(
x+ h(x)

)
∼ F (x) as x→∞,

see [11], Lemma 2.19. For T > T̂ ,

ψ(x, T̂ , T ) ¬ P
{ n∑
j=1

σj > x+ p1tn − h(x) for some n ¬ N
T̂

}
(3.7)

+ P
{ n∑
j=1

σj ¬ x+ p1tn − h(x) for all n ¬ N
T̂
,

n∑
j=1

σj > x̂(tn) for some n ∈ (N
T̂
, NT ]

}
=: P1 + P2.

Again by [17], Theorem 3,

(3.8) P1 ∼
EN

T̂∫
0

F
(
x− h(x) +m1t

)
dt ∼

EN
T̂∫

0

F (x+m1t)dt as x→∞,

as follows from (3.6).
The second probability on the right-hand side of (3.7) equals

(3.9) P2 = P
{
S
T̂
¬ x+ p1T̂ − h(x),

S
T̂
− p1T̂ +

n∑
j=N

T̂
+1

σj − p2(tn − T̂ ) > x for some n ∈ [N
T̂
+ 1, NT ]

}
.

We need to exclude dependence caused by the interval (T̂ , tN
T̂
+1]. We do it in the

following way:

sup
n∈[N

T̂
+1,NT ]

( n∑
j=N

T̂
+1

σj − p2(tn − T̂ )
)

¬ σN
T̂
+1 + sup

n∈[N
T̂
+2,NT ]

( n∑
j=N

T̂
+2

σj − p2(tn − tN
T̂
+1)

)
,
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where the two random variables on the right-hand side are independent because
tN

T̂
+1 is a stopping time. Further, extending the interval (tN

T̂
+1, T ] to the interval

(tN
T̂
+1, tN

T̂
+1 + T − T̂ ] of length T − T̂ , we conclude that

sup
n∈[N

T̂
+2,NT ]

( n∑
j=N

T̂
+2

σj − p2(tn − tN
T̂
+1)

)
is stochastically not greater than

ζ
T−T̂ := sup

t¬T−T̂
(St − p2t),

whose tail is equivalent to, again by [17], Theorem 3,

P{ζ > z} ∼
EN

T−T̂∫
0

F (z +m2y)dy as z →∞.

Fix any ε > 0 such that m1 = p1Eτ − Eσ > ε. Then it follows from (3.9) that,
with ζ̃

T−T̂ being an independent copy of ζ
T−T̂ ,

P2 ¬
x−h(x)∫
−∞

P{S
T̂
− p1T̂ ∈ dy}P{σN

T̂
+1 + ζ̃

T−T̂ > x− y}(3.10)

=
x−h(x)∫
−∞

P{S
T̂
− p1T̂ + (m1 − ε)T̂ /Eτ ∈ dy + (m1 − ε)T̂ /Eτ}

× P{σN
T̂
+1 + ζ̃

T−T̂ > x− y}

=
x+(m1−ε)T̂ /Eτ−h(x)∫

−∞
P{S

T̂
− (Eσ + ε)T̂ /Eτ ∈ dy}

× P{σN
T̂
+1 + ζ̃

T−T̂ > x+ (m1 − ε)T̂ /Eτ − y}.

We have

P{σN
T̂
+1 + ζ̃

T−T̂ > u} ∼ P{ζ̃
T−T̂ > u}+ F (u) as u→∞,

by [11], Corollary 3.16. Since the process St − (Eσ + ε)t/Eτ has negative drift
−ε/Eτ and its value at time T̂ does not exceed the value of its maximum at the
same time, we also have

P{S
T̂
− (Eσ + ε)T̂ /Eτ > u} ¬ c1(ε)P{ζT̂ > u},

where
ζ
T̂
:= sup

t¬T̂
(St − p1t).
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Integrating (3.10) by parts, applying the last upper bound and then integrating by
parts back, we deduce that

x+(m1−ε)T̂ /Eτ−h(x)∫
h(x1)

P{S
T̂
− (Eσ + ε)T̂ /Eτ ∈ dy}

× P{σN
T̂
+1 + ζ̃

T−T̂ > x+ (m1 − ε)T̂ /Eτ − y}

= o
(
P{ζ

T−T̂ > x+ (m1 − ε)T̂ /Eτ}+ P{ζ
T̂
> x+ (m1 − ε)T̂ /Eτ}

)
,

by [11], Theorem 3.28, because F ∈ S∗. Hence,

P2 ¬
h(x)∫
−∞

P{S
T̂
− (Eσ + ε)T̂ /Eτ ∈ dy}

× P{σN
T̂
+1 + ζ̃

T−T̂ > x+ (m1 − ε)T̂ /Eτ − y}

+ o
(
P{ζ

T−T̂ > x+ (m1 − ε)T̂ /Eτ}+ P{ζ
T̂
> x+ (m1 − ε)T̂ /Eτ}

)
¬ P{σN

T̂
+1 + ζ̃

T−T̂ > x+ (m1 − ε)T̂ /Eτ − h(x)}+ o(. . .)

∼ P{ζ̃
T−T̂ > x+ (m1 − ε)T̂ /Eτ}+ o

(
P{ζ

T̂
> x+ (m1 − ε)T̂ /Eτ}

)
∼

ENT−ENT̂∫
0

F
(
x+ (m1 − ε)T̂ /Eτ +m2t

)
dt

+ o
(
P{ζ

T̂
> x+ (m1 − ε)T̂ /Eτ}

)
¬

ENT∫
(m1−ε)T̂ /Eτ

F (x+m2t)dt+ o
(
P{ζ

T̂
> x+ (m2 − ε)T̂ /Eτ}

)
for all sufficiently large T̂ . Being substituted together with (3.8) into (3.7), it im-
plies that

ψ(x, T̂ , T ) ¬
(
1 + o(1)

)( EN
T̂∫

0

F (x+m1t)dt+
ENT∫

(m1−ε)T̂ /Eτ

F (x+m2t)dt
)
.

Since EN
T̂
∼ T̂ /Eτ as T̂ →∞ and due to (3.5) with T = T̂ , we get

ψ(x, T̂ , T ) ¬
(
1 + o(1)

)( T̂ /Eτ∫
0

F (x+m1t)dt+
ENT∫
T̂ /Eτ

F (x+m2t)dt
)

as x, T, T̂ , T − T̂ →∞. So, we obtain

(3.11) ψ(x, T̂ , T ) ¬
(
1 + o(1)

) ENT∫
0

F
(
x̂(t)

)
dt as x, T, T̂ , T − T̂ →∞.
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For the lower bound, let us fix an ε > 0 and follow the standard arguments
based on the strong law of large numbers and the single big jump principle. By the
strong law of large numbers, there exists an A such that

(3.12) P{|tn − nEτ | < nε+A for all n  1}  1− ε.

On the event introduced in (3.12), if n ¬
[
T̂−A
Eτ+ε

]
=: n̂, then tn ¬ T̂ , and hence

n ¬ N
T̂

. Further, on the event introduced in (3.12), if n1 :=
[
T̂−A
Eτ−ε

]
< n ¬

[
T−A
Eτ+ε

]
=: n2, then T̂ < tn ¬ T , and hence N

T̂
< n ¬ NT .

Then, since σ̄’s do not depend on the renewal process Nt, we obtain the in-
equality

(3.13) ψ(x, T̂ , T )  (1− ε)P
{ n∑
i=1

σ̄i > b̂
(
n(Eτ + ε) +A

)
− nEσ

for some n ¬ n̂ or n ∈ (n1, n2]
}
.

Then the standard arguments based on the strong law of large numbers – now for
σ’s – and the single big jump principle finally imply the lower bound

ψ(x, T̂ , T ) 
(
1 + o(1)

) ENT∫
0

F
(
x̂(t)

)
dt as x, T, T̂ , T − T̂ →∞,

which together with (3.11) concludes the proof. �

3.3. Proof based on [12]. Let us now give an alternative proof of the asymp-
totic behaviour of ψ(x, T̂ , T ) in the case T →∞ based on the results for discrete
time from [12].

Let Sn =
∑n

k=1 σk, σ̄n = σn − Eσ, and S̄n =
∑n

k=1 σ̄k ≡ Sn − nEσ be a
centered random walk. From either Corollary 3 of [13] or Theorem 1 of [9], it
follows that, for any random variable γ having a light-tailed distribution (that is,
E exp(δγ) <∞ for some δ > 0), we have, for any real C,

(3.14) P{S̄n > x+ nC for some n ¬ γ} ∼ EγF (x).

Let us take ε > 0 sufficiently small, such that p1(Eτ − ε) − Eσ > 0 and
p2(Eτ − ε)−Eσ > 0. We take γ = min{n  1 : tk  (Eτ − ε)k for all k  n},
which is finite almost surely due to the strong law of large numbers. Moreover, this
random variable γ is light-tailed because, for δ > 0,

P{γ > n} = P{tk < (Eτ − ε)k for some k  n}
= P{eδ((Eτ−ε)k−tk) > 1 for some k  n} ¬ (Eeδ(Eτ−ε−τ))n,

by Doob’s inequality provided that Eeδ(Eτ−ε−τ) < 1; it holds for all sufficiently
small δ > 0 since the random variable Eτ − ε− τ is bounded above and has neg-
ative mean.
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Then

P{S̄n > b̂(tn)− nEσ for some n ¬ γ}
¬ P{S̄n > x− nEσ for some n ¬ γ} ∼ EγF (x),

by (3.14). Therefore, for all T > 0,

ψ(x, T̂ , T ) ¬ P{S̄n > b̂(tn)− nEσ for some n ¬ γ}

+ P
{
S̄n > b̂

(
n(Eτ − ε)

)
− nEσ for some n ∈ (γ,NT ]

}
¬ O

(
F (x)

)
+ P

{
S̄n > b̂

(
n(Eτ − ε)

)
− nEσ for some n ¬ NT

}
as x→∞ uniformly for all T > 0.

Now we recall the following result where the class Γ is a class of all count-
ing random variables γ such that, for all n, the event {γ ¬ n} does not depend
on {σk}k>n. For c > 0, let Gc be the class of functions g such that g(n + 1) 
g(n) + c for all n = 1, 2, . . .

THEOREM 3.1 (see [12], Theorem 2(ii)). Assume S̄n =
∑n

1 σ̄n is a centered
random walk where the common distribution of σ̄n belongs to the class S∗. Then,
for any c > 0, uniformly for all g ∈ Gc and for all random times γ ∈ Γ, we have

P
{
max
n¬γ

(
S̄n − g(n)

)
> x

}
∼

∑
n1

P(γ  n)P
(
σ̄1 > x+ g(n)

)
(3.15)

∼
∑
n1

P(γ  n)F
(
x+ g(n)

)
as x→∞.

Consider a function g of the form g(n) = b̂
(
n(Eτ − ε)

)
− nEσ − x, which is

in the class Gp1∧p2 . By Theorem 3.1, we get

P
{
S̄n > b̂

(
n(Eτ − ε)

)
−nEσ for some n ¬ NT

}
∼

∑
n

P{NT  n}F
(
x+ g(n)

)
as x→∞ and T →∞. Further, since ε > 0 is arbitrary, we may follow the proof
of the upper bound for ψ and let ε→ 0 to obtain an upper bound of the form(

1 + o(1)
)∑

n

P(NT  n)F
(
x̂(n)

)
.

The last sum may be rewritten as

E
∑
n

I(NT  n)F
(
x̂(n)

)
= E

NT∑
n=1

F
(
x̂(n)

)
∼ E

NT∫
0

F
(
x̂(t)

)
dt as x→∞.

Here the last equivalence follows from the long-tailedness of F . Finally, we may
use Lemma 2.1 to conclude with the upper bound (3.11).

Theorem 3.1 is also applicable to (3.13), therefore the correct lower bound for
ψ(x, T̂ , T ) follows too. �
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3.4. Proof of Lemma 2.1. For any fixed x, the function

f(y) :=
y∫
0

F
(
x+ z(t)

)
dt

is a concave function in y because f ′(y) = F
(
x+ z(y)

)
is decreasing in y. Then

the upper bound (2.20) follows by Jensen’s inequality for concave functions.
Concerning (2.21), notice that, for any fixed ε > 0,

E
NT∫
0

F
(
x+ z(t)

)
dt  P{NT > (1− ε)ENT }

(1−ε)ENT∫
0

F
(
x+ z(t)

)
dt,

where P{NT > (1− ε)ENT } → 1 as T →∞ by the law of large numbers for the
renewal process, and

(1−ε)ENT∫
0

F
(
x+ z(t)

)
dt  (1− ε)

ENT∫
0

F
(
x+ z

(
(1− ε)t

))
dt

 (1− ε)
ENT∫
0

F
(
x+ z(t)

)
dt,

implying the lower bound

E
NT∫
0

F
(
x+ z(t)

)
dt 

(
1 + o(1)

) ENT∫
0

F
(
x+ z(t)

)
dt as x, T →∞,

which together with the upper bound (2.20) justifies (2.21).
Finally, for any fixed T and A, since z(t)  0 increases, we obtain

E
NT∫
0

F
(
x+ z(t)

)
dt  E

{NT∫
0

F
(
x+ z(t)

)
dt; NT ¬ A

}
 F

(
x+ z(A)

)
E{NT ; NT ¬ A} ∼ F (x)E{NT ; NT ¬ A} as x→∞

provided F is long-tailed, in which case also
ENT∫
0

F
(
x+ z(t)

)
dt ∼ F (x)ENT as x→∞,

and hence the asymptotics (2.22) follows uniformly on T -compact sets. Together
with (2.21) it completes the proof. �

3.5. Proof of Theorem 2.2. The proof of this result is very similar to the proof
of (2.5) of Theorem 2.1. For example, to prove (2.14) it suffices to observe that

P
{
τ∧(ax, x)

e(x)
 y,

Sτ∧(ax,x) − b∧(t)
e(x)

 v; τ∧(ax, x) <∞
}

= P
{
S̄n > min{ax+ p1tn − nEσ, x+ p2tn − nEσ}+ ve(x)

for some n  ye(x)
}
. �
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3.6. Generalisation to n insurance companies. It is more or less clear that a
very similar proof works for (3.1) if x̂(t) is a continuous piecewise linear increasing
function. Then it allows us to go beyond two insurance companies and consider a
model with an arbitrary number of them. Clearly, in high dimension one has to
overcome extra combinatorial problems that seem to be doable.

3.7. Open question. We strongly believe that an analogue of Theorem 2.1
holds for stopping times, say ϱ instead of T . We expect the following to be correct:

(3.16) ψ∧(x1, x2, ϱ) ∼ E
Nϱ∫
0

F (min{x1 + tm1, x2 + tm2})dt

and

(3.17) ψ∨(x1, x2, ϱ) ∼ E
Nϱ∫
0

F (max{x1 + tm1, x2 + tm2})dt

hold as x → ∞ uniformly for all stopping times ϱ with respect to the filtration
generated by the renewal process Nt.

Acknowledgments. We thank Serban Badila for discussions and preliminary
results included in his thesis which motivated us to work on the subject and to come
to much shorter proofs of more general results given in Theorems 2.1 and 2.2.
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