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Abstract. The present paper treats of discrete-time stationary
models of stochastic games with an abstract measurable state space
and separable metric action spaces. Under different assumptions on
the state space, action spaces, the reward function, and the law of
motion (assumptions (M), (M,), (M3)), a full solution of the finite
horizon models is given. To ensure the existence of value in the
infinite horizon models we impose some convergence conditions
(conditions (D) and (P)) on.the expected rewards, thus including the -
discounted case. The proofs of the existence of optimal {or e-
optimal) strategies for both players rely on iterative, finite horizon to
infinite horizon methods. )

Introduction. Stochastic games were introduced by Shapley [26] who
assumed that the state space S and the action spaces X and Y of players I
and II, respectively, are finite sets. He also assumed that each play would
terminate in a finite number of stages with probability one and he con-
sidered stationary strategies only. Maitra and Parthasarathy studied in [17]
and [18] two kinds of stochastic games with an infinite number of stages:
discounted stochastic games where the reward function is bounded and there
is discounting and positive stochastic. games where the reward function is
bounded and non-negative. In [17] and [18] Maitra and Parthasarathy
were the first ones to consider the discounted stochastic games under the

. assumption that S, X, and Y are uncountable sets. More precisely, they

assumed that S, X, and Y are compact metric spaces and the reward function
and the law of motion satisfy some continuity requirements. More general
results for discounted stochastic games with a standard Borel space of states
and compact metric spaces of actions may be found in [3], [8], and [12].
Models of positive stochastic games with finite action spaces and a standard
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Borel state space were first studied by Frid [5] and subsequently by
Himmelberg et al. [8]. Stochastic games with unbounded reward function,
metric state space and compact metric spaces of actions and under a
convergence assumption which is more general than discounting were recen-
tly studied by Couwenbergh in [3]. He imposed similar continuity assum-
ptions on the reward function and on the law of motion as Himmelberg et
al. in [8], Idzik in [12], and Parthasarathy in [22].

The aim of this paper is to study stochastic games under a similar
convergence assumption as in [3] (cf. Section 2, condition (D)) and positive
stochastic  games under a natural integrability condition (cf. Section 2,

~ condition (P)). We consider three models (M,), (M3), (M3)) of stochastic

games which differ themselves in the assumptions imposed on the state space,
the action spaces, the reward function, and the law of motion. From the
point of view of the assumptions, involved these models are new. For each of
the models (M,), (M,), (M) of the game with finite number of stages we
obtain the existence of value and optimal Markov strategies for both players
(Theorem 4.1). In Section 5 we show that under the assumption (D) the

. stochastic game has a value (Theorem 5.1) and both players have optimal

stationary strategies (Theorem 5.4). The results obtained generalize and
complete numerous earlier results on discounted stochastic games. More
detailed discussion will be presented in the sequel. The study of positive
stochastic games is postponed to part II of this paper [20].

The basic tools of this paper are topologies on spaces of probability
measures, semi-continuous functions, multifunctions, measurable selections,
and the uniformization of Borel and analytic sets (see Section 1).

1. Preliminaries. Throughout this section, we assume (S, .#) to be a
measurable space and X to be a separable metric space endowed with the
o -algebra 2(X) of its Borel subsets. Let R denote the set of real numbers. We
write M(S) for the set of all measurable functions u: § — R, and B(S) for the

set of all functions in M(S) which are bounded. By C(X) we denote the set of

all continuous functions in B(X) and by C(X) (C(X)) the set of all upper
semi - continuous (lower semi -continuous) functions in B(X).
We shall need the following

Lemma 1.1 (cf. [25], Proposition 10.1). Let u,,eC(X), n =1, and let u,(x)
2 U,(x) for n=m and xeX. Assume that the limit

u(x) := li'r‘n u,(x)

exists for each xeX. Then ueC(X) and, for each xeX,
lim infu,(x) = inf lim u,,(x)

provided that X is compact. )
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Denote by P(S) the set of all probability measures on (§, &). Given any
F < B(S) we may endow P(S) with the % -topology. defined as the coarsest
topology in which all mappings u — j' udy, ue &, are continuous. A net {y,}
will converge to p, in the & -topology if and only if |udp, — {udp, for each
ueZ. In the case of & = C(X), the #-topology on P(X) is called the w-
topology (weak topology). In the case of F = B(S), the # -topology on P(S)
is called the s-topology (strong topology). :

From the theorem of Dini and Theorem 2.6 of [6] we obtain the
following
- Lemma 1.2 For any D < P(S), the following statements are equivalent:

(i) D-is relatively compact in the s-topology;

(i) For any sequence {u,} in B(S) which decreases to O,

fu,du—0 as n— oo, uniformly in peD. -

For any separable metric space X, we shall assume that the set P(X) is
endowed with the w-topology. Then P(X) is also a separable metric space
(cf. [21], Theorem II 6.2).

Lemma 1.3. The o -algebra B{P(X)) of all Borel subsets of P(X) comc:des
with the smallest & - algebra on P(X) such that, for each E € 8(X), the mapping
p— W(E) is measurable. ' '

A proof of this fact can be found in [24].

A separable metric space X is called a Polish space if X is complete ‘X is
called an SB-space (standard Borel space) if X is a Borel subset of a Polish
space. X is called an analytic space if X is a continuous image of a Polish
space. For a detailed discussion see [14].

We have the following facts:

(1.1) if X is Polish, then P(X) is Polish (cf [21] Theorem I 6.5);
(1.2) if X is compact, then P(X) is compact (cf. [21], Theorem II 6.4);
(1.3). if X is an SB-space, then P(X) is an SB-space (cf. [10], p. 91);
(14) if X is analytic, so is P(X) (cf. [2], p. 933).

‘The following lemma can be obtained directly from the theorem of Baire

and the bounded convergence theorem.

Lemma 14. If ueC(X), then the mapping u— [udy defined on P(X) is
upper semi - continuous.

Using Lemma 1.4 and Fatou’s lemma we obtain

LemMMa 1.5. Let X and Y be separable metric spaces. Let u: X x Y — R be
a bounded Borel measurable function such that u(-, y)e C(X) for each yeY and
u(x, )€ C(Y) for each xe X. Then the mapping ii: P(X)x P(Y) — R defined by

e B) = { fu(x, y)dpd
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is such that
(i, )eC(P(Y)) for each peP(X) and i, ) eC(P(X)) for each AeP(Y).
LEMMA 1.6. Let X and Y be separable metric spaces. Let (S, &) be a

~measurable space. Assume that u: SxX xY - R is an (¥ @ B(X)® B(Y))-

measurable function such that u(s, -, *) is bounded for each s€S. Then the
mapping 4i: S x P(X)x P(Y) - R defined by

(s, p, A) = | [u(s, x, y)duda
XY

is an (¥ ®B(P(X))®B(P(Y)))- measurable function.

Proof. If u is the characteristic function of the set E; x E, x E;, where '
E,e¥, E,c#(X), E;e%(Y), then the lemma follows immediately from
Lemma 1.3. The rest of the proof is similar to that of Lemma 12.2 in [10].

Denote by #(X), #(X), and ¢ (X) the sets of all non-empty, all non-

empty closed, and all non-empty compact subsets, respectlvely, of a separ-
able metric space X.

A function F: § — P(X) is called a multtfunct:on A multifunction F is
said to be measurable if

F~(U) = {seS: F(s)n'U £Qey

whenever U < X is open.

A selection of F is a function f: S — X such that f (s)e F(s) for each seS
If F: § - 2(X) is a2 measurable multifunction with complete values, then by
the theorem of Kuratowski and Ryll-Nardzewski F admits a measurable
selection (cf. [15], Theorem 1). We denote by % the set of all measurable
selections of a multifunction F.

The graph of F: 8§ 2(X) is deéfined by

GrF = {(s; x): xeF(s);

4We say that F has a measurable graph if Gr F EV®J(X)

LEMMA 1.7 (cf. [9], Theorem 3) Assume that X and Y are SB - spaces. Let

- F: X - A (Y). Then the following statements are equwalent

(i) F has a measurable graph
(i) F is measurable. ‘

LemMma 1.8 (cf. [28], Theorem 4.2). Let (S &) be a measurable space such
that % is closed with respect to the Suslin operation. Let X be a metric
analytic space and F: S — F(X). Then the following statements are equwalenr

(i) F has a measurable graph; :

(i) F is measurable. '

. Lemma 1.9 (cf. [16], Theorem 35.5). Let (S, &) be a measurable space such
that & is closed with respect to the Suslin operation. Let X be an analytic
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space and let Ec ¥®@%B(X). Then projsEcY, where projs is the projection
from Sx X into S.

LeMmMa 1.10. Let (S, &) be a measurable space and X a separable metric
space. Let F: S — " (X) be a measurable multifunction. Assume that u: S x X
— R is an (¥ @B(X))- measurable function such that u(s, )e C(F(s))(*) for
each seS and put

H(s) = {xeF(s): u(s, x) Sw(s)} #9  for each seS,

where weM(S). Then H is measurable.

Proof. Denote by cl the closure in X. Since F has closed (even compact)
values, by Theorem 5.6 of [7] there is a sequence {f,} of measurable
selections of F such that F(s) = cl{f,(s)} for all seS. '

Now, for each n>1 we define a sequence of sets

Epm = {s: u(s, fu(s)) < w(s)+1/n}.

Since u is an (¥ ®#(X))- measurable function, we M(S), and u(s, }e C(F(s))
for each seS, we have E, €% for n, m > 1 and, moreover, we may assume
without loss of generality that E,, # @ for each n, m > 1.

Define C,(s) = { fi(s): s€E,} for each n > 1 and each seS. Let U = X be
an open set. Then

C,l(U)y={s: C{s)nU # @} = D Eunis: fi(s)eUle¥
k=1

and, consequently, C, is a measurable multifunction for each n > 1. Now, we
note that C,(s) < F(s) for each seS. This and Theorems 4.1 and 5.6 of [7]

imply that D(s) = ﬂl cl C,(s) is a measurable multifunction. It is easy to see

that H(s) = D(s) for each seS, which completes the proof.-

For any multifunction F: § — 2 (X) we define the multifanction G: 'S
— 2(P(X)) as G(s) = P(F(s)) for each seS.

We have the following o :

LeEmMMA 1.11. Assume that P(X) is endowed with the w -topology. Then G is
compact-valued and if F is measurable, so is G.

Proof. Since X is a separable metric space, so is P(X) with the w-
topology [21] and, by (1.2), G is compact-valued. Let F be a measurable
multifunction. By Theorem 5.6 of [7] there is a sequence {f,} of measurable
functions f,: S — X such that F(s) =cl {f,(s)} for each seS. It is clear that
each f,, n > 1, is measurable as a function f,: § — P(X). Let Q be the set of
all sequences (4, 45, ..., 4,, ...) of non-negative rational numbers such that

() u(s, )eC(F(s)) means that the restriction of u(s, ) to F(s) is continuous.

2 — Prob. Math. Statist. 4 (1)
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all but finitely many 4,’s are 0 and ) A, =1. Let {1,}€Q. Then there is a

finite sequence 4,,, 44,, ..., 4, of rational numbers such that
' k
Ap,>0,m=1,2,....,k, and Z Anyy = 1.
m=1

By 3 4,f.(s) we denote a probability measure u on %(X) with finite support

Sai©h () -+ fo(s) such that f, () =4, , m=1,2, ..., k. It is clear that
for each {A,}€Q the function Y A,f,, as a function from § into P(X), is

measurable. Since the set Q is countable, so is V = {} 1, f,: {4.}€Q}. Let
V(s) = {3 A, £i(s): {A}€Q} for each seS.

By Theorem 5.6 of [7], the closure cl V(s) in the w-topology of P(X) is a
measurable multifunction. By Theorem II. 6.3 of [21] we know that G(s)
=c¢l V(s) for each s&S, which completes the proof.

For any two measurable spaces (S;, &;) and (S,, &), let Q(S,|S,) be the
set of all conditional probabilities on (S,, &) given (S, &), i.. the set of
all functions g on %, xS, such that g(E|)eB(S,) for each E€%, and
q(-|s)e P(S;) for each seS; or, equivalently, the set of all functions q: S,
— P(S,) such that the mappings s — g(E|s) are measurable for each Ee &,. If
Y is a metric space and P(Y) is endowed with the w-topology, then every
measurable function q: S — P(Y) is a conditional probability on Y given
(S, &). If Y is also separable, then g: S — P(Y) is a conditional probability
on Y, given (S, &), if and only if ¢ is measurable (cf. [24], Lemma 6.1, and
[4], Theorems 2.1 and 3.1).

Let {(S;, )}, i=1, 2, ..., n, be measurable spaces. We denote by M(S,
x8; ... x8,) the set of all (¥;,®%,® ... ®F,)-measurable (product

 measurable) functions defined on the Cartesian product §; xS, x ... xS,.

By B(S; xS;x ... x§,) we denote the set of all bounded functions in M(S,
XSy x ... x§). - : - S ’

- 2. Model formulation. The background for a zero-sum stochastic game
may be provided by a two - person stochastic control system

(S, ), X, Y, A, B,r, q, B,
where ' , :
(2.1) (S, &) is an abstract measurable space, S being a non-empty set of
states of the system;

(22) X and Y are separable metric spaces of actions of players I and II,
respectively ;
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23y A:S-H(X) and B: S — J'(Y) are measurable, A(s) and B(s) being
the sets of all admissible actions to players 1 and II, respectively,
when the system is at the state s;

(24 reB(SxX x Y) is the reward function;
(25) qeQ(S|SxX xY) is the law of motion of the system;
(26) B =0 is the discount factor.

Periodically, players I and II observe the current state s of the system
and choose actions xeA(s) and yeB(s), respectively; the choice of the
actions is'made with full knowledge of the history of the system, which has
been evolved to the present. As a consequence of the actions chosen by the
players, two things happen: player II pays player I r(s, x, y) units and the
system moves to a new state t according to the probability distribution
q(‘ls, x, y). The process is then repeated from the new state t.  Player I
maximizes his expected income and player II minimizes his expected loss as
‘the game proceeds over the infinite future. (These notions will be defined
more carefully below.) ‘

Let us set P,(s) = P(A(s)) and Pg(s) = P(B(s)) for each seS. Then by
Lemma 1.11 P, and Py are measurable compact - valued multifunctions.

Put Hy =S and H,=5SxXxYxH,_, for n= 2.

A strategy for player I is a sequence n = (ny, 7,, ...), where n,eQ(X|H,)

for each n > 1 and =,(A(s,)|sy, X1, Y1, ..., 8,) = 1 for each (s, X, Y1, ..., 5,)
€H,, n>= 1. We denote by II the set of all strategies of player I. A strategy =
is called Markov if n,e Q(X|S) for each n > 1, i.e. if each =, depends only on
the actual state of the system. The set of all Markov strategies of player I will
be denoted by II,,. A strategy = is called semi - stationary if =, = f for each n
=1, where feQ(X|S xS). More precisely, a semi-stationary strategy is
a strategy such that the action taken by player I at the n-th stage of the
play depends only on the initial state and on the n-th state. We denote by
I1 the set of all semi - stationary strategies of player I. Finally, a stationary
strategy m of player I is a Markov strategy such that m, = f for each n > 1,
where f is some measurable selection of the multifunction P,. A stationary
strategy determined by some f e %p, will be denoted by f (=) We denote by
II; the set of all stationary strategies of player I.

The sets I', 'y, Iy, I’y of all strategies, all Markov strategies, all semi -
stationary strategies, and all stationary strategles respectively, of player II
are defined similarly.

Remark. By Lemma 1.11 and by the selectlon theorem of Kuratowski
and Ryll-Nardzewski ([15], Theorem 1), I, and Fs are non-empty.

Let us set

E, =S .and 'E,,=Gr(AxB)_xE,,_l for n>=2,
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where Gr (4 x B) = {(s, x, y): xe A(s) and ye B(s)}. Then E, is the set of all
histories of the model up to time n. The assumption (2.3) and Theorem 3.5 of
[7] imply that, for each n > 1, E, is a measurable subset of the product space
H, endowed with the product o -algebra. The set E of all plays of the game
is defined by setting

E= N(E,XxXxYxSxXxYxSx ..).

n=1
It-is clear that. E is a measurable subset of the product space

TH=SxXxYXSxXxYx ...

endowed with the product o -algebra.

An application of the theorem of Ionescu Tulcea [19] ylelds that any pair
(m, y)eH x I" together with the law of motion g and s€S uniquely defines a
probability measure m(r, y, s) on the product o-algebra of K = X xY xS§
x X xY x8x ... Moreover, for any non-negative ue M(H), the expression
j'udm(n, ¥, *) is an ¥-measurable extended real-valued function. From the
definition of = and y it follows that if u is the characteristic function of the
set E, then [udm(r,y, s) =1 for all seS.

Let F,=SxXXxYxSxXxYx ... xSxXxY (3n factors) and Ilet
uecB(F,), n = 1. Then for each =, y, and s, €S we have

j‘udm(na ¥s Sl) = ”‘I “'_fu(sl, X15 V1522550 Xps yn)nn(dxnlslz X15 V150005 S,,) X
x?n(dynlslo X1s V1o oevs Sn)q(dsnlsn—h Xn—15 yn—l) e X
x q(dsy|sy, X1, y1) X7y (dx1]s1) 1 (dy1ls)-

Now, for each n > 1 and each h =(s1, X;, V1, --., Sps X4, Va) We define the
n-stage reward function v,€ B(F,) as

B = 3 B r(ser Xeo V0

k=1

: and for any pair (w, y) we define the expected n-stage reward ﬁmctmn of.

(m, 7) and the initial state s, as
Va(m, 1) (51) = [oa(Rydm(m, y, 51).

" 'We shall often omit the variable s, in writing the expected reward functions.

Let r,(m, 7) denote :the expected reward function at the n-th stage, ie.,

) T".(ﬂ, '}’) (sl) - .
= jjj jjjr(sns Xp> yn)"n(dxnlsls Xy, yls LR Su)?n(dynlsl! xls yb LRRE S,,)X
X q(dSylSn-1 Xn—15 Yu-1) -+ Q(‘_%Sz|31, X1, Y1) Ty (dxy1s1) y1(dyy]sy)-
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Then |

(27) Va(m, y) = 21 ﬁk-.l 5" (7[’ ']})
k=

Put

Enm(h) = Z ﬂk—l lr(sk: xk’ yk)l’

k=n
where 7 =(S(, X1, ¥1s -5 Sm> Xms Ym)s M= n = 1. Let us set

R (7, 7) (s1) = [ O (Wdm(m, 7, 51)
and e

Z,,(Sl) = Sup sup Rf(ﬂs 'J’) (sl)'
m my

The limif lim V,(z, y) may also be inﬁﬁite or :may-be indefined. In this

paper we shall study two cases in which the model is well deﬁncd:_
(D) z,(s) - 0 pointwise as n— 00;
(P) r>0, p=1, and the structure of the model is such that

sup SupV(Tt 7) (s} < 0 for each seS.
Now under (D) or (P) we define the expected reward functlon over the
infinite future as follows: _
V(r, y) =limV,(z, y).
Remark. Let r* = max {r, 0} and r~ = min {r, 0}. We define two func-
tions v*: H— Ru{o} and v™: H—->Ru{—w} by
v (h) = Z B r* (e, %, ) and v ()= Z B (S, Xas Vi)
k=1 k=1 .
where h =(s;, Xy, y1, ..)eH:
We claim that (D) yields
V@ )=V"@Hp+V @),
and(P) gives V(r, y) = V™' (=, y), where _
V*(m, y)=f{v*(Hdm(z,y) and V7 (m, ) =[v" (hdm(x, 7).

Remark. The condition (D) holds in the discounted case, ie., when

B [0, 1), because r is bounded. For results in this direction see [1], [8], [9],

"[12], [23], etc. Stochastic games under the assumption similar to (D) were
recently studied by Couwenbergh in [3]. He assumed the uniform conver-

gence of the n-stage reward functions ¥, on ITxI'x S, but he allowed the

reward function r to be unbounded. Stochastic games which satisfy the
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condition (P) are called post'tive stochastic games. For results in this direction
see [5], [8], and [13]. The study of the condition (P) is contained in part II
of this paper [20].
Let us set _
= sup inf V(n y) and @ =infsupV(x, 7).

. rell yel' vell mell )
We say that the stochastic game has a value if v* = 7*, and we denote the
value function by v*. '

A strategy n* is &-optimal for.player I (g > 0) if

7* < V(n*, y)+¢e for each yerl.

A strategy y* is &-optimal for player I (¢ = 0) if
' *2 V(n,y*)—¢ for each nell.
(The O-optimal strategies are called optimal) -

3. Medels with additional semi-continuity or continuity assumptions. To
prove the main results of the paper we impose some additional conditions on
the model presented in Section 2. We shall examine the stochastic games
which satisfy one of the following assumptions:

(My) r(s, -, ), q(Els, -, )eC(A(s) x B(s)) for each seS and Ee¥.

(M,) X and Y are analytic spaces, and & is a ¢ -algebra which is closed
‘with respect to the Suslin o_peration. Moreover,

rs. 0 q(Els,, )eC(A®)  and (s, x, 9, gEls, x, ) C(B(5)

for each (s, x, y)eGr (4 x B) and each Ec ¥, _
(M3) S, X, and Y are. SB-spaces and, moreover,

r(s, -, y) e C(A(5)), (s, x, )€ C(B(s))

| 4(Els, -, y)C(A(5)), q(Els, x, )€ C(B(s))
for each (s, x, y)eGr (4 x B) and E € #(S).

4. The finite horizon stochastic games. Let n be any positive integer. The
stochastic game in which the players play up to time = is said to be a finite
horizon stochastic game. Let n and y be strategies of players I and II,
respectively. Then the expected reward in that game is defined by (2.7). It is
clear that ¥,(n, y) involves only the first n terms of the strategies = and 7.

Before proving the main result of this section we give some- auxiliary
results. Let ue M(Sx X x Y) be such that for each (;4, A)eP(X)xP(Y) the
expression

(s, u, ) = I I u(s, x, y)duda,
XY :
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is well defined and such that, for each seS8,
#*(s) = sup inf (s, u, ) = inf sup (s, u, 4).
ueP 4(s) AePpg(s) . AePp(s) peP4(s)
Define .
Oy(s) = {nePy(s): #*(s) < inf d(s, p, )}, seS,
AePp(s)
and
(Oz(s) = {AePy(s): sup d(s, u, 1) <a*(s)}, seS.
neP 4(s) R

By Lemma 1.11, ‘the multifunctions P, and Py are measurable and compact
valued, and By Theorem 5.6 of [7] there exist sequences { f,} < &p, and
{9m} = Lp, such that _ -

@41) Pus)=cl{f(s)} and Pg(s) =cl{g.(s)} for each seS.

The following lemmas are basic for this paper.

Lemma 4.1. Assume that u(s, -, )e C(A(s) x B(s)) for each seS. Then
u*e M(S) and there exist fe Sy, and ge Sy, .

Lemma 4.2. Let & be a o - algebra which is closed with respect to the Suslin

operation and let X and Y be metric analytic spaces. Assume that u(s, -, *) is
bounded for each s€S and

u(s, -, y)eC(A(s)) and u(s, x, JeC(B(9))

for each (s, x, y)eGr(A xB). Then i#i*c M(S) and there exist fe@%,l and
geFo,-

- LemMA 43. Let S, X, and Y be SB-spaces. Assume that u(s, -, °) is bounded
for each seS and

u(s, -, y)eC(A(s) and u(s, x, JeC(B(s))

for -each (s, x, y)eGr(A xB). Then #*ecM(S) and there exist feFo, and
ges 0,-

Remark 4.1. The multifunctions ¢, and @, are well defined in all the
cases considered in Lemmas 4.1 - 4.3 Moreover, 0, and 0, have non- empty
and compact values. These sentences follow from the compactness of the sets
P(A(s)) and P(B(s)), s€ S, Lemma 1.5, and the minimax theorem of Sion [27].
In order to prove that there exist f €%, and ge 5, it is sufficient to show
that @, and @, are measurable. Then the assertion follows from the selection
theorem of Kuratowski and Ryll- Nardzewski [15].

Remark 4.2. Under the assumptions of Lemmas 4.1 - 4.3, respectively, we
have

(42) inf @(,-, J)eM(SxP(X)) and sup @(, u, Je M(S x P(Y)).
iePg() _ neP 40
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If we take the assumptions of Lemma 4.3, then (4.2) can be shown by using
Theorem 2 of [9] and Lemmas 1.5 and 1.6. (Recall that P(X) and P(Y) are
SB -spaces in this case.) To verify (4.2) in the remaining two cases it .is
sufficient to use (4.1) and Lemma 1.6.

Proof of Lemma 4.1. We know that P,(s) and Pg(s) are compact and
ii(s, *, )€ C(P4(s) x Py(s)) for each seS. Hence we obtain

(43)  sup ii(s, p, )eC(Pg(s)) and - inf d(s, -, ))eC(Py(s)), seS,

HeP 4(s) AePg(s)
which together with (4.1) and (4.2) implies that |
44~  @*()= iof sup a(, p, A =inf sup d(, p, gu())e M(S).

4ePg(-) peP 4(°) m  ueP 4(7)

From (4.2) - (44) and Lemma 1.10 we infer that the multifﬁnctions 0, and
@, are measurable, which completes the proof by virtue of Remark 4.1."

Proof of Lemma 4.2. First we prove that #* e M(S). Let ¢ be any real
number. By (1.4) and Lemmas 1.8 and 1.11 we have Gr P, e ¥ ® #(P(X)), so
(4.2) implies

E = {(s, eGr P,: inf (s, u, 1) > c}
AePp(s)

= {(s, WyeSx P(X): inf (s, u, 1) > c}nGr P e ¥ ® B(P(X)).
AePg(s)
Since P(X) endoved with the w -topology is a metric analytic space [2], by
Lemma 1.9 we have

{seS:u*(s) > ¢} = projs E€ &,

which implies @* e M(S). ‘

It follows from the measurability of #* and from (4.2) that the multifunc-
tions ¢; and @, have measurable graphs. Consequently, by Lemma 1.8, 0,
and O, are measurable. (Recall that ¢; and @, are compact-valued.) Thus
the lemma is proved.

, Proof of Lemma 4.3. Using Lemma 1.5 it can be -easily shown that
(4.5) : inf (s, ", )eC(Py(s)), seS.
T AePpg(s)
Since S, P(X), and P(Y) are SB-spaces and P,(s) is compact for each se8S,
from (4.2), (4.5), and Theorem 2 of [9] we get ii* € M(S). Moreover, applying

Lemma 1.7 to our situation we infer that the multifunctions ¢; and @, are
measurable, which completes the proof.

Let us set

M,(S) = {ve M(5): sup sup ”v(‘t)q(dt]s, x, y)| < o0, seS},

xeA(s) ysB(s) §
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where g is the law of motion of the stochastic control system defined in
Section 2. Clearly, B(S) = M,(S).
For any ve M, (S) we set

L(s, x, y) (v) =r(s, x, y)+ B [v(t)q(dt]s, x, y)
5
and
L(s, p, 4) (v) = ;{ iL(S’ x, y) (v)duda,

where (u, l)eR(X) x P(Y). Further, for any pair fe%p, and ge #p, we put
T, ®) = L(s, £ (), 99)(v) |

and
T(v)(s) = sup inf L(s, p, H(v) = inf sup L(s, u, (),

peP 4(s) AcPg(s) AePg(s) ueP 4(s)
provided that the last equality holds.

Now we return to the finite horizon stochastic games described above.
We shall prove the following

TBEOREM 4.1. For each of the models (M,), (M), (M;) the n-stage
stochastic game (n > 1) has a value v¥ e B(S) and both players have optimal
Markov strategies. Moreover, for each n 2= 2, T(vE.,) =v}.

Proof. The proof proceeds by induction. For n =1 the theorem follows
directly from Lemmas 4.1-4.3. Suppose the result holds for n—1 (n > 2). Let
Tp-1 =(f17f29 "'9f;|— 1) and Pn-1 =(gla g2, .-+ gn—l) be a Pair of Optlmal
Markov strategies of players I and II, respectively, in the (n—1)-stage
stochastic game. Then

4.9 V-1 = Va1 (15 Pu—1)-

Denote by 7 and v} the upper and lower value functions, respectively,
in the n-stage game. Let ¥=(g, 91,92, ---» gu-1), Where geFp, and
(1,925 -+» Gn—1) = Yu—1. We note that

7 =infsupV,(z, ) <supV,(n,7) for each ge Sy,

yel' =ell - nell

Further, we observe that
7x(s) < sup L(s, u, g(s))[sup V,— 1 (7, 7,-1)]
peP 4(s) . nell
for each ge.V,.B and each seS, ie,

IT:(S) S suP L(S’ ua g(S)) (U:— l)'
HeP 4(s)

Hence

¥(s) < inf sup L(s, u, Y(vi-,) -
AePy(s) ueP 4(s)




‘(4 9) ’ Trpo(vn-1) < vf = T 000 (Un— )< Tpoq (v3-1)
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for each seS, and by the minimax theorem of Sion [27] we obtain

@) | 5 < TOR-).
Similarly, we obtain
(4.8) ur 2 T(3-,).
Combining (4.7) and (4.8) we get v} =75 = T(vE_)), which means that the n-

stage stochastic game has a value v* and v} = T(v}_,). Further from (2.4)
and Lemmas 4.1, 4.2, and 4.3 (applied to (M;), (M,), and (M), respectively)
we conclude that v¥€B(S), and there exist foe%p , and goe ¥p, such that

for every fe€%p, and 9EF py-

Let T, _(anfl9f2a .. f;l 1) and Y= (90: g1> 925 --+» Gn- 1) Then from
(4.6)-(49) it follows that n, and y, are optimal for players I and II,

respectively, in the n-stage stochastic game.

5. The infinite horizon stochastic games satisfying the condition (D).
THEOREM 5.1. For each of the models (M), (M,), (M;) the value function v*
exists, v* = limo}, and v* e M(S).

Proof. It is easy to verify that, for each seS,
[7*(s)— T3 (s)] < sup sulpIV(n, NE) =V, D) < 2541 (5)

and
[v*(s)— v*(S)I < SUIII) SUII}IV(W 7) (S) Valr, J')(S)I S Zp+q (S)
ne ye
By Theorem 4.1 we have v} = 7} = v} eB(S) for each n > 1 so the condition
(D) implies

v* = v* = 7* = limo} e M(S).

We denote by V* and V,* (V™ and ¥,"), n > 1, the functions ¥ and V,
where the reward function r is replaced by r* (r7), respectively. By z; and
z,, n= 1, we denote the function Zp where [r| is replaced by r* and |r |,
respectively.

We have immediately the following

Lemma 5.1. z,-0 pomthse as n— oo if and only if z;7 -0 and z; -0
pointwise as n— oo.

We note that if » satisfies the assumption (M,), then r* and r~ also
satisfy this assumption. Similarly, the same holds for (M,) and (M;). Thus,
Theorem 4.1 implies the following
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LEMMA 5.2, For each n =1 and for each of the models (M,), (M,), (M,) of
the n-stage stochastic game with the reward function r* (r™) the value function
v¥t (v¥7) exists.

Lemmas 5.1 and 5.2 and Theorem 5.1 imply

LeEmMMA 5.3. For each of the models (M,), (M,), (M3) of the ‘stochastic
games with the reward functions r* and r~ the value functions v** and v*~
exist. Moreover,

v** =limo**  and v* =limv¥".

n . n

For each ueM (S) such ‘that the right-hand sides below are well defined
we set

T = T@w), T'(u)= T(T" '), n>2, -

Tow) = T,  THw) = T(T5 @), n>2,
where f € ¥p, and geFp,. Further, we put

Bj,(u)(s) = B [[fu(t)q(@tls, x, y) f (dx|s) g (dyls)

and 7 .
W) = B}g (Bf, (w), = 2.

LemMmA 5.4. For eachfe&”,.A and geypn and n > 1, Bf,(v¥) is well defined
and .

lim B}a @) =0
Proof. By Theorem 5.1, the value function v* exists and v* € M(S). From

Theorem 4.1 we infer that, for each m>1, v} =V’ (=, y») for some
Markov strategies =n,, and 7, of players I and II, respectively. Note that

(5 1) B;g(v:+) = B}g(er(nma 'YM)) < Z:+1
for each m=1 and n > 1. Similarly, we can show that
62 B DS<zn -

for each m=1 and n > 1. Observe that, for each m > 1,
(5.3) O<u¥* <urt;, and %7, <vE <O

By (5 1)-(5.3) and the monotone convergence theorem for each n>1 we
obtain

(54 . Bfg (”’H) n+1
and '
(5.5 | B, (10*7)) < zpss-
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Since v*~ < v* < v**, we have |v¥ < v** +|v* |, which together with (5.4)
and (5.5) implies that, for each n> 1,

(5.6) B, (10*) < zJ4 1 +Zor 1
%, (v*) is well defined. By Lemma 5.1 we get
0< hm lB;g (U*)| hm Bfg(lv*l) llIn(zn+1 +Zn+ 1) -

CoroLLARY 5.1. For each fey’,,A and geLpy and n 2 1, Tr(v*) is well
deﬁned and _

- lim f; (v*) = V(f(m), g(oo))_

Proof. Note that T7(v*) = V, (), (°°’)+B,g(v*) n>1, and this com-
pletes the proof. .

THEOREM 5.2. v* € M, (S).
Proof. By (5.6) we have B}, ([v*)) <z; +z,. Hence
sup sup Bf,(jv*) < oo,
SE5p 4 99 Py
which implies immediately that v*eM,(S).
Lemma 55. For each m> n and se€S we have

sup sup | L(s, x, ) (va)— L(s, X, YOI < z,+2(9).
xeA(s) yeB(s)
Proof. By Theorem 4.1 we have v =V, (n,, . for some Markov

strategies =, and 7y, of players I and II, respectively. Similarly, vj
=V, (n,, 7). We note that

.7) vk < 0F + R 1 (Tos V)

and ‘

(5.8) o2 2 0F — RD, 1 (T, V-

Indeed, : —

U: = Vm(nm’ }'m) S Vm(nma 'Yn) V (TE", yn)+Rn+1 (nmn yn)
= U:+R:+l (nma yn)
and

= Vm(nma ym) 2 Vm(nm 'ym) 2 I/,,('ﬂ',,, 'yn)_R:l"+l (75,,, ym)
= U: _an-f-l (ﬂ:", ?m)

By (5.7), for each xe A(s) and yeB(s) we obtain

59 L(s, x, y)(03) < L(s, x, y) (0F) +za4 2 (5),
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and by (5.8), for each xe A(s) and yeB(s) we get
(5.10) L(s, x, y)(vz) = L (s, x, Y)(03)—2,+2(5)-

Thus, (5.9) and (5.10) imply the required inequality.
From Lemma 5.5 and Theorems 4.1 and 5.1 we obtain immediately
LeMMA 5.6. (a) If r and q satisfy the assumptions of the model (M,), then
the function L(-, -, )(v*) satisfies the assumptions of Lemma 4.1.
(b) If r and q satisfy the assumptions of the model (M,), then the funcnon
L(, -, )(v*) satisfies the assumptions of Lemma 4.2.
(¢) If r and q satisfy the-assumptions of the model (M,), then the functlon
L(-, -, )(v*) satisfies the assumptions of Lemma 4.3.

THEOREM 5 3. For each of the models (M;), (M,), (M3) we have
= T(*) = T;,(v*) for some feSp, and geFpy.

Proof. By Theorem 5.2, T(v*) is well defined, ie., |T(v*)] < co. Using
Theorem 5.1 and the bounded convergence theorem, for each n>1 we
obtain

| T(*)(s) - T(v3)(s)l < sup sup |L(s, x, y)(v*)—L(s, x, y)(v7)
xeA(s) yeB(s)

= sup sup lm|L(s, x, y)(vF)— L(s, x, y)(v})|

xcA(s) yeB(s) m

<lim sup sup |L(s, X, »)(v2)—L(s, x, y)(o}).

m xeA(s) yeB(s)

Hence and by Lemma 5.5 we have, for each seS,
[T @*)(s)— T @R () < Za+2(5)-

Consequently, the condition (D) implies T'(v*) = lim T'(v7). By Theorems 4.1

and.5.1 we get T(v*) = v*. Applying Lemma 5.6 and Lemmas 4.1, 4.2, and
4.3 to the models (M,), (M,), and (M,), respectively, we obtain f €%, and
ge S py such that v* = T(v*) = Tp,(v*).

Now we define, for any given hey’,, , an auxiliary one - person stochastlc
game. .

(+) (8.9), X,A, 7,4, B,
where
r(s, x) = !F(S, x, Wh(dyls), q'(Els, x) = [q(Els, x, y) h(dyls)
Y

for each seS, xeA(s) and E€¥.
Clearly, if the original two - person stochastic game satisfies the condition
(D), so does the modified one-person stochastic game (+).
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Let us set
vf (h) = sup V(n, ™).
nell

LemMA 5.7. For each of the models (M), (My), (M3), for any he Fp, there
is feFp, such that

vf (B) = Ty (vF (B)) = vif (), h=d),
Proof Applying Theorem 5.3 to the game (4+) we obtain
o (h(s)= sup L(s, p, h(s))(vi* (W) = T (v} (h)) (s)
ueP 4(s) .

for each seS and for some f € %p,. Hence vf (h) = T}, (vff ()) for each n > 1.
. Using Corollary 5.1 in the case (+) we get (h) V(™) ), which
completes the proof.

For any fey,,A we put ‘
o (f) =if V(£ ).

yel

By similar arguments as above we can show the following

LemMa 5.8. For each of the models (M,), (My), (M), for any fe &p, there
is ge S py such that

off (f) = T, (o () = V (S, g“).

Now we are ready to state the main result of this section:

THEOREM 54. For each of the models (M,), (M,), (M3) both players have
optimal stationary strategies.

Proof. By Theorem 5.3, v* = T(v*). Using Lemma 5.6 and Lemmas 4.1,
4.2, and 4.3 to the models (M,), (M,), and (M,), respectively, we. obtain
fe&p, and ge Fp, such that
| RSt =T = T,0%) < Tu(o*)
for each le¥p, and he S p,. Hence, for each n > 1, we have

a Tp(*) < % = TE0%) < TA(Y). |
By Corollary 5.1 we get

V(l(ao) (oo)) < = V(f(w) (00)) < V(f(m) h(m))

Jor each le %p , and he.SPpB, which together with Lemmas 5.7 and 5.8
implies

sup V(m, g*) = V (£, g) = inf V (1), y),
nell

yel

ie, f(® and g are optimal for players I and II; respectively.
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Remark. Theorem 5.4 generalizes Theorem 3 of [8] and Theorem 3.23
of [11] (see also [12]), where S is an SB -space, f€[0, 1), and r and g satlsfy .
the continuity assumptions of type (M,).
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