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Abstract. The present paper treats of discrete-time stationary 
models of stochastic games with an abstract measurable state space 
and separable metric action spaoes. Under different assumptions on 
the state space, action spaces, the reward function, and the law of 
motion (assumptions (M,), (M,), (hi,)), a full solution of the finite 
horizon models is given. To ensure the existence of value in the 
infinite horizon models we impose some convergence conditions 
(conditions (D) and (P)) on the expected rewards, thus including the 
discounted case. The proofs of the existence of optimal (or E -  

optimal) strategies for both players rely on iterative, finite horizon to 
infinite horizon methods. 

Pntroduetion. Stochastic games were introduced by Shapley C26-j who 
assumed that the state space S and the action spaces X and Y of players I 
and 11, respectively, are finite sets. He also assumed that each play would 
terminate in a finite number of stages with probability one and he con- 
sidered stationary strategies only. Maitra and Part hasarathy studied in [17] 
and [I81 two kinds of stochastic games with an infinite number of stages: 
discounted sfochastic games where the reward function is bounded and there 
is discounting and positive stochastic games where the reward function is 
bounded and non-negative. In 1171 and [I81 Maitra and Parthasarathy 
were the first ones to consider the discounted stochastic games under the 
assumption that S, X, and Y are uncountable sets. More precisely, they 
assumed that S, X, and Y are compact metric spaces and the reward function 
and the law of motion satisfy some continuity requirements. More general 
results for discounted stochastic games with a standard Bore1 space of states 
and compact metric spaces of actions may be found in [3], [8], and [12]. 
Models of positive stochastic games with finite action spaces and a standard 
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Borel state space were first studied by Frid [5]  and subsequently by 
Hirnmelberg et al. [8]. Stochastic games with unbounded reward function, 
metric state space and compact metric spaces of actions and under a 
convergence assumption which is more general than discounting were recen- 
tly studied by Couwenbergh in 131. He imposed similar continuity assuni- 
ptions on the reward function and on the law of motion as Himmelberg et 
al. in [8], I&ik in [12], and Parthasarathy in 1223 

The aim of this paper is to study stochastic games under a similar 
convergence assumption as in [3] (cf. Section 2, condition (D)) and positive 
stochastic games under a na!ural integrability condition (cf. Section 2 
condition (P)). We-consider three models ((MI), (M,), (M3)) of stochastic 

which differ themselves in the assumptions imposed on the state space, 
the action spaces, the reward function, and the law of motion. From the 
point of view of the assumptions. involved these modeh are new. For each of 
the models (MI), (MZ), (M,) of the game with finite number of stages we 
obtain the existence of value and optimal Markov strategies for both players 
(Theorem 4.1). In Section 5 we show that under the assumption (D) the 
stochastic game has a value (Theorem 5.1) and both players have optimal 
stationary strategies (Theorem 5.4). The results obtained generalize and 
complete numerous earlier results on discounted stochastic games. More 
detailed discussion will be presented in the sequel. The study of positive 
stochastic games is postponed to part I1 of this paper 1201. 

The basic tools of this paper are topologies on spaces of probability 
measures, semi -continuous functions, multifunctions, measurable selections, 
and the uniformization of Bore1 and analytic sets (see Section 1).  

1. Prelirnimries. Throughout this section, we assume (S, 9') to be a 
measurable space and X to be a separable metric space endowed with the 
a -algebra .99(X) of its Borel subsets. Let R denote the set of real numbers. We 
write M(S) for the set of all measurable functions u :  S + R, and B(S) for the 
set of all functions in M(S) which are bounded. By C(X)  we denote the set of 
all continuous functions in B(X) and by c(X) (G(X)) the set of all upper 
semi -continuous (lower semi -continuous) functions in B(X).  

- - 
We shall need the following 
LEMMA 1.1 (cf. C251, Proposition 10.1). Let u , ~ g ( X ) ,  n 2 1, and let u,(x) 

2 u,(x) for n 3 rn a d  x E X .  Assume that the limit 

u(x) : = lim u,(x) 
n 

exists for each x E X .  Then u E c(X) and, for each x E X, 

lim inf u,(x) = inf fim un(x) 
n XEX xeX n 

provided that X is compact. , 
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Denote by P(S)  the set of all probability measures on (S, Y). Given any 
9 c B(S) we may endow P(S) with the 9-topology defined as the coarsest 
topology in which all mappings 9 -, judp, U E  9, are continuous. A net {k} 
will converge to po in the 9 - topology if and only if 1 u d k  + 1 udp, for each 
U E P .  In the case of 9 = C(X), the S-topology on P ( X )  is called the w -  
topology (weak topology). In the case of 9 = B(S), the 9-topology on P(S) 
is called the s - topology (strong topology). 

From the theorem of Dini and Theorem 2.6 of [6] we obtain the 
following 

LEMMA 1.2 For any 0 c PIS), the following statements are equivalent: 
(i) D - is relatively compact in the s - topology ; 
(ii) FOP' any sequence (u,,) in B(S)  which decreases to 0, 

lu,dp+O as n-+  ao, uniformly in p f D .  . - 

For any separable metric space X, we shall assume that the set P(X) is 
endowed with the w :topology, Then P ( X )  is also a separable metric space 
(cf. [2l] ,  Theorem TI 6.2). 

LEMMA 1.3. The a-algebra B(P(X)) of all Borel subsets of P(X)  coincides 
with the smallest a-algebra on P(X)  such that, for each EEL%@), the mapping 
p + p(@ is measurable. 

A proof of this fact can be found in [24]. 
A separable metric space X is called a Polish space if X is complete. X is 

called an SB-space (standard Borel space) if X is a Borel subset of a Polish 
space. X is called an analytic space if X is a continuous image of a Polish 
space. For a detailed discussion see [14]. 
We have the following facts: 

(1.1) if X is Polish, then P ( X )  is Polish (cf. 1211, Theorem I1 6.5); 

(1.2) if X is compact, then P ( X )  is compact (cf. [21], Theorem I1 6.4); 

(1.3) if X is an SB-space, then P{X)  is an SB-space (cf. [lo], p. 91); 

(1.4) if X is analytic, so is P(X) (cf. [2], p. 933). 

The following lemma can be obtained directly from the theorem of Baire 
and the bounded convergence theorem. 

LEMMA 1.4. If U E ~ ( X ) ,  then the mapping p + ludp dejned on P(X) is 
upper semi -continuous. 

Using Lemma 1.4 and Fatou's lemma we obtain 
LEMMA 1.5. Let X and Y be separable metric spaces. Let u :  X x Y 4 R be 

a bounded Borel measurable function such that u(-, y) E C(X) for each y E Y and 
u(x, .) E c(Y) for each x E X .  Then the mapping ii: P ( X )  x P(Y) -, R deJined by 
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is such that 

~ ( p ,  -) E C(P(Y) )  for each ~ L E  P ( X )  and G(., A) €C(P(X)) jbr each A E P ( Y ) .  

LEMMA 1.6. k t  X and 1.' be separuble metric spaces. Let (S, 9) be a 
measurable space. Assume that u : S x X x Y + R is an (9' @ a(X) @ g( Y)) - 
measurable function such that u(s, ., - )  i s  bounded for each s E S .  Then the 
mapping G: S x P ( X )  x P(Y) + R defined by 

.- 
is $9 (Y BB(P(x))BB(P(Y))) - masurabIe function. 

Proof. If u is the characteristic function of the set El x E 2  x E B ,  where 
El E Y ,  E2 E S ( X ) ,  E3 E B(Y), then the lemma follows immediately from 
Lemma 1.3. The rest of the proof is similar to that of Lemma 12.2 in [IO]. 

Denote by PIX), 9(X), and .%(a the sets of all non -empty, all non - 
empty closed, and all non-empty compact subsets, respectively, of a separ- 
able metric space X. 

A function F: S -. P(X) is called a multifunction. A multifunction F is 
said to be measurable if . 

whenever U c X is open. 
A selection of F is a function f : S 4 X such that f (s) E F(s) for each s E S. 

If F: S -, PtX) is a measurable multifunction with complete values, then by 
the theorem of Kuratowski and Ryll-Narclzewski F admits a measurable 
selection (cf. [15], Theorem 1). We denote by YF the set of all measurable 
'selections of a multifunction F. 

The graph of P :  5 -, P(X) is defined by 

We say that F has a meusurable graph if Gr F EY@~(X).  
LEMMA 1.7 (cf. [9], Theorem 3). Assume that X and Y me SB-spaces. Let 

F :  X + X ( Y ) .  Then the following statements are equival&t: 
(i) P ?m.s a measurable graph; 
(ii) F is measurable. 
LEMMA 1.8 (6. [28], Theorem 4.2). Let (S, 9) be a measurable space such 

that Y is closed with respect to the Suslin operation. Let X be a metric 
analytic space and F: S -P .F(X). Then rhefollowing statements are equivalent: 

(i) F has a measurable graph ; 
(ii) F is measurable. 
LEMMA 1.9 (cf. [16], Theorem 5.5). Let (S, 9') be a measurable space such 

that Y is closed with respect to the Suslin operation. Let X be an analytic 
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space and let E E Y @ ~ ( X ) .  Then projsE EY, where proj, is the projection 
fiom S x X into S.  

LEMMA 1.10. Let ( S ,  Y) be a muswable space and X a separable metric 
space. Let F :  S 4 X(X) be a measurable multifunction. Assume that u :  S x X 
+ R is an (Y @SB(X)) - measurable function such that u(s, .) E C(F(S))( ')  for 
each s ES and put 

H ( s ) = { x ~ F ( s ) :  u ( s , x ) < w ( s ) ) # 0  for each S E S ,  

where w E M(S). Then H is measurable. 
Proof. ~ e n b t e  by cl the closure in X. Since F has closed (even compact) 

values, b;y- Theorem 5.6 of [7] there is a sequence if,) of measurable 
selections of P such that F{s) = cl(f,(s)} for all SES. - 

Mow, for each n 2 1 we define a sequence of sets 

Since u is an (9 @ g ( X ) )  - measurable function, w s M(S), and u(s, .) E C(F(s))  
for each s E S, we have Em E .9' for a, m 3 1 and, moreover, we may assume 
without loss of generality that En, # 0 for each pa, rn 2 1. 

Define C,(s) = {X(s )  : s E E ~ ]  for each n 2 1 and each s ES. Let U c X be 
an open set. Then 

m 

Cil(U) = ( s :  C,(s)nU # 0) = U E,n{s: & ( s ) E U ) E Y  
k= 1 

and, consequently, C, is a measurable multifunction for each n 2 I. Now, we 
note that C,(s) c F(s) for each S E S .  This and Theorems 4.1 and 5.6 of [7] 

m 

imply that D(s) = n cl C,(s) is a measurable multifunction. It is easy to see 
n= 1 

that H(s) = D(s) for each s E S, which completes the proof. 
For any multifunction F: S + N(X) we define the multifunction G: S 

+ B ( P ( X ) )  as G(s) = P(F(s)) for each s E S. 
We have the following 
LEMMA 1.1 1. Assume that P(X)  is endowed with the w -topology. Then G is 

compact-valued and i f  F is measurable, so is G. 
Proof. since X is a separable metric space, so is P ( X )  with the w- 

topology [21] and, by (1.2), G is compact-valued. Let F be a measurable 
multifunction. By Theorem 5.6 of [7] there is a sequence ( f,) of measurable 
functions f,: S + X such that F(s) = cl { f,(s)) for each SES.  It is clear that 
each f,, ~12 1, is measurable as a function f,: S + P(X). Let Q be the set of 
all sequences (A,,  A,, .. ., A,, ...) of non-negative rational numbers such that 

(I) u(s, .) €C(F(s))  means that the restriction of u(s, -) to F(s) is continuous. 

2 - Pmb. Math. Statist 4 (1) 
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all but finitely many A,'s are 0 and X A ,  = 1. Let {I,) EQ. Then there is a 
rt 

finite sequence A,,, ,In2, . . ., An, of rational numbers such that 
A 

A n m > O , m = 1 , 2  ,..., k, and xAnm=l .  
m= 1 

By R,f,(s) we denote a probabihty measure F( on B(X) with finite support 
A 

f , , (s) ,  fnZ(s), . .., fnk(s) such that fnm(s) = rn = 1, 2, .. ., k. It is clear that 

for each {A,) E Q the . . function A, f,, as a function from S into P(X),  is 
H 

measurable. Since the set Q is countable, so is V = {x l,f,: {A,) FQ]. Let 
n 

- 

V(s)  = ( x L n  f,(s): {A,] eQ) for each S E S .  
n 

By Theorem 5.6 of [7], the closure cl V(s) in the w -topology of P ( X )  is a 
measurable multifunction. By Theorem 11. 6.3 of [21] we know that G(s) 
= cl V(s)  for each s F S, which completes the proof. 

For any two measurable spaces (S ,  , 9,) and (S,, Y,), let Q (S,  IS,) be the 
set of all conditional probabilities on (S,, 9,) given ( S , ,  Y,), i.e. the set of 
all functions q on Y2 x S ,  such that q(E1.) E BIS,) for each E E Y ,  and 
q(-1s) €P(S2)  for each s E S ~  or, equivalently, the set of all functions q: S, 
+ P(S2) such that the mappings s -, q(E(s) are measurable for each E €9,. If 
Y is a metric space and P ( Y )  is endowed with the w -topology, then every 
measurable function q: S + P(Y) is a conditional probability on Y given 
(S ,  9). If Y is also separable, then q:  S + P(Y) is a conditional probability 
on given (S, Y), if and only if q is measurable (cf. [24J, Lemma 6.1, and 
[4],  Theorems 2.1 and 3.1). 

Let {(S,, 14Pi)] ,  i = 1 ,  2 ,  .. ., n, be measurable spaces. We denote by M(S,  
x S2 . . . x SJ the set of a11 (9, 8 Y ,  8 . . . 8 Y J  -measurable (product 
measurable) functions defined on the Cartesian product S, xS2  x . .. xS,. 
By B(S, x S2 x . . . x S,,) we denote the set of all bounded functions in M(S,  
x s 2 x  ... XSJ. - 

2. Mdel  formulation The background for a zero -sum stochastic game 
may be provided by a two -person stackastic control system 

where 

(2.1) (S,  9) is an abstract measurable space, S being a non-empty set of 
states of the system; 

(2.2) X and Y are separable metric spaces of actions of players I and 11, 
respectively ; 
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(2.3) A :  S + X ( X )  and 3: S -, X ( Y )  are measurable, A(s) and B(s) being 
the sets of all admissible actions to players I and 11, respectively, 
when the system is at the state s; 

(2.4) r EB(S x X x Y) is the reward function; 

(2.5) q E Q(SJS x X x Y) is the law of motion of the system ; 

(2.6) /I 3 0 is the discount factor. 

Periodically, players I and BI observe the current state s of the system 
and choose actions XEA(S) and y~B(s) ,  respectively; the choice of the 
actions 'is made with full knowledge of the history of the system, which has 
been evolved to +he present. As a consequence of the actions chosen by the 
players, two things happen: player II pays player H r(s, x, y) units and the 
system moves to a new state t according to the probability distribution 
q(.ls, x, y). The process is then repeated from the new state t. Player I 
maximizes his expected income and player TI minimizes his expected loss as 
the game proceeds over the infinite future. (These notions will be defined 
more carefully below.) 

Let us set P,(s) = P(A(s)) and P,(s) = P(B(s)) for each SES. Then by 
Lemma 1.1 1 PA and P, are measurable compact -valued multifunctions, 

Put HI = S  and H , = S X X X Y X H , - ~  for n32. 
A strategy for player I is a sequence n = (n,, n,, .. .), where n,,cQ(XjHJ 

for each n 2 1 and n,(A(sn)lsl, x,, y,, . .., s,) = 1 for each (sl, x,, y, ,  .. ., s,) 
EH,, n 2 1. We denote by Il the set of all strategies of player I. A strategy n 
is called Markou iF x,EQ(X~S) for each n 2 1, i.e. if each n, depends only on 
the actual state of the system. The set of all Markov strategies of player I will 
be denoted by 17,. A strategy 7~ is called semi -stationary if n, = f for each n 
2 1, where f EQ(XIS xS). More precisely, a semi-stationary strategy is 
a strategy such that the action taken by player I at the n-th stage of the 
play depends only on the initial state and on the n-th state. We denote by 
Il, the set of all semi-stationmy strategies of player I. Finally, a stationary 
slrategy n: of player I is a Markov strategy such that n, = f for each n 2 1, 
where f is some measurable selection of the multifunction Pa-. A stationary 
strategy determined by some f EY,, will be denoted by We denote by 
l7, the set of all stationary strategies of player I. 

The sets T, T,, r,,, T, of all strategies, all Markov strategies, all semi - 
stationary strategies, and all stationary strategies, respectively, of player I1 
are defined similarly. 

Remark. By Lemma 1.11 and by the selection theorem of Kuratowski 
and Ryll -~ardzewski ([15], Theorem I), 17, and T, are non-empty. 

bet us set 

E l = S  and E,=Gr(AxB)xE,-, f o r n 2 2 ,  
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where Gr (A x B )  = ((s, x, y ) :  X E . ~ ( S )  and y E B(s)). Then En is the set of all 
histories of the model up to time n. The assumption (2.3) and Theorem 3.5 of 
[7] imply that, for each n >, 1, E, is a measurable subset of the product space 
H,, endowed with the product a - algebra. The set E of all plays of the game 
is defined by setting 

It-is clear that. E is a measurable subset of the product space 

endowed with the product cr - algebra. - 
An application of the theorem of Ionescu Tulcea [I91 yields that any pair 

(n, y)eIT x r together with the law of motion q and SES uniquely defines a 
probability measure m(x,  7, s) on the product a-algebra of K = X x Y x S  
x X x Y x S x . . . Moreover, for any non -negative u E M(H), the expression 
j'udm(x, y, .) is an Y-measurabIe extended real -valued function. From the 
definition of .rr and y it follows that if u is the characteristic function of the 
set E, then Sudm(n, y, s) = 1 for all s 6 S. 

Let F ,  = S x X x Y x S x X x Y x  ... x S x X x Y  (3n factors) and Iet 
UEB(F,,), n 2 1. Then for each n, y, and sl ES we have 

Now, for each n 2 1 and each h = (s,, x,, y,, . . . , s,, x,, y 3  we define the 
n -stage reward function v,  E B(Fn) as 

and for any pair (n, y) we define the expected n-stage Award function of 
( x ,  y) and the initial state s, as 

%(a, Y) (s1) = Jv*(h)dm(.n, Y, s1). 

We shall often omit the variable s, in writing the expected reward functions. 
Let r,(x, y)  denote .-the expected reward function at the n -  th stage, i.e., 



Then 

(2.7) 

Put 
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where h = (s,, x, ,  y,, . . ., s,, x,, y,J, rn 2 n 2 1. k t  US set 

R? (n, Y) ( ~ 1 1  = 1 ~ " , C ~ l d m ( n ,  Y, s,) 
and .. . - 

. - 

The limit lim '6/,(n, y )  may also be infinite or may be indefined. In this 
n 

paper we shall study two cases in which the model is well defined: 
(D) z,(s) -, 0 pointwise as n -, co ; 
(P) r 2 0, /I = 1, and the structure of the model is such that 

sup sup 1 / , ( 7~ ,  y)  is) < 60 for each s ES. 
n x.y 

Now under (D) or (P) we define the expected reward function over the 
infinite future as foIlows: 

Remark.  Let r+  = max ( r ,  0) and r- = min { r ,  0). We define two func- 
tions v ' :  H - t R u ( o o )  and v - :  H+Ru(-oo) by 

where h = ( s l , x l , y l ,  ...) E H .  
We claim that (D) yields 

V ( R ,  yl = 'V+(.n, y)+ v-(.rc, Y), - - 
and (P) gives V(K, y) = V +  ( K ,  y), where 

V+(n,  y)  = Iv+(h)dm(x, y) and V - ( n ,  y) =ju- (h)dm(x ,  y).  

Remark,  The condition (I)) holds in the discounted case, i.e., when 
f l ~ [ O ,  I), because r is bounded. For results in this direction see {I], [8], 191, 
[12], 1231, etc. Stochastic games under the assumption similar to (D) were 
recently studied by Couwenbergh in [3]. He assumed the uniform conver- 
gence of the n-stage reward functions Vn on il x T x S, but he allowed the 
reward function r to be unbounded. Stochastic games which satisfy the 



A. S. Nowak 

condition (P) are called positive stochastic games. For results in this direction 
see 151, [83, and [13]. The study of the condition (P) is contained in part II 
of this paper 1201. 

Let us set 

v* = sup inf V(n, y) and iP = inf sup V (K, 7)). - 
X E ~   YE^  YE^ KGR 

We say that the stochastic game has a value if _v* = P, and we denote the 
value function by v* .  

. A  strategy a* is E -optimal for .player I (E 3 0) if 

. -. - i F < V ( z * , y ) + ~  for each  YE^. 

A strategy y* is &-optimal fox player II (E 2 0) if 

v * >  V ( K ,  y * ) - E  for each X E ~ .  - 
(The 0-optimal strategies are called optimal.) 

3. Mdek with additional semi-continuity or comtatinaity assumpaiow. To 
prove the main results of the paper we impose some additional conditions on 
the model presented in Section 2. We shaII examine the stochastic games 
which satisfy one of the following assumptions: 

(MI) r(s,  ., a), q(EJs, a ,  -)EC(A(S) xB(s))  for each S E S  and E c Y .  
(M2) X and Y are analytic spaces, and Y is a G-algebra which is closed 

with respect to the Suslin operation. Moreover, 

r(s, -, y), ~ ( E { s ,  ., Y ) E  C(A(s)) and r(s ,  x, -1, q(Els, x, - )€C(B(s) )  

for each (s, x, y) E G ~  (A x 3) and each E E Y. 
(M,) S, X, and Y are SB-spaces and, moreover, 

T(S,  ', Y )  E e ( ~ ( s ) ) ?  i ( s ,  x, 9 E G(B(s)) 
and 

q(Els, - 3  Y)  E C(A(s)), q(Els9 x, .) E C(B(s))  

for each ( s ,  x, y) E Gr (A x B) and E E 9?(S). - 

4. The fimite brizon stochastic games. Let n be any positive integer. The 
stochastic game in which the players play up to time n is said to be a finite 
horizon stochastic game. Let x and y be strategies of players I and 11, 
respectively. Then the expected reward in that game is defined by (2.7). It is 
clear that K ( K ,  y )  involves only the first n terms of the strategies K and y. 

Before proving the main result of this section we give some auxiliary 
results. Let U E M ( S  x X x Y )  be such that for each (p, R)EP(X)  x P(Y)  the 
expression 
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is well defined and such that, for each SES, 

ii*(s) = sup inf ii(s, p, A) = inf sup ii(s, p, A). 
P€PA(S) A ~ p g b )  AeP&) P~J'A(J )  

Define 

~ ~ ( s ) = ( ~ E P ~ ( s ) :  P(s)< inf C(s,p,lE)], SES, 
aePg(B) 

and 

02(s)={A~PB(s): SUP u^(s,/A,J)Gp(s)), S E S .  
P E ~ A @ ~  

By Lemma 1.11, the multifunctions PA and PB are measurable and compact 
valued, and Ey Theorem 5.6 of [7] there exist sequences (S,) c YpA and 
(g,) c SBp, such that - 

(4.1) PA(s) = cl { f,(s)} and P,(s) = cl (g,(s)) for each s ES. 

The following lemmas are basic for this paper. 
LEMMA 4.1. Assum that u(s, ., .) E C(A(S) x ~ ( s ) )  for each SES. Then 

P E M(S) and there exist f EY,, and geY, , .  
LEMMA 4.2. Let Y be a a - algebra which is closed with respect to the Suslin 

opmarion and kt X and Y be metric analytic spaces. Assume tkat u(s, ., .) is 
bounded for each s ES and 

for each (s, x, y) €Gr(A x 3). Then û * E M(S)  and there exist f E Ye, and 
~ E ~ o ~ '  

LEMMA 4.3. Let S, X, and Y be SB - spaces. Assume t h t  u(s, -, -) is bounded 
for each s E S a d  

for each (s, x, y) E Gr (A x B). Then iP E M(S) and there exist f E Y,, and 
~ ~ 9 0 , .  

Remark 4.1. The multifunctions 0, and 8, are well defined in all the 
cases considered in Lemmas 4.1 - 4.3 Moreover, 6, and 0, have non -empty 
and compact values. These sentences follow from the compactness of the sets 
p(A(s)) and P(B(s)), s ES, Lemma 1.5, and the minimax theorem of Sion [27]. 
In order to hove that there exist f E YQ1 and g E Yo, it is sufficient to show 
that 6, and 0, are measurable. Then the assertion follows from the selection 
theorem of Kuratowski and Ryll - Nardzewski [I 51. 

Remark 4.2. Under the assumptions of Lemmas 4.1 - 4.3, respectively, we 
have 

I 

(4.2) inf C(-, -, A) E M(S x P(X)) and sup u^(-, p, .) E M(S x P(Y)). 
I ~ ' B ( . )  PEPA(.) 
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If we take the assumptions of Lemma 4.3, then (4.2) can be shown by using 
Theorem 2 of [9j and Lemmas 1.5 and 1.6. (Recall that P ( X )  and P(Y) are 
SB-spaces in this case.) To verify (4.2) in the remaining two cases it ,is 
sufficient to use (4.1) and Lemma 1.6. 

P roof  of Lemma 4.1. We know that PA(s) and P,(s) are compact and 
GIs, -, -) E C(P,(s) x P,(s)) for each s E S. Hence we obtain 

(4.3) sup i l ( s ,p ; )~C(P , ( s ) )  and inf u^(s,-,A]eC(P,(s)), SES, 
P E P A ( ~  k P g ( ~ )  

which together with .. - (4.1) and (4.2) implies that 

( 4 .  - P(.) = inf sup G(-, p, A) = inf sup G(., p, g,(.)) E M(s). 
k P g (  .I P E P A ~  '1 m pepA(.) 

. - 
From (4.2) - (4.4) and Lemma 1.10 we infer that the multifunctions 0, and 
0, are measurable, which completes the proof by virtue of Remark 4.1. 

Proof o f  Lemma 4.2. First we prove that fi* c M ( S ) .  Let c be any real 
number. By (1.4) and Lemmas 1.8 and 1.11 we have Gr PA E 9 @ gfP(X)), SO 

(4.2) implies 

E = {(s, p ) ~ G r  PA : inf G(s, p, A) .)> c )  
AEpB(B) 

= {(s ,  p) E S x P ( X )  : i d  G(s, p, 1) 2) cc) n Gr PA E 9 @ g ( P ( X } ) .  
A€PS(S) 

Sin~e PIX) endoved with the w-topology is a metric analytic space [2], by 
Lemma 1.9 we have 

which implies û * E M(S) .  
It follows from the measurability of is"* and from (4.2) that the multifunc- 

tions 0, and 0, have measurable graphs. Consequently, by Lemma 1.8, 0, 
and 0, are measurable. (Recall that 0, and C2 are compact-valued.) Thus 
the lemma is proved. 

Proof of Lemma 4.3. Using Lemma 1.5 it can be easily shown that 

(4.5) - .  AEPB(S) inf Q ( s , . , ~ ~ ) E ~ ( P ~ ( s ) ) ,  SES. 

Since S, P(X), and P(Y) are SB -spaces and PA(s) is compact for each SES, 
from (4.2), (4.3,  and Theorem 2 of [9] we get P E M ( S ) .  Moreover, applying 
Lemma 1.7 to our situation we infer that the multifunctions 0, and 8, are 
measurable, which completes the proof. 

Let us set 
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where p is the law of motion of the stochastic control system defined in 
Section 2. Clearly, B(S) c M, (S). 

For any U E  IM,[S) we set 

U s ,  x, Y )  (v)  = r(s, x, y)+Bjv(t)q(dtls, x ,  Y) 
s 

and 

LIs, P ,  4 Iv) = j 1 u s ?  x, Y )  (4 dPd4 
X Y 

where (11, A) E PIX) x P( Y )  . Further, for any pair f' E Y ,, and g E YPB we put 
.. - 

. - Tf,(v)(sl = L(s, f  Is), gls))Iv) 
and 

T(v)(s)= sup inf L ( s , p , l ) ( i ) =  inf sup L(s,,u,A)(i~), 
p s P ~ 1 8 )  REP&) A E P ~ S )  PEPA(X) 

provided that the last equality holds. 
Now we return to the finite horizon' stochastic games described above. 

We shall prove the following 
THEOREM 4.1. For each of the models (MI), (M,), (M,) the n-stage 

stochastic game (n 2 1) has a utalue U?EB(S) and both players have optimal 
Mmkov strategies. Moreover, for each n 3 2, T(v:- ,) = uf. 

Proof. The proof proceeds by induction. For n = 1 the theorem follows 
directly from Lemmas 4.1 -4.3. Suppose the result holds for n -  1 (n 2 2). Let 
7 ~ ~ - ~  = (fl, f2, . ..,f,- and y,-, = (g , ,  g,, .. ., gnPl) be a pair of optimal 
Markov strategies of players I and 11, respectively, in the (n- 1) -stage 
stochastic game. Then 

Denote by and _vf the upper and lower value functions, respectively, 
in the n-stage game. Let T=(g, g,, g,, ..., g,-l), where ~EY,,  and 
(gl,'g2, .. ., 9,- = yA-  We note that 

= inf sup F.',(n, y) d sup K ( x ,  2 for each g EY,,. 
y d  r ~ l l  n e n  - 

Further, we observe that 

for each g EY,, and each s E S, i.e., 

G (4 < sup L(s, P? ds)) (un*- 1) - 
F E P A ( ~ )  

Hence 

$(s) < inf SUP L(s, P ,  4 ( v %  1) 
n ~ p d s )  PEPA(S) 
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for each SES, and by the minimax theorem of Sion [27] we obtain 

Similarly, we obtain 

Combining (4.7) and (4.8) we get _v: = vjf: = T(u,*-,), which means that the n -  
stage stochastic game has a value v t  and v z  = T(v:-,). Further from (2.4) 
and Lemmas 4.1, 4.2, and 4.3 (applied to (M,), (M,), and (M,), respectively) 
we conclude that uXEB(S), and there exist fo~YpA and gO€YpB such that 

(4.9 j -- TJB~(~:-I) v,* = ~ ~ ~ ~ t ~ , * -  I) qOB('$-l) 
- 

for every f E Y ,, and g E Y,, . 
Let nn = (A, fl , f 2 ,  . . . , &- 1) and y, = (go, 01, 9 2 ,  . . . , gr- 1). Then from 

(4~5)-(4.9) it follows that n, and y,, are optimal for players I and 11, 
respectively, in the n - stage stochastic game. 

5. Tbe infinite horizon s t o s b t l  games satisfying the codt ioo (D). 
THEOREM 5.1. For each of the models (MI), (M,), (M,) the value function v* 

exisrs, v* = lim v,*, and V* E MIS). 
n 

Proof. It is easy to verify that, for each s E 3,- 
-. 

Iv"(s) - C(4l < sup sup I V(% Y) (s) - K(n, y)(s)I < z,+ 1 ( 4  
a ~ n  y d  

and 

I_v*(s)-_v:(s)l G SUP sup IV(K? Y) (s)- Vl,(n, y)(s)t G z,+ 1 (s). 
~EII yer 

By Theorem 4.1 we have $ = = vf E B(S) for each n 1, so the condition 
(D) implies 

v* = v* = p = li - mu: E M(S) .  
R 

We denote by V+ and V ,  ( V -  and V,-), n >  1, the functions I/ and G, 
where the reward function r is replaced by r+  (r-), respectively. By z: and 
- 

Z, , n 1, we denote the function z,, where Irl is replaced by rf and Ir-1, 
respectively. 

We have immediately the following 
LEMMA 5.1. zn -+ 0 pintwise as n -, a, if and only if z; + 0 and z, + 0 

pointwise as n + oo. 
We note that if r satisfies the assumption (M,), then rf and r- also 

satisfy this assumption. Similarly, the same holds for (M2) and (M,). Thus, 
Theorem 4.1 implies the following 
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LEMMA 5.2. For each n 2 1 and for each of the models (M,), (M,), (M,) of 
the n-stage stochastic game with the reward function r' (r-) the valuefirnction 
v,* ' (v,+-) exists. 

Lemmas 5.1 and 5.2 and Theorem 5.1 imply 
LEMMA 5.3. For each of the models (M,), (M2), (M3) of the stochnstic 

games with the reward functions r" and r -  the value functions v*' and v*- 
exist. Moreover, 

v*+=lirnv:+ and u*-=limub-. 
n n 

For each . . u E M(S) such that the right-hand sides below are well defined 
we set 

T~(u) = G(4, G(u) = Tfe{G-'(u)), n a 2, 

where f E SPPA and g E Y,,. Further, we put 

B&(ul(s) = B S.@(t)q(df IS, x7 yl f (dxlslg (d~ls) 
and 

B'# (u) = Bh (B;; ' (u)), n 3 2. 

LEMMA 5.4. For each f E Y,,,and g E YpB and n 2 1, B;&v*) is well defined 
and 

lim Bjg (v*) = 0. 
n 

Proof.  By Theorem 5.1, the value function v* exists and U*EM(S) .  From 
Theorem 4.1 we infer that, for each m 2 1, v z +  = V,(n,,, ,  y,) for some 
Markov strategies x, and y, of players I and II, respectively. Note that 

(5.1) B;g(v:+) = B;,(Vn:(nm, ~ n 3 )  G zn++ 1 

for each m 2 1 and n 2 1. Similarly, we can show that 

(5.2) 
- 

BjEB (1~:- I) s z,+ 1 - 

for each m 2 1 and n 2 1. Observe that, for each rn 2 1, 

(5-3) O G v ~ + < v ~ ~ ,  and vz;,<v;-<o. 

By (5.1)-(5.3) and the monotone convergence theorem, for each n 2 1 we 
obtain 

(5 -4) B;g(v*+) ,< 
and 

(5.5) B;,(lo*-l) < z,7 1. 



28 A. S. Nowak 

Since u*- 6 u* < v*', we have Jv"( 6 u*++~v*-f, which together with (5.4) 
and (5.5) implies that, for each n 2 1, 

i.e., B&(v*) is well defined. By Lemma .5,1 we get 

0 < lim)B& (v*)l 6 lim B7w([v*[) < lim ( z A  + z, ,) = 0. 
n n n 

COROLLARY 5.1. For each f EY,, and ~ E Y ~ ,  and n 2 I, G(v*) is well 
defined and 

.. 

- - lim (v8) = V (  f [w) ,  g[m)). 
n 

Proof. Note that G(v*) = V,( f ("I, g(m))+ B;#(u*), n 2 1; and this com- 
pletes the proof. 

THEOREM 5.2. v* E Mq (S). 
Pro of. By (5.6) we have Bjw(lv*l) < z: + z;. Hence 

sup sup ~ ) ~ ( l u * l )  < ~ 0 ,  
fE9"pA g*pg 

which implies immediately that v* E Ma (S). 
LEMMA 5.5. For each rn > n and s ES we have 

Proof. By Theorem 4.1 we have u$ = Vm(nm, yd for some Markov 
strategies n, and y, of players I and II, respectively. Similarly, v,* 
= l/,(xn, yJ. We note that 

(5.7) 0: < v,* + R?+ 1 (n,, YJ 
and 

Indeed, - - 

v f  = &(xrn, ~ n )  < '(nrn1 ~ n )  d K(zn, ~ n ) + K + : + l  ( ~ m ,  Y A  
= v t  + R:+ 1 (x,, Y,J 

and 

u*, = Vn(nm, yd 2 K(xn7 YA 3 K(nn, ~n)-RY+:+l(nm, ~ m )  

= 0: - Rr+ :,, (A,, YA. 

By (5.7), for each XEA(S) and Y E  B(s)  we obtain 
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and by (5.81, for each X E  A(s) and y EB(s) we get 

Thus, (5.9) and (5.10) imply the required inequality. 
From Lemma 5.5 and Theorems 4.1 and 5.1 we obtain immediately 

LEMMA 5.6. (a) If r and q satisjy the assumptions of the model (Mi), then 
the function LC, ., -)(v*) satisfies the assumptions of Lemma 4.1. 

(b) If r and q satisfy the assumptions oj" the model (M,), then the function 
L(- ,  A,  -](v*) satisfies the assumptions of Lemma 4.2. 

(c) If r and q satisfy .th5 assumptions of the model (M,), then the function 
L(., ., -)I;*) satisfies the assumptions of LRmm 4.3. 
THEOREM 5.3. For each of the models (Mi), (M2), (M3) we have .- 

v* = T(v*) = T,,(v8) for some f E YpA and g E YpB. 

P r o  of. By Theorem 5.5 T(v*) is well defined, i.e., I T(v*)( < co . Using 
Theorem 5.1 and the bounded convergence theorem, for each n 2 1 we 
obtain 

= sup sup limlL(s, x, y ) ( v a -  L(s, x, y)(u,*)l 
x ~ A ( s )  p~B(s) 111 

6 lim sup sup 1% x, y)(v9--L(s, x, y)(v:)l. 
rn =A(s) pd(s1 

Hence and by Lemma 5.5 we have, for each s ES, 

Consequently, the condition (D) implies T(u*) = lim T(v,*). By Theorems 4.1 
n 

and 5.1 we get T(u*) = v*. Applying Lemma 5.6 and Lemmas 4.1, 4.2, and 
4.3 to the models (M,), (M,), and (M,), respectively, we obtain f EY,, and 
g E Yp, such that v* = T(v*) = Tr,(v*). 

Now we define, for any given h E Yp,, an auxiliary one - perSon stochastic 
game 

where 

for each s E S, x E A(s) and E E Y. 
Clearly, if the original two -person stochastic game satisfies the condition 

(D), so does the modified one-person stochastic game (+). 
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Let us set 

vp(h) = sup V(n ,  h(")). 
ueIl 

LEMMA 5.7. For euch of the models (MI), (M2), (M3), for any hfYp, there 
is f E YPA such that 

Proof. Applying Theorem 5.3 to the game (+) we obtain 

vf (h).(s) = sup L(s, P, h(s))(v? (h)) = 51, (of ( h ) ) ( ~ )  
BEPA(S) 

for each s E S and for some f E YpA Hence I$ (h)  = (UP (h)) for each n 2 1. 
Using Corollary 5.1 in the case (+) we get q*(h) = V('f(al, h(")), which 
completes the proof. 

For any f E S P ~ A  we put 

u;(f) = inf V ( f @ " ,  y) .  
Y €k- 

By similar arguments as above we can show the foIlowing 
LEMMA 5.8. For each of the models (MI), (Mz), (M,), for any f €YpA there 

is g EY,, such that 

(f) = r, (vr: (f )) = v ( f  '"'9 s'"3 

Now we are ready to state the main result of this section: 
THEOREM 5.4. For each of the models (M,), (Mzh (M,) both players have 

optimal stationary strategies. 
Proof. By Theorem 5.3, v* = T(v*). Using Lemma 5.6 and Lemmas 4.1, 

4.5 and 4.3 to the models (M,), (Mz), and (M,), respectively, we obtain 
f E YPA and g E YpB such that 

for each I E YpA and h E Y,, . Hence, for each n 2 1, we-have 

T(v*) < V* = Tg(V*) < Th(v*). 

By Corollary 5.1 we get 

for each I€YPA and ~ E Y , , ,  which together with Lemmas 5.7 and 5.8 
implies 

sup V(n, g("') = V (  f '"), g(")) = inf V( f ("), y), 
u ~ l l  Y ~r 

i.e., f("' and g(") are optimal for players I and II, respectively. 



Remark .  Theorem 5.4 generalizes Theorem 3 of [8] and Theorem 3.23 
of [l 11 (see also [12]), where S is an SB -space, /? E [O, 11, and r and q satisfy 
the continuity assumptions of type (M,). 
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