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WIENER PROCESSES WITH VALUES IN p-HOMOGENEOUS
FRECHET SPACES
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Abstract. Tt is known that Wiener processes taking values in
separable Banach spaces can be expanded into series of independent
real Brownian processes. This property is very useful in many
instances, eg., in the proof of the law of the iterated logarithm.
Known proofs of this theorem are based on the usual convex
technique of normed spaces and cannot be adapted for more general
situations. In our paper we present a different approach, based on
properties of unconditional convergence of double series in vector
spaces. This technique allows to extend the theorem to p-
homogeneous Fréchet spaces.

1. Preliminaries and notations. Let (%, |']) be a Fréchet space, ie. a
complete separable real metric vector space with topology generated by a
subadditive F-norm |-| having the following properties: |x| = 0 if and only if
x = 0; |ax] = |x| for every a€R, |a| =1, xeZ; A, x,— x| =0 for |x,—x} =0,
A, = 4, where x,, xeZ, 1,, A€R. We say, that F-norm || is p-homogeneous,
0<p<1, if |Ax] =|4?|x| for every xe %, A€R.

An £ -valued random vector X will be called symmetric Gaussian (in the
sense of Fernique [3]) if for every pair X,, X, of independent random
vectors having the same distributions as X and, for every pair of real
numbers a, b such that a?+b% =1, the random vectors aX,+bX, and
bX,—aX, are independent and have the distribution of X.

We will say that a Gaussian random vector X has an orthogonal
expansion.in & if

X = Z an;{'m

n=1

where [4,} is a sequence of independent real Gaussian r.v.’s with mean 0 and
variance 1, a, are suitable elements of 2" and the above series converges a.s.
in .#. Up to now it has been proved that such an expansion holds for
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‘Gaussian random vectors taking values in Banach spaces [6] or in Orlicz

spaces Ly [1]

Consider now an % -valued symmetric Gaussian vector X. A homoge-
neous stochastic process {W(f): 0 <t < 1} with independent increments and
with continuous % -valued sample paths will be called the Wiener process
generated by X if W (t) has the same distribution as /2 X for 0 <t < 1. Such
a process exists by [2].

The purpose of this paper is to prove the following result:

THEOREM. Let & be a separable Fréchet space with p-homogeneous F-

normi}-}, 0 <p< 1. Let X be an 95' valued symmetric Gaussian random vector

having an orthogonal expansion Z Ay Ay, where a,e Z, neN, and {1,} is the
n=1

standard Gaussian sequence. Then there exists a sequence {B,(t): 0 <t <1},

a0

ne N,b‘of independent real Brownian motions such that the series Z a,B,(t)

n=1
converges with probability 1 uniformly with respect to t to a Wiener process

generated by X.

2. Unconditional convergence of double series. The main tool in the proof
of our theorem is the application of some properties concerning the uncondi-
tional convergence of double series in Fréchet spaces. These properties seem
to be also of indépendent interest. '

Write Ny = {H = N: card H < w0}, # = NxN, ./VO—{F c A card F
< o0}, where N denotes the set of natural numbers. It is known [10] that for

single series Z x, of elements of % the following conditions are equivalent:

n=1
o

(i) Y x,is unconditionally convergent, ie., for every permutation  of

n=1

N, the series Y, X is convergent.

n=1
o«

-(ii) Y x, is subseries convergent, i.c. for every sequence {5,; ne N} such

n=1

that §, =0 or 8, =1 the series ) §,x, is convergent.

n=1
@

(iii) Y x, is unordered convergent, ie. there exists an element xe %'
n=1
such that for every ¢ >0 we can find such a set He N, that, for every
HieN,, H, o H, we have [x— ) x| <e.
neHy
(iv) For every sequence {g,: nEN‘ such that g, = 1or g, = — 1 the series

Y. &,x, is convergent.

n=1
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Now we défine similar type of convergence for double series. This is a -
particular case of usual summability of countable families.

Definition. A double series Z.\'U of elements of % is called unconditio-

1
nally convergent if, for every ¢ > 0, there exists a set Fe.4", such that for
every Fie Ay, F1nF =@ we have |} x| <e.
F

1
By the completness of % it follows that if the series Zx,-j converges

uncondltlonally, then there exists an x € such that lim Zx” X.
Fet'o F

Lemma. Let {xi, i, jEN
following. conditions are equwalent.
(i) for every sequence {g;: i, je N}, &; =1 or &;= —1, i, jeN, there

exists the iterated limit:
e P

lim Lim Y 3 &ij Xij3
I-wJ—wi=1j=1
(ii) for every sequence {d,;: i, je N}, 8;; =1 or 6;; =0, i, je N, there exists

the iterated limit:
I J

im lim ) 3 &;x;;

IrwJ»wi=1 j=1
(iti) the series Z x;; is unconditionally convergent;

(iv) for every sequence {g;: i, JENY}, &; =1 or &; = —1, i, jEN, the series

Y &;x;; is unconditionally convergent.
N

Proof. Proofs of implications (i)=-(ii), (iii))=(iv) and (iv)=(i) are
standard (see [10], p. 458) and are omitted. We only prove that (ii) implies
(iii). Suppose, to the contrary, that the series Zx, ; is not unconditionally

convergent. Write N, = {1, ..., k}, Nj = N\N,. Note that it suffices to find
an & > 0 such that, for every k, there is a F, = (N} x N) n Ay with |3 x| > e.
F,

Then, choosing k, such that k, >i whenever (i, )e F, _, and takinkg 0;;=1

1

for (i, )e U Fy, and J;; = 0 otherwise,. we obtain a contradiction with (ii).
n=1

. However, if (iii) fails, then there exists an ¢ > 0 such that, for every i,

jeN, we can find such a set G;je A4, disjoint with N; x N;, that IZ Xyl > 2e.

Let k be arbitrary. By (ii) there exists a j, such that, for every F < (N,
xN§) NN o, |Zx”| <e. Puttmg F, = Gy, n(N§ xN), we obtain

| Z xil 21 Z X1 —1 Z x| > &,
@, eFy (. J)eijk (i,j)eijk ~(Ny, xN)
which completes the proof. :
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As an easy consequence we obtain

CoroLrarY 1. If lim )Y x;; = x, then
Fe# g F

i=li=

. IlMg

3. Random series in vector spaces.

COROLLARY 2. Let & be a separable Fréchet space and let {Y;: i, jeN} be

a sequence of independent symmetric random vectors with values in &. If the
o0 ao

zterated series Z Y converges a.s. in & to some random vector Y, then
IJ 1

the series Z Z Y;; also converges as. in X to Y.

e jE=LTE=1

Proof. By L{ we denote the space of all measurable 2*-valued functions
defined on (Q, #,, P), where %, is the o-field generated by ;. I is a
separable Fréchet space with convergence in probability [9]. By independen-
ce and symmetry of Y; it follows that for every scalar sequence {e;}, & =1
or g; = —1, dlstrxbuuons of partial sums of sequences fg; Y} and |Y;;} are

l_] l] l]|
a0 [£]

identical. Hence the series Y 3 &;Y; converges in L§. Our conclusion
i=1j=1
follows now by Lemma and Corollary 1.
Let now {¢p;: jeN} denote the sequence of Schauder functions which
form an orthonormal basis in the reproducing kernel Hilbert space of a real
Brownian motion [4],

2,0 = [H;(9)ds,

where {H;: jeN} 1s the sequence of Haar functions [8]. Conmder an ortho-

_ gonal expansion Z a, 4, of X. On the product space (Q°° Z*®, P®) we define
n=1
A9 (@) = 4,(w), where o =(o;, @, ...)eQ®. Then the sequences {A:

ne N} are standard normal and independent. Since X = ) a,4, as., then

n=1
e o]

X; = Z 1, AP form the sequence of independent random vectors with distri-

butlon E'(X)
ProPOSITION. Let & be a separable Fréchet space with p-homogeneous F-
norm, 0 <p< 1. The series Z X;0;(t) is convergent as. in X for all t,

j=1
the convergence being uniform with respect to t [0, 1].




i
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Proof. We use here the classical idea of Ciesielski’s construction of real
Brownian motion [8]. Since supports of the functions ¢; are dlS_]Olnt for
2" j< 2" we have

o @® 2""'1 (CO) a0 Xj((l))
1Y Xj@e;0l< Y | Y ,,72 224,00l < ) max  |— .
ji=1 n=0 j= 2n2 S m=02ngj<ntl 2

Write A; = {|X;| > j”*}. Then, by a version of the exponential integrabi-
lity of Gaussian pseudonorms [5], we obtain

e 2 Eexp@|X) _ . & _—
P?(A4) € Y —————=C ) exp(—a”*) < .
. j;l ’ j§1 exp (”*) j;I
By Borel-Cantelli lemma we get P® {|X;| < j®* for all j large enough}
= 1. Then, for almost all weQ®, we can find J(w)eN such that, for
j>J(@), |X;(w)| <j?*. Hence and by p-homogeneity of F-norm we obtain

@ . J(w) X w 2(n+ 1)p/4
IZ Xj(m) ‘Pj(t)l < Z max I 2j"(/2 )I+ Z 2pn/2 <®©
j=1 :

n=12ngj<antl n>J(w) .

and this estimate is independent of ¢, which ends the proof. :
Proof of the Theorem. Denote by %* the space of Z-valued

continuous functions defined for 0 <t <1 and vanishing at zero. Let

Ifll = sup If @) for fe®”.

ost<1

Then (%%, ||||) is a separable Fréchet space. By Proposition and by the

definition of X ; it follows that the iterated series ). Y. Y,; is convergent as.
j=1n=1

in 4%, where Y,; = a,;A9. By Corollary 2, the series

f an(i P o)

=1 j=
converges a.s. in % to the same limit W = W (t, w). Since, by [8], for every

aw

standard normal sequence {1¥: j e N} the series Y. A9 ;(t) converges a.s. to
. . . . j:l
a Brownian motion {B(f): 0 << 1}, we have

o0

W)=} a,B,(8), 0<t<l],

n=1 :
where {B,: neN} is the sequence of independent Brownian motions and the
series is convergent uniformly a.s. with respect to t. It is easy to see that the
process |W(t): 0 <t <1} is homogeneous with independent increments and
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with continuous sample paths. Moreover,

o0 o

W) =2(Y a,B,(0)= LY a,h) = L' X).
n=1 n=1
Thus {W(t): 0 <t <1} is an ¥-valued Wiener process generated by X.
This completes the proof.
Remark. The p-homogeneity of the space % is needed only to prove
our Proposition. It is easy to see that Proposition would be true in the

‘whole generality, when it were possible to find a sequence {c,} satisfying

Y2"P{X-27"} >¢,} <o and ) ¢, < . At present, we do not know in
which spaces such sequences can be found. -
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