CHARACTERIZATION OF THE ELLIPTICALLY CONTOURED MEASURES ON INFINITE-DIMENSIONAL BANACH SPACES

BY
JOLANTA MISIEWICZ (Wroclaw)

Abstract

This paper gives a characterization of the elliptically contoured measures on infinite-dimensional Banach spaces. The main results are Theorems 1 and 2 . This characterization is not valid in the finite-dimensional Banach spaces.

The elliptically contoured measures were studied by Das Gupta et al. [2] in the finite-dimensional case and by Crawford [1] in the case of the measures with the strong second order on infinite-dimensional spaces. In this paper we omit this assumption.

By E we denote a real separable Banach space and by E^{*} its dual. $\mathscr{B}(E)$ denotes the family of all Borel sets in E. If μ is a measure on E, then by $\mu_{x_{1}^{*}, \ldots, x_{n}^{*}}$ we denote the n-dimensional measure defined by

$$
\mu_{x_{1}^{*}}, \ldots, x_{n}^{*}=\mu\left\{x \in E \mid\left(x_{i}^{*}(x), \ldots, x_{n}^{*}(x)\right) \in A\right\},
$$

where $A \in \mathscr{B}\left(R^{\eta}\right)$ and $x_{1}^{*}, \ldots, x_{n}^{*} \in E^{*}$ are linearly independent.
Definition 1. We say that μ is a cylindrical measure on the Banach space E if μ is a finite additive measure on cylinder sets in E and for every linearly independent set $x_{1}^{*}, \ldots, x_{n}^{*} \in E^{*}$ the measure $\mu_{x_{1}^{*}}, \ldots, x_{n}^{*}$ is σ-additive on R^{n}.

Definition 2. We say that the measure μ on R^{n} is an elliptically contoured n-dimensional measure if there exist a function $f:[0, \infty) \rightarrow[0, \infty)$ and a positive definite, symmetric $(n \times n)$-matrix Σ such that
(i) $\int_{0}^{\infty} r^{n-1} f\left(r^{2}\right) d r<\infty$ (which is equivalent to $\mu\left(R^{n}\right)<\infty$);
(ii) $|\Sigma|^{-1 / 2} f\left(\bar{x} \Sigma^{-1} \bar{x}^{T}\right)$ is the density of the measure μ.

We will use the notation $\mu=\mathscr{E}(f, \Sigma, n)$.
Definition 3. A measure μ on the Banach space E is elliptically contoured if for every natural number n and every linearly independent set $x_{1}^{*}, \ldots, x_{n}^{*} \in E^{*}$ the measure $\mu_{x_{1}^{*}, \ldots, x_{n}^{*}}$ is an elliptically contoured n-dimensional measure.

In the paper we will consider only elliptically contoured probability measures.

Examples. 1. The Gaussian measure on R^{n} with the density

$$
\cdots|\Sigma|^{-1 / 2}(2 \pi)^{-n / 2} \exp \left\{\frac{1}{2} \bar{x} \Sigma^{-1} \bar{x}^{\mathrm{T}}\right\}
$$

is obviously an elliptically contoured n-dimensional measure with

$$
f\left(r^{2}\right)=(2 \pi)^{-n / 2} \exp \left\{-\frac{1}{2} r^{2}\right\} .
$$

2. If the measure μ on R^{n} is invariant on the rotations and has a density, then the density must be constant on the sets

$$
\left\{\bar{x} \in R^{n} \mid \sum_{i=1}^{n} x_{i}^{2}=r^{2}\right\}, \quad r \geqslant 0
$$

Then μ is an elliptically contoured measure on R^{n} with the matrix I and some function $f:[0, \infty) \rightarrow[0, \infty)$.
3. The n-dimensional Student distribution has a density

$$
|T|^{-1 / 2} C(n)\left[i+\frac{1}{n} \bar{x} T^{-1} \bar{x}^{T}\right]-(n+k) / 2,
$$

where k is the number of degrees of fredom. Then it is an elliptically contoured n-dimensional measure.

Let us recall some known properties of elliptically contoured measures on R^{n}. For details see [1] and [6]

Property 1. Let $\mu=\mathscr{E}(f, \Sigma, n), \Sigma=B^{\mathrm{T}} B$, and let C be a nonsingular (n \times n)-matrix. Then:
(i) if $\lambda(A)=\mu\left(A C^{-1} B\right)$ for every $A \in \mathscr{B}\left(R^{n}\right)$, then $\lambda=\mathscr{E}\left(f, C^{\mathrm{T}} C, n\right)$;
(ii) if $\lambda(A)=\mu\left(A C^{-1}\right)$ for every $A \in \mathscr{B}\left(R^{\eta}\right)$, then $\lambda=\mathscr{E}\left(f, C^{\mathrm{T}} \Sigma C, n\right)$.

Property 2. Let $\mu=\mathscr{E}(f, \Sigma, n)$. Then the characteristic function of μ is of the form

$$
\hat{\mu}(\bar{x})=\int_{-\infty}^{\infty} \exp \left\{i\left(\bar{x} \Sigma \bar{x}^{T}\right)^{1 / 2} y\right\} f_{1}\left(y^{2}\right) d y:=\psi\left(\bar{x} \Sigma \bar{x}^{T}\right)
$$

where

$$
f_{1}\left(y^{2}\right)=\int_{R^{n-1}} \ldots \int f\left(y^{2}+\sum_{i=1}^{n-1} x_{i}^{2}\right) d x_{1} \ldots d x_{n-1}
$$

Property 3. Let $\mu=\mathscr{E}(f, \Sigma, n)$ and let the measure v on R^{n-1} be defined by
$\left.v(A)=\mu\left\{x \in R^{n}\right\}\left(x_{1}, \ldots, x_{k-1}, x_{k+1}, \ldots, x_{n}\right) \in A\right\}, \quad A \in \mathscr{B}\left(R^{n-1}\right), 1 \leqslant k \leqslant n$.
Then $v=\mathscr{E}(g, S, n-1)$, where S is a positive definite, symmetric matrix obtained from Σ by removing the k-th row and the k-th column, and

$$
g\left(r^{2}\right)=\int_{-\infty}^{\infty} f\left(r^{2}+x^{2}\right) d x
$$

Property 4. If two representations of the elliptically contoured n dimensional measure μ are given, i.e., if $\mu=\mathscr{E}(f, \Sigma, n)=\mathscr{E}(g, S, n)$, then there exists a number $a>0$ such that

$$
a^{2} S=\Sigma \quad \text { and } \quad g\left(r^{2}\right)=a^{-n} f\left(r^{2} / a^{2}\right)
$$

Sketch of the proof. Assume that $\Sigma=I$ and put $S=\left(s_{i j}\right)_{i, j=1}^{n}$. Now we define

$$
\tilde{S}=s_{11}^{-1} S \quad \text { and } \quad \tilde{g}\left(r^{2}\right)=s_{11}^{-n / 2} g\left(r^{2} s_{11}^{-1}\right)
$$

It is easy to see that $\mu=\mathscr{E}(\tilde{g}, \tilde{S}, n)$. Property 2 implies that for every $\bar{x} \in R^{n}$

$$
\hat{\mu}(\bar{x})=\int_{-\infty}^{\infty} \exp \left\{i\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{1 / 2} y_{1}\right\} \int_{R^{n-1}} \ldots \int\left(\sum_{j=1}^{n} y_{j}^{2}\right) d y_{2} \ldots d y_{n} d y_{1}
$$

and, on the other hand,

$$
\hat{\mu}(\bar{x})=\int_{-\infty}^{\infty} \exp \left\{i\left(\bar{x} \tilde{S} \bar{x}^{T}\right)^{1 / 2} y_{1}\right\} \iint_{R^{n-1}} \ldots \int \tilde{g}\left(\sum_{j=1}^{n} y_{j}^{2}\right) d y_{2} \ldots d y_{n} d y_{1}
$$

Recall that $\tilde{s}_{11}=1$. If $\bar{x}=(x, 0, \ldots, 0)$, then $\hat{\mu}(\bar{x})$ is the characteristic function of a probability measure on R. Consequently, we obtain the equality

$$
\int_{R^{n-1}} \ldots \int\left(\sum_{j=1}^{n} y_{j}^{2}\right) d y_{2} \ldots d y_{n}=\int_{R^{n-1}} \ldots \int \tilde{g}\left(\sum_{j=1}^{n} y_{j}^{2}\right) d y_{2} \ldots d y_{n}
$$

almost everywhere with respect to the Lebesgue measure. Now, it is easy to see that $I=\tilde{S}=s_{11}^{-1} S$, and then $g\left(r^{2}\right)=a^{-n} f\left(r^{2} / a^{2}\right)$, where $a>0$ and a^{2} $=s_{11}^{-1}$. If $\Sigma \neq I$, then there exists a nonsingular matrix B such that $\Sigma=B^{T} B$ and we can use the above argumentation to the measure

$$
\lambda=\mathscr{E}(f, I, n)=\mathscr{E}\left(g,\left(B^{-1}\right)^{\mathrm{T}} S\left(B^{-1}\right), n\right)
$$

(see Property 1).
THEOREM 1. If μ is a cylindrical measure on an infinite-dimensional Banach space E, then the following conditions are equivalent:
(1) μ is elliptically contoured.
(2) There exists $Q: E^{*} \times E^{*} \rightarrow R$, an inner product on E^{*}, such that the
characteristic function of μ is of the form $\hat{\mu}\left(x^{*}\right)=\psi\left(Q\left(x^{*}, x^{*}\right)\right)$, where $\psi: R^{+}$ $\rightarrow R$ is a function.
(3) There exist a Gaussian, cylindrical, symmetric measure γ on E and a probability measure λ on $(0, \infty)$ such that

$$
\mu(A)=\int_{0}^{\infty} \gamma(A / \sqrt{t}) \lambda(d t)
$$

for every cylinder set $A \in E$.
Proof. (1) \Rightarrow (2). First we prove that if μ is an elliptically contoured measure on an infinite-dimensional Banach space E and for some linearly independent set $x_{1}^{*}, \ldots, x_{n}^{*} \in E^{*}$ we have $\mu_{x_{1}^{*}, \ldots, x_{n}^{*}}=\mathscr{E}(f, \Sigma, n)$, then for every linearly independent set $y_{1}^{*}, \ldots, y_{n}^{*} \in E^{*}$ there exists a positive definite, symmetric matrix S such that $\mu_{\nu_{1}^{*}, \ldots, \nu_{n}^{*}}=\mathscr{E}(f, S, n)$.

Assume that $x_{1}^{*}, \ldots, x_{n}^{*}, y_{1}^{*}, \ldots, y_{n}^{*}$ are linearly independent. From the definition we know that there exist functions g, h and matrices T, P such that

$$
\mu_{y_{1}^{*}, \ldots, y_{n}^{*}}=\mathscr{E}(g, T, n) \quad \text { and } \quad \mu_{x_{1}^{*}, \ldots, x_{n}^{*}, y_{1}^{*}, \ldots, \nu_{n}^{*}}=\mathscr{E}(h, P, 2 n) .
$$

Now, from Property 3 we obtain

$$
\begin{aligned}
|\Sigma|^{-1 / 2} f\left(\bar{x} \Sigma^{-1} \bar{x}^{\mathrm{T}}\right) & =\underset{R^{n}}{ } \ldots|P|^{-1 / 2} h\left(\bar{y} P^{-1} \bar{y}^{\mathrm{T}}\right) d z_{1} \ldots d z_{n} \\
& =\left|P_{11}\right|^{-1 / 2} \int_{R^{n}} \ldots \int\left(\bar{x} P_{11}^{-1} \bar{x}^{\mathrm{T}}+\sum_{i=1}^{n} z_{i}^{2}\right) d z_{1} \ldots d z_{n}
\end{aligned}
$$

and

$$
\begin{aligned}
&|T|^{-1 / 2} g\left(\bar{z} T^{-1} \bar{z}^{T}\right)=\underset{R^{n}}{ } \ldots|P|^{-1 / 2} h\left(\bar{y} P^{-1} \bar{y}^{\mathrm{T}}\right) d x_{1} \ldots d x_{n} \\
&=\left|P_{22}\right|^{-1 / 2} \int \ldots \int \mathrm{R}^{n} \\
& \int\left(z P_{22}^{-1} z+\sum_{i=1}^{n} x_{i}^{2}\right) d x_{1} \ldots d x_{n},
\end{aligned}
$$

where

$$
\bar{y}=\left(x_{1}, \ldots, x_{n}, z_{1}, \ldots, z_{n}\right), \quad P=\left(\begin{array}{ll}
P_{11} & P_{12} \\
P_{21} & P_{22}
\end{array}\right),
$$

and $P_{i j}$ is an $(n \times n)$-matrix. Now, by Property 4, there exists a number $a>0$ such that $\Sigma=a^{2} P_{11}$ and

$$
\int \underset{R^{n}}{\int \ldots} h\left(r^{2}+\sum_{i=1}^{n} y_{i}^{2}\right) d y_{1} \ldots d y_{n}=a^{-n} f\left(r^{2} / a^{2}\right)
$$

and there exists a number $b>0$ such that $T=b^{2} P_{22}$ and

$$
\underset{R^{n}}{\int \ldots \int} h\left(r^{2}+\sum_{i=1}^{n} y_{i}^{2}\right) d y_{1} \ldots d y_{n}=b^{-n} g\left(r^{2} / b^{2}\right)
$$

This means that $g\left(r^{2}\right)=c^{-n} f\left(r^{2} / c^{2}\right)$ for $c=a / b$. It is easy to see that

$$
\mu_{y_{1}^{*}, \ldots, \nu_{n}^{*}}=\mathscr{E}\left(f, c^{2} T, n\right)
$$

If $x_{1}^{*}, \ldots, x_{n}^{*}, y_{1}^{*}, \ldots, y_{n}^{*} \in E^{*}$ are not linearly independent, then we can choose $z_{1}^{*}, \ldots, z_{n}^{*} \in E^{*}$ such that $x_{1}^{*}, \ldots, x_{n}^{*}, z_{1}^{*}, \ldots, z_{n}^{*}$ are linearly independent and $y_{1}^{*}, \ldots, y_{n}^{*}, z_{1}^{*}, \ldots, z_{n}^{*}$ are linearly independent.

Since $\mu_{x_{1}^{*}, \ldots, x_{n}^{*}}^{*}=\mathscr{E}(f, \Sigma, n)$ and $x_{1}^{*}, \ldots, x_{n}^{*}, z_{1}^{*}, \ldots, z_{n}^{*}$ are linearly independent, according to the preceding considerations there exists an $(n \times n)$-matrix T such that

$$
\mu_{z_{1}^{*}, \ldots, z_{n}^{*}}=\mathscr{E}(f, T, n),
$$

and since $y_{1}^{*}, \ldots, y_{n}^{*}, z_{1}^{*}, \ldots, z_{n}^{*}$ are linearly independent, there exists an (n $\times n$)-matrix S such that

$$
\mu_{y_{1}^{*}, \ldots, \nu_{n}^{*}}=\mathscr{E}(f, S, n)
$$

Now, we can construct by induction the sequence $\left\{f_{n}\right\}$ such that for every $x_{1}^{*}, \ldots, x_{n}^{*}$ there exists a positive definite, symmetric matrix Σ such that

$$
\mu_{x_{1}^{*}}, \ldots, x_{n}^{*}=\mathscr{E}\left(f_{n}, \Sigma, n\right) \quad \text { and } \quad \int_{-\infty}^{\infty} f_{n+1}\left(\dot{x}^{2}+r^{2}\right) d x=f_{n}\left(r^{2}\right)
$$

It is enough to fix an $x^{*}\left(0 \neq x^{*} \in E^{*}\right)$ and fix one of the representations of the measure $\mu_{x_{*}}=\mathscr{E}\left(f_{1}, \sigma_{x *}^{2}, 1\right)$. We know that for every $y^{*} \in E^{*}$ there exists $\sigma_{y *}>0$ such that $\mu_{y *}=\mathscr{E}\left(f_{1}, \sigma_{y *}^{2}, 1\right)$.

If f_{1}, \ldots, f_{n} are given and $x_{1}^{*}, \ldots, x_{n}^{*} \in E^{*}$ are linearly independent, then we take some representation $\mu_{x_{1}^{*}, \ldots, x_{n+1}^{*}}=\mathscr{E}(g, \Sigma, n+1)$. By assumption there exists a matrix T such that $\mu_{x_{1}^{*}, \ldots, x_{n}^{*}}=\mathscr{E}\left(f_{n}, T, n\right)$. Then

$$
\begin{aligned}
|T|^{-1 / 2} f_{n}\left(\bar{x} T^{-1} \bar{x}^{T}\right) & =\int_{-\infty}^{\infty}|\Sigma|^{-1 / 2} g\left(\bar{x} \Sigma^{-1} \bar{x}^{\mathrm{T}}\right) d x_{n+1} \\
& =|S|^{-1 / 2} \int_{-\infty}^{\infty} g\left(\bar{x} S^{-1} \bar{x}^{T}+y^{2}\right) d y
\end{aligned}
$$

where (see Property 3) the matrix S is obtained from Σ by removing the $(n+1)$-st row and the $(n+1)$-st column. By Property 4 there exists a number $a>0$ such that

$$
S=a^{2} T \quad \text { and } \quad f_{n}\left(r^{2}\right)=a^{-n} \int_{-\infty}^{\infty} g\left(r^{2} a^{-2}+y^{2}\right) d y
$$

Now, it is enough to put

$$
f_{n+1}\left(r^{2}\right)=a^{-n-1} g\left(r^{2} a^{-2}\right) \quad \text { and } \quad \Sigma^{\prime}=a^{-2} \Sigma
$$

Let $x^{*}, y^{*} \in E^{*}$. We define $Q\left(x^{*}, y^{*}\right)$ by

$$
Q\left(x^{*}, y^{*}\right)=a \sigma^{2} \quad \text { if } y^{*}=a x^{*} \text { and } \mu_{x^{*}}=\mathscr{E}\left(f_{1}, \sigma^{2}, 1\right)
$$

and by

$$
Q\left(x^{*}, y^{*}\right)=\sigma_{12}
$$

if x^{*}, y^{*} are linearly independent and

$$
\mu_{x^{*} \cdot y^{*}}=\mathscr{E}\left(f_{2},\left(\begin{array}{ll}
\sigma_{11} & \sigma_{12} \\
\sigma_{21} & \sigma_{22}
\end{array}\right), 2\right) .
$$

From Property 2 it follows that the characteristic function of the measure μ is of the from

$$
\widehat{\mu}\left(x^{*}\right)=\int_{-\infty}^{\infty} \exp \left\{i\left(Q\left(x^{*}, x^{*}\right)\right)^{1 / 2} y\right\} f_{1}\left(y^{2}\right) d y:=\psi\left(Q\left(x^{*}, x^{*}\right)\right)
$$

$(2) \Rightarrow(3)$. From the Kuelbs theorem (see [4]) it follows that the function ψ in the above formula must be absolutely monotonic. Then there exists a finite measure λ on $[0, \infty)$ such that

$$
\hat{\mu}\left(x^{*}\right)=\psi\left(Q\left(x^{*}, x^{*}\right)\right)=\int_{0}^{\infty} \exp \left\{-\frac{1}{2} Q\left(x^{*}, x^{*}\right) t\right\} \lambda(d t)
$$

if $Q\left(x^{*}, x^{*}\right) \neq 0$. Obviously, λ must be a probability measure and $\lambda(\{0\})=0$.
Now, we construct a Gaussian, symmetric, cylindrical measure γ on E. Let $x_{i}^{*}, \ldots, x_{n}^{*} \in E^{*}$ be linearly independent and write $\Sigma=\left(Q\left(x_{i}^{*}, x_{j}^{*}\right)\right)_{i, j=1}^{n}$. We define $\gamma_{x_{1}^{*}}, \ldots, x_{n}^{*}$ as the symmetric Gaussian measure on R^{n} with the covariance matrix Σ. It is easy to see that the family

$$
\left\{\gamma_{x_{1}^{*}, \ldots, x_{n}^{*}} \mid n \in N, x_{i}^{*} \in E^{*} \text { are linearly independent }\right\}
$$

defines a symmetric, Gaussian, cylindrical measure on E such that

$$
\gamma_{x_{1}^{*}, \ldots, x_{n}^{*}}(A)=\gamma\left\{x \in E \mid\left(x_{1}^{*}(x), \ldots, x_{n}^{*}(x)\right) \in A\right\} \quad \text { for every } A \in \mathscr{B}\left(R^{\eta}\right)
$$

We now construct a cylindrical measure v on E by the formula

$$
v(A)=\int_{0}^{\infty} \gamma(A / \sqrt{t}) \lambda(d t)
$$

for every cylinder set $A \subset E$. For every $x^{*} \in E^{*}$ we have

$$
\begin{aligned}
\hat{v}\left(x^{*}\right) & =\int_{E} \exp \left\{i x^{*}(x)\right\} v(d x) \\
& =\int_{-\infty}^{\infty} e^{i y} \int_{0}^{\infty}\left[2 \pi Q\left(x^{*}, x^{*}\right) t\right]^{-1 / 2} \exp \left\{-\frac{y^{2}}{2 t Q\left(x^{*}, x^{*}\right)}\right\} \lambda(d t) d y \\
& =\int_{0}^{\infty} \exp \left\{-\frac{1}{2} Q\left(x^{*}, x^{*}\right) t\right\} \lambda(d t)=\hat{\mu}\left(x^{*}\right) .
\end{aligned}
$$

Then, obviously, $\mu=v$ on every cylinder set in E.
$(3) \Rightarrow(1)$. We have only to show that the finite-dimensional distributions
of μ are elliptically contoured n-dimensional measures. Let $x_{1}^{*}, \ldots, x_{n}^{*} \in E^{*}$ be linearly independent. Then for every $A \in \mathscr{B}\left(R^{n}\right)$ we have

$$
\begin{aligned}
\mu_{x_{1}^{*}, \ldots, x_{n}^{*}}(A) & =\int_{0}^{\infty} \gamma_{x_{1}^{*}, \ldots, x_{n}^{*}}(A / \sqrt{t}) \lambda(d t) \\
& =\int_{0}^{\infty} \int_{A t^{-1 / 2}} \ldots \int|\Sigma|^{-1 / 2}(2 \pi)^{-n / 2} \exp \left\{-\frac{1}{2} \bar{x} \Sigma^{-1} \bar{x}^{T}\right\} d x \lambda(d t) \\
& =\int \ldots \int|\Sigma|^{-1 / 2} \int_{0}^{\infty}(2 \pi t)^{-n / 2} \exp \left\{-\frac{\bar{x} \Sigma^{-1} \bar{x}^{T}}{2 t}\right\} \lambda(d t) d x,
\end{aligned}
$$

 contoured since its density is of the form

$$
|\Sigma|^{-1 / 2} \int_{0}^{\infty}(2 \pi t)^{-n / 2} \exp \left\{-\frac{\bar{x} \Sigma^{-1} \bar{x}^{T}}{2 t}\right\} \lambda(d t)
$$

Lemma. Let μ and v be cylindrical measures on the Banach space E and let λ be a probability measure on R such that $\lambda(\{0\})=0$; let

$$
\mu(A)=\int_{-\infty}^{\infty} v(A t) \lambda(d t)
$$

for every cylinder set $A \subset E$. Then μ can be extended to a Radon measure if and only if v can be extended to a Radon measure.

Proof. If v can be extended to a Radon measure, then so can μ since E is a Polish space.

Assume that μ can be extended to a Radon measure and suppose that v cannot be extended to a Radon measure. Then there exists $\varepsilon>0$ such that for every compact set $K \subset E$ there exists an n-dimensional projection π : E $\rightarrow R^{n}$ such that

$$
v\left(\pi^{-1}(\pi K)\right)<1-\varepsilon .
$$

For the measure λ we can find $T>0$ such that $\lambda(\{-T, T\})=0$ and $\lambda(-T, T)>1-\varepsilon / 2$. Since μ can be extended to a Radon measure, there exists a compact set $K_{0} \subset E$ such that $a K_{0} \subset K_{0}$ for every $|a| \leqslant 1$ and $\mu\left(K_{0}\right)>1-\varepsilon / 4$. If we take now such a projection $\pi: E \rightarrow R^{n}$ for which $v\left[\pi^{-1}\left(\pi\left(K_{0} T\right)\right)\right]<1-\varepsilon$, then we obtain the following contradiction:

$$
\begin{aligned}
1-\varepsilon / 4 & <\mu\left(K_{0}\right) \leqslant \mu\left(\pi^{-1}\left(\pi K_{0}\right)\right)=\int_{-\infty}^{\infty} v\left[\pi^{-1}\left(\pi\left(K_{0} t\right)\right)\right] \lambda(d t) \\
& <\varepsilon / 2+\int_{-T}^{T} v\left[\pi^{-1}\left(\pi\left(t T^{-1} K_{0} T\right)\right)\right] \lambda(d t) \\
& <\varepsilon / 2+v\left[\pi^{-1}\left(\pi\left(K_{0} T\right)\right)\right] \lambda(-T, T)<1-\varepsilon / 2 .
\end{aligned}
$$

Therefore, v must be a Radon measure.

Theorem 2. If μ is a Radon measure on an infinite-dimensional Banach space E, then the following conditions are equivalent:
(1) μ is elliptically contoured.
(2) There exist a Gaussian, symmetric, Radon measure γ on E and a probability measure λ on $(0, \infty)$ such that, for every $A \in \mathscr{B}(E)$,

$$
\mu(A)=\int_{0}^{\infty} \gamma(A / \sqrt{t}) \lambda(d t)
$$

(3) There exist a Gaussian, zero mean, random vector X on E and a real positive random variable Θ on $(0, \infty)$ such that X and Θ are independent and μ is the law of the random vector $Y=X \sqrt{\Theta}$.

Proof. The equivalence of conditions (1) and (2) follows easily from Theorem 1 and the Lemma.
(2) \Rightarrow (3). For the measures γ and λ we can construct a Gaussian, zero mean, random vector X on E and a positive random variable Θ such that X and Θ are independent, γ is the distribution of X, and λ is the distribution of Θ. Then we have only to prove that μ is the distribution of $Y=X \sqrt{\Theta}$. Let

$$
C=\left\{x \in E \mid\left(x_{1}^{*}(x), \ldots, x_{n}^{*}(x)\right) \in A\right\}
$$

where $x_{1}^{*}, \ldots, x_{n}^{*} \in E^{*}$ are linearly independent and $A \in \mathscr{B}\left(R^{\prime \prime}\right)$. Then

$$
\begin{aligned}
P\{Y \in C\} & =P\left\{\left(x_{1}^{*}(Y), \ldots, x_{n}^{*}(Y)\right) \in A\right\} \\
& =\int_{0}^{\infty} P\left\{\left(x_{1}^{*}(X), \ldots, x_{n}^{*}(X)\right) \in A / \sqrt{t}\right\} \lambda(d t) \\
& =\int_{0}^{\infty} P\{X \in C / \sqrt{t}\} \lambda(d t)=\int_{0}^{\infty} \gamma(C / \sqrt{t}) \lambda(d t)=\mu(C) .
\end{aligned}
$$

$(3) \Rightarrow(1)$. It is sufficient to prove that the finite-dimensional distributions of the random vector Y are elliptically contoured. Let C be defined as above. Then we obtain

$$
\begin{aligned}
P\{Y \in C\} & =\int_{0}^{\infty} P\{X \in C / \sqrt{t}\} \lambda(d t) \\
& =\int_{0}^{\infty} \int_{A t} \ldots \int^{-1 / 2}(2 \pi)^{-n / 2}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2} \overline{\bar{x}} \Sigma^{-1} \bar{x}^{\mathrm{T}}\right\} d x \lambda(d t) \\
& =\int \ldots \int|\Sigma|^{-1 / 2} \int_{0}^{\infty}(2 \pi t)^{-n / 2} \exp \left\{-\frac{\bar{x} \Sigma^{-1} \bar{x}^{\mathrm{T}}}{2 t}\right\} \lambda(d t) d x
\end{aligned}
$$

where Σ is the covariance matrix of the random vector $\left(x_{1}^{*}(X), \ldots, x_{n}^{*}(X)\right)$. This means that $\left(x_{1}^{*}(Y), \ldots, x_{n}^{*}(Y)\right)$ has the distribution $\mathscr{E}\left(f_{n}, \Sigma, n\right)$, where

$$
f_{n}\left(r^{2}\right)=\int_{0}^{\infty}(2 \pi t)^{-n / 2} \exp \left\{-\frac{r^{2}}{2 t}\right\} \lambda(d t)
$$

From now on we denote the elliptically contoured measures on infinitedimensional Banach spaces by $\mathscr{E}(\gamma, \lambda)$ or $\mathscr{E}(X, \Theta)$.

Theorem 3. If F is a linear measurable subspace of the Banach space E and $\mu=\mathscr{E}(\gamma, \lambda)$ is the measure on E, then μ is concentrated on F if and only if so is γ.

This theorem follows easily from the equality $F / \sqrt{t}=F$ for every $t>0$.
Theorem 4. For every elliptically contoured measure $\mathscr{E}(\gamma, \lambda)$ on E the following conditions are equivalent for every $p>0$:
(i) $\mathbf{E}_{\mu}\|x\|^{p}<\infty$.
(ii) $\mathrm{E}_{\mu}\left|x^{*}(x)\right|^{p}<\infty$ for every $x^{*} \in E^{*}$.
(iii) $\int_{0}^{\infty} t^{p / 2} \lambda(d t)<\infty$.

This follows immediately from Theorem 2 (3).
Remarks. 1. Let us note that Theorems 1 and 2 are not valid in a finitedimensional space (cf. [6]). But for every symmetric Gaussian measure γ on R^{n} and every probability measure λ on $(0, \infty)$ the measure $\mu=\mathscr{E}(\gamma, \lambda)$ is elliptically contoured on R^{n}.
2. Crawford (cf. [1]) proved Theorem 1 for the elliptically contoured measures with the strong second order. Our representation coincides in this case with that of Crawford if

$$
\int_{0}^{\infty} t \lambda(d t)=1 .
$$

3. It is easy to see that for each symmetric Gaussian measure γ on E and for every ($p / 2$)-stable measure λ on ($0, \infty$), where $p<2$, the measure μ $=\mathscr{E}(\gamma, \lambda)$ is p-stable on E ([3], Chapter VI, p. 167). Moreover, elliptically contoured measures occur in the Random Central Limit Theorem:

Let $\left\{X_{n}\right\}$ be independent symmetric, identically distributed, random variables such that $\left(X_{1}+\ldots+X_{n}\right) / \sqrt{n}$ converges in distribution to a symmetric Gaussian variable X. If $\Theta_{n} / a_{n} \xrightarrow{p} \Theta$, where Θ_{n} are nonnegative random variables, $a_{n} \rightarrow \infty$, and Θ is a nonnegative random variable, X and Θ being independent, then $\left(X_{1}+\ldots+X_{\theta_{n}}\right) / \sqrt{a_{n}}$ converges in distribution to $X \sqrt{\Theta}$.

REFERENCES

[1] J. J. Crawford, Elliptically contoured measures on infinite-dimensional Banach spaces, Studia Math. 60 (1977), p. 15-32.
[2] S. Das Gupta, M. L. Eaton, I. Olkin, M. Perlman, L. J. Savage and M. Sobel, Inequalities on the probability content of convex regions for elliptically countored distributions, p. 241-265 in: Proc. Sixth Berkeley Symp. 2, 1972.
[3] W. Feller, An introduction to probability theory, Vol. 2 (in Polish), Warszawa 1969.
[4] J. Kuelbs, Positive definite symmetric functions on linear spaces, J. Math. Anal. Appl. 42 (1973), p. 413-426.
[5] S. Kwapień and B. Szymański, Some remarks on Gaussian measures in Banach spaces, Probability and Mathematical Statistics 1 (1980), p. 59-65.
[6] J. Misiewicz, Elliptically contoured measures on R, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. (to appear).

Institute of Mathematics
Technical University of Wroclaw
Wÿbrzeże Wyspiańskiego 27
50-370 Wroclaw

Received on 22.1.1981;
revised version on 17. 9. 1981

