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PROBABILITIES OF MODERATE DEVIATIONS
FOR RANDOMLY INDEXED SUMS OF
RANDOM VARIABLES WITH MULTIDIMENSIONAL INDICES

BY

ZBIGNIEW A. EAGODOWSKI (LUBLIN)

Abstract. Probabilities of moderate deviations for randomly
indexed sums of independent and identically distributed random
variables with multidimensional indices are studied. The results
presented extend some theorems of Ahmad [1] and Gut [11].

1. Introduction. Let Z% where d > 1 is an integer, denote the positive
integer d-dimensional lattice points. The points in Z? will be denoted by m, n,
etc. or, sometimes, when necessary, more explicitly by (m,,..., my),
(ny, ..., ny), etc. The notation m < n means that m; < n, for each i, 1 <i <d.
We write 1 for the point (1, ..., 1)e Z%. Also, for all n, we define n = []n; (i
=1,2,...,d), and n— oo is interpreted as |n — 0.

Let {X,, neZ? be a collection of random variables defined on a
probability space (2, o, P). Throughout the paper we assume that X,,
neZ% are iid. random variables. For n>1 define the partial sum S,
=YXy, k<n. :

Let {N,, neZ?} be a set of Z?-valued random variables defined on
(Q, o, P),ie, for every ne Z%, N, = (NV, ..., N9), where N9, 1 <i < d, are
positive integer-valued random variables. Let

Sv,= ¥ Xu nmeZ'.

k<N,
Ifd= 1,“the complete convergence result of Hsu and Robbins [12] and
Erdos [5, 6] has been extended by Szynal [18], Cs6rgé and Rychlik [4],

Csorgo and Révész [2], Theorem 7.1.1, p. 252. Ahmad [1] gives the order of
magnitude of the series

w
> P(Sy)>en** %) as g— 0",
n=1




a>e>0, then
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where {N,} is a sequence of positive integer-valued random variables, not
necessarily independent of X,’s, such that, for some constant 7 > 0, N,/n—1
a.s. as n— oo. Recently Gut [11] has proved the following result:

THEOREM 1. (a) Let ar > 1 and o > 1/2. Suppose that E|X,|" < oo and
that EX, =0 if r 2 1. If, for some € > 0,

(1) Z n " 2P(N,—in| > ne) < o0,

where i is a positive random variable such that P(A a)=1 for some

w

@ 3 n2P(Sy,| > Nig) < .

(b) Let ar =1 and a > 1/2. Suppose that E|X,|" log. |X| < o and that
EX, =0 if 1<r (<2). If (1) holds with P(a<A<b)=1, where 0 <e¢
a<h<x, then E|X,|f < oo for r=1 and EX, =0 imply (2).
(c) Let ar =1 and a > 1/2. Suppose that E{X,|" < % and that EX, =0if
r>=1. If (2) holds with P(A < b)=1 for some b >0, then

ac

(3)- Y w7 2P(ISy,| > n*e). < 0.

The main aim of this paper is to extend the results mentioned above to
the d-dimensional random fields {X,, ne Z%}. Moreover, we give the exact
order of magnitude of the series

Y F(n)P(Sy | = tIN,I'"?g(N,D), as t—07,

nz1
for some functions f and g. From the results presented we also get
extensions. for d > 2. of some theorems given by Gut [9. 10], Klesov [13],
and Lagodowski and Rychlik [14].

2. Preliminaries. In this section we collect some general facts and a
lemma which will be needed later on.

Let d(x) = Card {ne Z?: |n| = [x]} and M,(x) = Card {neZ*: |n| < [x]},
where [x] denotes the integral part of x. We have (cf. [17])

4) M, (x) = W_Md—l(x)a d=2,
so that
(5) ‘M(x) = O(x(log, x)*" ) as x — o0.

Furthermore, for every é > 0. d(x) = 0(x% as x — .
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Lemma. Let {X,, neZ% be a sequence of independent standard normal
random variables. Then, for every z >0 and o > 0,

(©) ) .
. 1\ -1 +1
- s > tz%|nl* 12y — ,
lim (‘“t) T 10l log, I PS,| >tz ) = g
. 1 1-s—d
(0 lim (ln—) S Xl (10g+ |l P(S,| > 2% |nf** 1)
ot \ n>1
i C(r+l)/a
‘ G!s+d 1(J"+1)(d 1)'2r+1’

where C, =n~ Y222 rd4+4a), r,s=0,1,2, ..., and

@)  lim (T Y |n|~ (log., [nl) P(S,| > tz*[n]** /2 (log z n])")
t—-ot a1
— Cupis+ay
(s+d)y(d— 1)

Joru=1,2,..., _

Observe that (6) and (7) immediately follow from the Lemma given in
[15]. We can prove (8) by the same way as relation (17) of [15] if we observe
that, for z > 0,

k . o 1 ks+d
3 jd()og. 3 = Jfﬁ,’_—m as ka0,

" 3. Main results. Let {X,, ncZ?} be iid. random variables with mean 0
and variance 1 and let {N,, neZ’ be a sequence of Z%valued random
variables. All random variables are defined on the same probability space
(Q, o, P).

THEOREM 2. Let
| 44(x) = |P(Sy, < x[N,J/%)— & (x)
‘and assume
4, =supd,(x) >0 as n—>0.
If -
©o - EX} (log [ X"+~ 172 < oo,
then, for every s+d > 2u,

(10)  _Lim (**9* Y |n|~" (log. n])* x

t-0t nz1

1 4 Cu s+
P(Sy, > tIN,|"*(log. IN))+H( -1, )} > m
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and -
A1) Lim LY n[~ (log. nl)* x
t—0+ nZz1
. C ,
x P{|S =>t|N, 172 (1o N" “—H(-1, < u/(s+d) .
(Sx,| > tIN,J"*(log+ IN)")—H(—1, 5)} v
If
- 1 —~s—d
(12 lim lim (ln— tTUA R X 201+ 20)
K_.‘wt‘)0+ t
x(log X FITHI[X,| > ¢~ VK= 12] = 0,
then .
1 —-s—d
(13) li_m(ln—) {X Inj™*(log. |nl)* x
b oot t nz1 -
: o 1
XP(ISy | = tIN S YV2)+H(—1, 5) >
‘ (S 2 (N 4B (=109 > S
and
I 1 —-s—d
(14 Im (lnf) {Z In)™* (log., |n)* x
t-0t t nz1
: 1
P(Sy | = tIN**Y2)—H (-1, 5) < .
| XS > NS —H(=1,9 < g
If
(15) CE{|X,|2r 2+ 2 (Jog X! < oo,

then, for every (r+1)/2 >a >0,

) ) 1 1-s—d
(16) = lim ¢r+Vre (ln?> {Y |nl"(log. |n|)* x
: t-»07t n=1

s+d—1 br+1 (d—l)'

XP(ISN,J > thn|a+ 1/2)+H(r, S)} ; C(r+ 1)/a
o4

and

- 1 1-s5—d
(17 lim ("t Ve (ln;> - {X Inl(log. |n]y* x

(=07t 21

XP(Sy,) = NS )~ Hr, 9} < —gmllrt s
o

s+d—1 ar+1(d__ 1)!’

where

Hr,s) = 2 Inl"(log.y [l P(IN,| —A|n|| > ¢ n]),

21
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and A is a positive random variable such that P(a <A< b)=1 for some 0
<a< b<oo.

Proof. First we prove (10) and (11). Let
ay(t) = (@a—t)Inl,  by(t) = (b+1)In,
L,(8) = [|INa—A]nl| < z|n]].

It is easy to see that

(18) ; In|~* (log., [nl)* P(ISy,| > t|N,|"/2 (log+ ba(®))', (1))

< ¥ (in)2(log, In)* P(Sy | > tIN,[V2(log.. IN,¥)

nz1

< X In|™ " (log. [nl)*

. .nzl :
xP(ISy,| >IN (log a, ), L)+ H(~1, 5.
Let us put, for every t >0,

A= {neZd: |n| < ng ()},

and for every positive number K define |
By = {neZ": In| < exp (Kt~ ™)},

where ny(t) is a positive integer, ng(t) — oo, and
(19) 1+ Mu(log | n, (t))erd -0 ast—0".

Write
Fa(r> s, a, u) = 2 Z |n|"(10g+ ‘"l)s¢(—t|nlllz (a I"I)a(log+ alnl)u)9
nz1

where @(x) is the distribution function of a standard normal random
variable. Thus, by (18), we have

nz1

(;20) t‘”‘f’"ﬁ {2 In"'(log, Il P(|Sy,| > tIN,|"/*(log. [NJ)") - H(~1, s)}

ST S Inl Y (log . [ml)* x
i S neBg

} x|P(ISw,| = tIN*2 (log . a,())')— 28 (¢ (log. a, 1)) +

+t(s+d)/uFa(_ 1,s, 0, u)+t(”")f." Z lnl—l (log+ lnl)s x
neByy '

xP(ISy,| > ta,’ (1) (log. Inl)¥, 1,(2)),

where Bfy = Z°— B,x. Furthermore, by Abel’s transform and (4) we get the
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following asymptotic expansion:

- - ;. (log, my*d
(21) k§1d(k)k '(log.+ k) ~m as n— co.

Hence, by (19), (21) and the assumption 4, — 0 as n— oo, we have

(2 lim lim £t ¥ |nj™! (log, [nl)* x

K—-w,_.o+ neB, g )
x|P(1Sx,| = tIN,|*(log. a,(£)")— 28 (—t(log. a,(®)")
<2 lim LY |n|~! (log. Inlf .+ Y Inl™'(log Inlf' 4.}

g0t neA; neB g

_ {2:‘”")/“ (log. no (O) ™

A
£ 2lim lim + max ——————
K~ a0+ (s+d)(d-1)! neB,K_At(S+d)(d—1)!}

6n the other hand, by (18), we have

(23) - T VLY Inl™" (log Inl) P(|Sy,| > tIN,J'/* (log INJ)')+ H(—1, 5)}

n>1

> {— ot 5 a1 (log, Inl)* x [P(ISy,| > tINJY2(log. by (1)) -

neB; g . .
—~20(~t(log, b, @)} +
FSTONE (1, 5,0, )42 {_t(s+d)/u Z q,‘o(—.t(log+ b,.(t))")}'*‘

nerK

+16 DN |n) = (log [al)* P (ISy,| > tby/? (t) (log + b, (9)', 1, (1)).
. neB;fK :
By our assumptions we have

(24) .
P(ISy | = tai (1) (log+ a, (1)), I(9)) < P( max |y > tay/?(1)(log+ a,(2))),
1<Sk<B, :
where B, = ([b,(t)], 1, ..., 1). But, by the result of Fuk [8] (Corollary 3 with
t=2 y=..=y,=y=73tcal?()(log. a,(t)), c being a positive constant

such ‘that ¢ < 2u/(s+d)), we get
(25) P( max |S,| = tal/? () (log+ a,(t)")

1<k<p,

<IBJP(X,| > teat()(log. an(/2) <2+ (4-+ cr? ay(t)(log. ay() /1)~

—t2a,(t) (log. a, (t))™
8¢7 1B, '

Now, using Abel’s transform and the definitions of f,, a,(t), and (4) we

+ Qexp {
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get
(26)  lim lim (T2 3 {n|~* (log. Inl)*(|B.l/aa(0) (log 4, ()) )™
K—-o; 40+ nEBfK
< C lim E (st dfu=2/e Z d(k)k— 1 (lOg.,. k)s— 2ufc
Koot k2 exp(Kt ~ /1)

k— 1 (log+ k)s+d— 2ufc—1

~Clim fm govon-2e Y S

K—owpapt © kzexp(Ke~lwy -

=0,

- 42 2u
(27) im hm e+ o z I"l 1 (log+ Iul)s exp{ t“a, (t) (10g+ a,,(z)) } =0.

Kowoga0+ 8e? |Bd
IIEB!K

Indeed, since

(28) x'eexp(—yx) < (cye)” ', ¢, y, x>0,

we infer that, for sufficiently small ¢,

(29) exp { ~1%a,(0)(log . 4,(0)”

< - 2/c — 2ufc
e 5. } Ce™2(log., In) =2,

where C is a positive constant which depends only on a, b, ¢ and wu.
Now, by (29), (27) can be shown similarly as (26). By our assumptions,

~ Abel’s transform and the definition of a,(t), we have

(30)  lim fim (**9 ¥ (log, ul}' P(1X\| > t|n"2(log. a, (1))’

K200t ueBth
<Clim Lim &+ Y d(k)logi kP(lX,I?tk”z(ldg+k)“)
N K—va)t_,0+ k> exp(Ke ™ l/u) . .

<C lim Tim #o+om- ZE{Xz(log+ X, |/t 2"xI[|X,

K—’mt_,oﬁ'

?‘K"exp(Kt‘”“/i)]} =0

since (s+d) > 2u and EX?(log, |X,|)***" ' % < o0, where C is a positive
constant which depends only on a. Thus the proof of (11) is completed.
‘To see (10) let us observe that, by Lemma 2 ([7], p. 160),

(31) CB(—) <@m) Vi xTlexp(—x%2) as x— oo,
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" so that -
&(—t(logs b, (1)) < (2m) ™2t~ (log b, (1) ™™ exp(—12(log+ b, (t))zu/2).

Hence, taking into account inequality (28), the last term is dominated by
Ct~ 172 (log, |n)~*~ 2%, Thus, similarly as in (26), we get

lim Lim (% ¥ (D(—t(log+b ®)) =
. kom0 neBfy

which together with (22), (26), (29) and (30) completes the proof of (10).

. The proofs of (13), (14), (16) and (17) are some modifications of the
proofs of (10) and (11). Namely, we use the sets C,x = {neZ%: |n| < Kt~ 17}
and C¢ = Z%—C, instead of the sets B and By, respectively, and apply
Abel’s transform as well as Fuk’s inequality with adequate functions. Thus

the details are omitted. !

Remark 1. By the similar way we can obtain results, analogous to the
given above, replacing H (r, s5) by

Hy(r,s) = Y Inf"(log., In)* P max |N®/n,— 4] > 1),
n>1 1si<d
where n=(ny, ..., n;) and 4;, 1 <i<d, are positive random variables such
that
P(a< min 4; < max 4, <b) =1
1<€i<d 1€i<d

for some 0 <a < b < o0. Both cases are of course equivalent if 4 = 1.

Remark 2. Let {X,, neZ"} be i.i.d. random variables with the mean 0
and variance 1, {N,, neZ} be a sequence of Z?-valued random variables

such that |N,|/|n|-® A, where 1 is a positive random variable. Then (cf. [3]
and [16]) |

A, = sup|P(SN'I <x[NJ'})—@(x) 0 as n— co.

Now, let us observe that the assumptions concerning the sequence {N,,
ne Z%, given in Theorem 2, are weaker than those given in Theorem 1 by
Gut [11].
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