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Abstract. A linear operator A is said to be admissible for a 
probability measure p on a finite-dimensional vector space if there 
exists a stationary sequence X, (n = 0, f I ,  ...) of random vectors 
with the probability distribution p such that X,,, = AX,+U,,  
where random vectors U, are independent and identically distri- 
buted. The aim of this paper is to give a characterization of 
admissible operators for any probability measure in terms of its 
decomposability semigroup. 

Throughout this paper we shall work with a finite - dimensional vector 
space X over the field of real or complex numbers. By a probability measure 
p on 5? we shall understand a countably additive non-negative set function 
p on the class of Borel subsets of % with the property that p ( m  = 1. A 
probability measure is said to be full if its support is not contained in any 
proper hyperplane of X. Fu~her ,  by 6, (a E T) we shall denote the probability 
measure concentrated at the point a. - .- - 

In the study of limit probability distributions [4] the author introduced 
the concept of decomposability semigroup D(p)  of linear operators associated 
with the probability p. Namely, B(p)  consists of all linear operators A on 5Y 
for which the equation p = Ap*v holds for a certain probability measure v. 
.The asterisk denotes here the convolution of measures and (Ap)(E) 
= p(A-'  (a) for all Borel subsets E of X. We note that the zero operator 0 
and the identity operator I always belong to D(p).  It has been shown that 
some purely probabilistic properties of p are equivalent to some algebraic 
and topological properties of its decomposability semigroup D(p).  

Let [X,} (n = 0, f 1, . . .) be a stationary sequence of 3" -valued ,random 
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variables with a common distribution y. It has the first order' autoregressive 
structure if for any n the relation 

holds, where A is a linear operator on X and U n  form a sequence of 
independent and identically distributed random variables. The operator A in 
(1) will be called admissible for p. The set of all admissible operators for y 
will be denoted by A(p) .  It is clear that the study of A(p)  for arbitrary 
probability measures can be reduced to the case of full probability measures. 
The of this- paper is to give a description of A(p)  in terms of the 
decomposability semigroup W(y) for full probability measures p on X. All 
that has been done so far is to describe the set A(p)  for some special 
measures p on the real line: Gaussian, gamma and exponential distribution 
(A. J. Lawrance in a paper presented at the Colloquium on Point Processes 
and Queueing Theory, Reszthely, Hungary, September 4 - 8, 1978), and 
uniform distribution over the unit interval (J. Lukaszewicz 131). 

Given a linear operator A on a complex vector space S, we have the 
Jordan decomposition of 35 into a direct sum 

where the summation runs over all eigenvaIues A of A. The subpaces XA are 
invariant under the operator A and in a suitably chosen basis e l ,  e,, . . ., ep 
of T ,  we have 

(2 )  Ael = Ae, +e, ,  Ae2 = Ae, + e,, . . . , Aep- = Ae,-, + e,, Ae, = Aep . 

Moreover, 

P-t 
Anek = Amx(n-j ,o~(~jej+r (k = I ,  2, . . ., P I .  

j = O  

The Jordan decomposition defines uniquely three projectors PA, Q A ,  and RA 
from 3Y onto A -invariant subspaces @I TA, T I ,  and- @ T1, respecti- 

111 (1 111>1 111 = 1 

vely. Of course, A, PA, QA, and RA commute with one another and 

as n -, oo. The operators A" (n = 1 ,  2, ...) restricted to Q X1 and @ 
111>1 111 = 1 

are invertible. Their inverses will be denoted by A-"Q,  and A-"R,, 
respectively. Moreover, 

(5 )  A-'QA 4 0  
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as n 4 m. Further, from (3) we get the following statement: 

(6) sup1JAnRAJJ < oo if and only if A on @ XA has a diagonal form, i.e., 
n 111=1 

for all A with IAl = 1 we have p = 1 in (2). 

Our aim is to prove the following result: 
THEOREM. k t  X be a finite -dimensional complex vector space and let p be 

a full probability measure on I. *Then A E A (p) $ and only QA, A- ' Q,, 
A(I-QA~ED(P)* 

It should be noted that the Theorem remains true in the case of a real 
vector space X. In fact, taking a complexification Sc of %: Xc = {x 
+iy: x, y EX), we can extend to %", every linear operator A on S by setting 
A(x+iy) = Ax+ iAy. It is clear that to every non -real eigenvalue ;I of A 
there corresponds a conjugate eigenvalue X with the same multiplicity. Hence 
9T is invariant under the projectors PA, QA, and RA defined by the Jordan 
decomposition of .Yc generated by A. Furthermore, each full measure on X 
restricted to Tc is also full. Consequently, the Theorem remains true for 
vector spaces over the field of real numbers. 

Before proceeding to prove the Theorem we shall establish some 
corollaries. 

COROLLARY 1. If A E D(p), then QA = 0. Moreowr, 

Indeed, by the compactness of D(p)  ((Proposition 1.1, [4], p. 121), the 
sequence {AnQ,) is conditionally compact, which, by (9, yields QA = 0. 
Therefore, formula (7) is a consequence of the Theorem. ' 

Suppose now that dim 9 = n 2 2 and A(p) contains projectors 
PI, Pz, . . . , P,, Q,, Q, satisfying the following conditions : Pi Pj = 0 for i # j 
( i , j = 1 , 2  ,..., n), Q1Q2=Q2Q1=0, and Q,Pi#O ( i = 1 , 2  ,..., n ;  k 
= 1, 2). Then by (7) all projectors PI, P,,  . . ., P,, Q,, Q, belong to D(p) and, 
by Skitovich-Darmois results ( [ 5 ] ,  Theorem 3, p. 533), the measure p is 
Gaussian. 

Given an operator A on T, we denote by n(A) the set of all projectors 
from 2f onto A -invariant subspaces @ TA, where A is an arbitrary subset of 

I s A  

the set of all eigenvalues of A different from 0 and of modulus less than I. 
COROLLARY 2. Under the assumptions of the Theorem we have the formla 

Indeed, if A = B(i- Q) + B- Q, where B and Q ~ 1 7 ( B )  nD(p), then, 
by Corollary 1, Q, = 0. Consequently, QA = Q, which yields QA ~ I l ( p ) .  Since, 
by Proposition 1.1 in [6] (p. 284), I -Q ~ld(p), we have A(i - QA) = B(I 
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- Q) €D(p). Finally, A- ' QA = BQ fD(p), which proves the relation A s A(p). 
Conversely, if A E A(p), then, by the Theorem, A(I -QA), A- 'Q, G D(&. 
Applying Proposition 1.2 from [6] (p. 2841, we infer that 

Moreover, QA E n(B) n D(p) and, by a simple calculation, 

which completes the proof. 
In the o& -dimensional case we have either n(A) = {O ,  I >  or n(A) = to>. 

Co&i@uentIy, n(A) c D(p). Thus Corollary 2 yields 
COROLLARY 3. If dim !f = 1, then - 

Atp) = D(p) u {A: A-I EII(~)). 

The above formula reduces the characterizing problem of A(p) to that of 
D(p). 'My conjecture is that on the real line the following conditions 
characterize the decomposability semigroups S associated with full probability 
measure: S is a compact subsemigroup of the multiplicative semigroup of 
real numbers of modulus less than or equal to 1 and S contains both 
numbers 0 and 1. The necessity of these conditions is evident. All that has 
been done so far concerning their sufficiency shows that decomposability 
semigroups form a dense subset of the set consisting of all semigroups 
satisfying our conditions. More precisely, T. Rajba proved that for every 
semigroup S satisfying our conditions and for every open set V containing S 
there exists a full probability measure p such that S c D(p) c V. For 
symmetric probabiIity measures the characterizing problem has been solved 
by Iljinskij in [2]. Namely, a compact subsemigroup of the multiplicative 
semigroup of real numbers of modulus less than or equal to 1 is the 
decomposability semigroup for a symmetric probability measure if and only 
if it contains both numbers 0 and -1. Consequently, for every such 
semigroup S there exists a symmetric probability measure p on the real line 
such that - - 

Finally, we quote an example in which probability measures are charac- 
terized in terms of the set A(p). Let ( K )  be a sequence of independent 
random vectors and let {A,] and {am) be sequences of invertible operators 
and vectors, respectively, such that A, Y, (k = 1, 2, .. ., n ;  n = 1, 2, ...) form 
a uniformly infinitesimal triangular array. Suppose that the distributions of 
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converge to a probability measure. This limit distribution is called a ,Guy's 
measure. We refer the reader to [4] for an'account of the family of all Lkvy's 
measures. 
COROLLARY 4. k t  p be a fuli probability measure on a Euclidean space. 

Then p is a ,!ivy's measure if arld only if A(p) contains a one-pameter 
operator 'smigroup dB ( t  3 0) with the property dB 4 0 as t + m. 

Ht is clear that etB (t > 0) has no eigenvalue of modulus greater than 1. 
Consequently, Qels = 0 for all t 2 0 and our statement is a consequence of 
formula (7) and Theorem 5.1 in [4] (p. 136). 

Now we shall prove -some auxiliary propositions for finite-dimensional 
complex vector spaces T. 

Let (X,) ( n  = 0, f 1, . . .) be a sequence of X-valued random variables 
satisfying the condition ( I ) .  Put X, = X,+ a and Ui = U, + b, where a, b E X. 
Then Xn+, = AX:+Uk if and only if 

Hence we get the foIlowing 
LEMMA 1. A E  A(p) $ and only ij A E  A(,u*d,) for may a E Z. 
We note that equation (8) has a soIution for a given vector b if and only 

if 

where R; is the projector from 3 onto the subspace @ XA. Further, from 
A =  1 

(1) we get the equations 

Hence, taking into account (4), (9, and the identical distribution of random 
vectors X, (n = 0, f 1, .. .), we get the following 

LEMMA 2. If (X,) fulfils condition (I), then 
m og 

PAX,  = A ~ P , U , - ~ -  and QAXn = - A-i- ' Q , U ~ + ~ .  
j=  0 j =  0 

LEMMA 3. Let p be a full probability measure and A E  A(p). Then 
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Proof. Suppose the contrary. Then, by (61, there exists an eigenvalue A 
such that /A/ = 1 and dim 2, i.e., p 3 2 in (2). Let R be the projector 
from B onto S,. Of course, A, RA, and R commute with one another. 
Further, let M, be the space of all 5-valued random variables generated by 
the sequence RU,, , , RU,,+2, . . . , i.e, the space consisting of all $-valued 
random variables measurable with respect to the a -field induced by 
RU,+ ,, . . . Put 

P 
(12)' - RUa = C Vj,nej, 

j =  1 - 

where { , ,  gl,n (j = 1, 2, . . ., p ;  i$ = 1,  2, . . .) are complex-valued random 
vaiiables. By (10) we have the equation 

Further, for every pair n, m of positive integers satisfying the inequality 
n > rn we put 

R 

Y,, = C A"-'RU,. 
j = m + l  

Obviously, 

Since the random vectors RX, are identically distributed and p 2 2, we have 
the relation nl-PRX,+,  + O  in probability as n + co. Moreover, from (3), 
(11) and (12) we get the convergence in probability _ - 

( p - I ) !  X - 2 - n n 1 - p ~ n + 1 ~ ~  o + 1 e  p? 

as n+ 00, which by (15) yields the convergence in %robability 
... 

(16) Z an = lim ( p - I ) !  K-z-nnl-P $, = -e1e,- A-j-'tfl,jep- 
n-) 30 j= 0 

Moreover, by (14), 
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m 

Thus the random vectors Z ,  and C A-j-' qj,jep are indepzndent. Further, 
j= 0 

from (16) and the independence of qIvj (j = 0, 1, . ..) we infer, according to 
m 

Theorem 2.8 in [I] (p. 119), that the series R-i-lvl,j  converges with 
j- 0 

probability 1 when centered. Consequently, there exist complex numbers cj 
such that 1 - j - '  q I t j - c j  4 0  in probability. Since 111 = 1 and q l , j  are identic- 
ally distributed, the last relation yields glmj = c with probability 1, where c is 
a constant. Thus, by (17), -. 

- 

which by (16)  implies the relation el ep E M ,  (m = 1 ,  2, , . .). Consequently, by 
the zero-one law (Theorem 1.1, [l], p. 102), 5 ,  is constant with probability 
I,, which by (11) shows that the probability distribution of X, is concentrated 
on a proper hyperplane of %. But this contradicts the assumption, which 
completes the proof of the lemma. 

LEMMA 4. Let {X,) be a stationary sequence satisfying (1). If the pro- 
bubility distribution of Xo is full, then RAUn is constant with probability 1 .  
Moreover, R i  U, = 0 with probability 1 .  

Proof. By (10) we have the equation 

Further, by Lemma 3, the sequence of probability distributions of the 
random vectors A" RA X-,- (r = 0, 1, . . .) is conditionally compact in the 
sense of weak convergence. Consequently, from (18) it follows that the 

r 

sequence of probability distributions of A' RA U- j- , is also conditionally 
j = Q  

compact. Hence, according to Theorem 2.7 in [I] (p. 115), the series 
OD 

C Aj RA U -  j-l converges with probability 1 when &nterdl Thus, there 
j= 0 

exist constants a, E X such that An RA U-,,- -a, 4 0 in probability. By 
Lemma 3 and (61, the sequence {A-"RA) is also conditionally compact. 
Therefore, the last relation can be written in the form RA U-,-, - b,, + 0 in 
probability, where b, = A-"R,a,. But the random vectors U, (n 
= 0, & 1, . . .) have the same distribution, which shows that RA U, is constant 
with probability 1. Setting RAUn = b, by (1) we have 

Since RL = R;RA = R'' A,  the last equation implies R;X,+, = R;X,+ Rib .  
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Consequently, R> b = 0 because R; X, (n = 0, + I ,  . . .) are identically distri- 
buted. The lemma is thus proved. 

Remark. By Lemma 4, condition (9) is fulfilled. Thus, taking into 
account Lemma 1, we may assume in the sequel without loss of generality 
that RA U, = O with probability 1 or, in other words, by (191, 

LEMMA 5. If (Xn] fulfils (1) and the probability distribution o j  X, is f i l l ,  
then R ,X ,  and (U,} are indejwndent. 

Proof. By (6) afid Lemma 3 the operator ARA has a diagonal form orr 
8' XA . Consequently, there exists a sequence of integers 0 = r, < r ,  c . . . 

111 = 1 

such that 
- 

as n + a. By the Remark to Lemma 4 we may assume without loss of 
generality that formula (20) holds. Thus 

Let E and F be arbitrary Bore1 subsets of 3 and T2m+1 (m = 1, 2, .. .), 
respectively, and let c, and c, be their indicators. Put Y = cE(RA X,) and 

By the stationarity of [X,) the joint probability distribution of 
RAXk+,, Uk+nl, ..., Uk+n, does not depend upon k. Consequently, by (21) 
and (22), 

where E stands for the expectation. Moreover, ( G ]  are independent, identic- 
ally distributed with zero mean and a finite variance. The random vector Y 
has also a finite variance. Thus, EYE, being the coefficients in the or- 
thogonal expansion of Y with respect to {GI, tend to 0 as n -, a, which by 
(23) yields EY V0 = 0. The last equation can be written in the form 

Hence, since pn, E, and F are arbitrary, we get the assertion of the lemma. 
Combining Lemmas 2 and 5 we obtain the following 
COROLLARY. If {X,) fuijils (1) and the probability distribution of X, is full, 

then the random vectors PAXo, QAXo,  and RAXo are independent. 
We proceed now to proving the Theorem. 
Necessity. Suppose that A€A(p) ,  p being a full probability measure. 

Let {X,) be a stationary sequence with property (1) such that p is the 
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probability distribution of each random vector X,. By the Remark to 
Lemma 4 we may assume without loss of generality that formula (20) holds. 
Thus 

Further, by the Corollary to Lemma 5 we have the equation 

Hence, in particuiar, it follows that 

(26) .. . 
. . Q A E D ( P ) -  

As a consequence of Lemma 2 we have the equations 

Since {U,) are independent and identically distributed, the last equations 
imply 

where v, and v, are probability distributions of PA U-, and A-IQ,  U,, 
respectively. Combining (25) and (28) we get the relation 

Finally, from the conditions I - Q A  = PA + R A  and PARA = RA PA = 0 we 
obtain the equation 

AIZ-QA)P = APAP*ARAP 

which by (24), (25), and (27) yields 
. - - 

P = A(I-QA)P*QA P*VI. 

Consequently, 

A (1- QA) ED(P) ,  

which together with (26) and (29) completes the proof of the necessity of the 
conditions of the Theorem. 

Sufficiency. Suppose now that p is a full probability measure on X, A 
is a linear operator on %, and 
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The semigroup D(p) is compact (Proposition 1.1, [4], p. 121). Consequently, 
the sequence An(I-Q,) (n = 1, 2, . . .) is conditionally compact. Since An(I 
-QR) = AnPA+AnRA, we infer, by virtue of (4), that the sequence AnRA is 
conditionally compact and all its limit points belong to D(p). Further,-by (61, 
the operator ARA has a diagonal form on 0 kTk. Consequently, there exists 

111=1 

a sequence r ,  c r ,  < . . . of positive integers such that A ~ "  RA 4 R,, 
Moreover, 

A ~ " ~ ' R ~ + A - ~ R ,  and ' RA -+ A R ~ ,  
which yields .. - 

(31) ' RA, AR,, A- R ~ E  ~ ( ~ 1 .  
-Hence, by Proposition 1.3 in [4] (p. 122), we get the equation 

for a certain vector a . ~  RA X, Since ARL = RX = Rh RA, where Rk is the projector - - 
from X onto @ T,, by (32) we have R> p = R; p*6,,, where n' = RLa. But 

a= I 
the last equation holds for a' = 0 only. Thus R i a  = 0 in (32). It is clear that 
the operator A - I is invertible on the subspace ( @ .FA)@( @ X1). 

111 = 1 A= 1 

Denoting this inverse by ( A - 1 ) -  (RA - Rh) and setting c = (A-1)-  ' (R, 
-RX)a we have, by (32), 

RA ( P * ~ C )  = ARA ( P * ~ c ) .  

Since BP, = APA and BQA = A-'Q,, from (35) and (36) we get the 
erality, passing to the measure p*S, if necessary, that the equation 

is fulfilled. Further, from (30) and (31), by virtue of Lemma 1.2 in [GI (p .  284) 
we infer that both operators B = A(I  -QA) -I- A-I Q, and QA + R, belong to 

- D(p). Consequently, by Lemma 1.1 in 161 (p. 284), PA = I - QA - RA E D(p), 
which yields the equation 

Moreover, there exists a probability measure y on 3 such that 

Setting v .= PAy*(- AQA)y we have the equations 

(36) PAv = PAy, (-A-lQA)v = QAy, RAv = 6, .  

Since BPA = APA and BQA = A-'QA, from (35) and (36) we get the 
equations 
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which imply 

By (4) and (5) we have An P,p  + 6 ,  and A-"Q,p - 6,. Thus the last 
equations yield 

By (36) the measure v is concentrated on the subspace (PA+QA)X. Let (U,} 
(n = 0, + 1, . . .) be a sequence of (PA  + QA)X - valued independen< random 
vectors with the same probability distribution v and let V be an R A S  - valued 
random vector with the probability distribution RAp independent of all 
random vectors {U , ) .  It is clear that the series . 

w 4, 

Y, = AjP,U,-,-, and 2, = - A - j - l Q  A U  j + n  

j= 0 j= 0 

(n = 0, f 1,  . . .) converge with probability 1. Put T, = A" RA V and X, = 
+Z,+ T, (n  = 0, f 1, .. .). We can easily verify the equation 

X,,l = A X , + U ,  (n = 0 ,  + I ,  ...). 

Moreover, Y, +Z, ,  being a moving average of independent identically distri- 
buted random variables, is stationary. By (33), T, is also stationary. By (33), 
(37), and (38) the random vectors Yn, Z,,  and T, have the probability 
distributions PAP, QAp, and RAP, respectively. Since for all pairs n, m of 
integers the random vectors Y,, Z,,  and T, are independent, we infer that the 
sequence {X,} is stationary and, by (34), p is the probability distribution of 
each X,. Thus A E A(p), which completes the proof. 

- -. 
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