
PROBABILITY 
AND 

>IATHEMTICAL ST.4TISTICS 

VoL 19, Faw. 2 (1399). pp. 287-322 

THEORETICAL PREDICTION 
OF PERIODICALLY CORRELATED SEQUENCES 

ANDRZEJ M AKAGON * (HAMPTON, VA, AND WROCLAW) 

Abstract. The paper deals with a spectral analysis and prediction 
of periodically correlated (PC) sequences. In particular, a moving ave- 
rage representation of a predictor is obtained and its coefiicients are 
described in the language of outer factors of spectral line densities of 
the sequence. A comprehensive and self-contained overview of the 
spectral theory of PC sequences is included. The developed technique 
is used to compute the spectrum and an optimal moving average 
representation of a PC solution to a PARMA system 01 equations. 
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1. INTRODUCTION 

Given a sequence (x (n)) in a complex Hilbert space H, the theoretical 
prediction deals with the problem of finding the best approximation of a future 
element x (n) in the past: M ,  (m) = @ {x (k): k < m), rn < n, assuming that the 
spectral characteristics of the sequence are known. 

In this paper we study the prediction problem for periodically correlated 
(PC) sequences. PC sequences are directly related to T-dimensional stationary 
sequences; each PC sequence with period T partitioned into blocks of size 
T produces a T-dimensional stationary sequence, and vice versa. However, due 
to a rather complex relationship between the spectra of these two sequences, 
the mentioned partitioning a PC sequence is not a convenient tool in the 
prediction analysis. Theory of PC sequences has developed its own technique 
based on the fact that a PC sequence is a trajectory of a unitary group evalu- 
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ated at a periodic sequence. In the paper we will explore this approach and use 
it to study prediction problem for PC sequences. 

The prediction problem is solved completely for one-dimensional stationa- 
ry sequences, and is fairly advanced for multidimensional stationary sequences; 
however, in the latter case no explicit expression for a predictor in terms of the 
spectral density of a sequence is known yet. The available descriptions are in 
terms of conjugate analytic factors of a spectral density. Because of the 
mentioned correspondence between PC and T-dimensional stationary se- 
quences, we cannot expect more explicit solutions in PC case either, 

The paper is self-contained and is organized as follows. Section 2 sum- 
mai-izes .basic facts about PC sequences. Section 3 contains a short review of 
prediction results for T-dimensional stationary sequences and precise state- 
ment of the problem. In Section 4 we study a certain T-dimensional stationary 
sequence, induced by a PC sequence, which wiII be the main tool used in the 
paper. In Section 5 we derive regularity conditions and give a spectral descrip- 
tion of the coefficients in a moving average representation of a predictor of 
a PC sequence. Section 6 contains a short discussion of other stationary se- 
quences associated with a PC sequence. Section 7 contains an example showing 
how the induced sequence technique can be applied to find spectrum and an 
optimal moving average representation of a PARMA sequence. 

Notation In the paper H and K will stand for complex Hilbert spaces, (., .) 
will denote the inner product, (x I M) will denote the orthogonal projection of 
X E  H onto a closed linear subspace M of H, and HT = H@H@ . . . @ H will 
denote the direct sum of T copies of a Hilbert space H. The letters 2' and 
% will stand for the sets of integers and complex numbers, respectively. The 
dual of %P is identified with [0, 2 4 ,  the operations of addition and multiplica- 
tion in [0, 2n) will always be modulo 2n, unless otherwise is stated. T will 
always be a positive integer. 2'T will denote the set of congruence classes 
modulo T that is the set (0, . . . , T- 1) with addition modulo T; any time we 
write k, j~ ZT, this will indicate that the addition, subtraction, multiplication, 
etc. of k and j are modulo ?: If n ~ 3 ,  then [n] and Q (n) will denote 
the remainder and the quotient in division of n by T so that n = 
Q (n) T + [ a ] ,  0 < [n] < T. The mapping %" 3 n -+ [n] E bT is a homomorphism 
of the group %" onto the group ST. 

A sequence (x  (n)) (or (x,)) in H is a function from 2' into H. A sequence 
(x  (n)) is said to be T-periodic if x (n + T) = x (n) for all n E 9'. T-periodic se- 
quences are in one-to-one correspondence with functions on 5YT via the map- 
ping ( x ( n ) ) t t x ( [ n ] ) ,  and they wilI be often identified in the paper without 

r + T - 1  
mentioning. If (s (n)) is T-periodic, then ten sum xk=r s (k) does not depend 
on r and this also will be very often employed in the paper without warning. 

Matrices will be denoted by [Xj.k] or by bold-face letters. Multiplication 
of matrices is a standard matrix multiplication. We allow Xjmk to be elements of 
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a Hilbert space, and then the product of entries is an inner product in H, that is 

If A = [Aiqk] is a matrix, then A* denotes its conjugate matrix, that is the 
transposed matrix (with conjugate entries, if E @. 

fi (p; H )  will stand for a Hilbert space of H-valued functions on [ 0 ,  274 
which are square-integrable with respect to a nonnegative measure p. If p is 
Lebesgue measure, then the letter fi will be dropped. If f EL? (H) ,  then its 
Fourier transform f is a square-summable sequence defined by 

With this normalization, f ( t )  = (I/&] x, f(k)E"' in L? (H). A function 
f E @ ( H )  is called conjugate analytic if f ( n )  = 0 for all n > 0 .  The set of all 
H-valued square-integrable conjugate analytic functions is denoted by I?@). 
A matrix-valued function is conjugate analytic if its coordinate functions are 
conjugate analytic. 

If (S (n)) is a T-periodic sequence in H, then the discrete Fourkr transform 
of (s(n)) is a T-periodic sequence defined by 

The inuerse discrete Fourier transform is given by 

The paper deals with stochastic sequences of zero mean and finite variance 
complex random variables, which are represented here as sequences in a com- 
plex Hilbert space H. If (x(n))  is a stochastic sequence, then the function 
K,(n, m) = (x (n),  x (m)) is referred to as the correlation function of (~(n)). A se- 
quence (x (n)) is called harmonizable if there is an H-valued finite Bore1 complex 
measure F on [O, 274 x [0,  2n) such that 

An HT-valued sequence [Xk (a will be called a T-dimensional sequence in H .  
T-dimensional sequences will be looked upon as column vectors (T x 1 ma- 
trices). Coordinates of vectors and matrices are numbered from 0. Two T-di- 
mensional sequences [Xk (n)] and [Yk (n)] are said Yo be equivalent if there is an 
isometry that maps Xk (n) onto Yk (n), that is if ( X k  (m), Xj (n)) = (Yk (m), Yj(n))  
for all k ,  j = 0 ,  ..., T-1 and n ,  m ~ % .  



A T-dimensional sequence [Xk(n)] is called stationary if for every 
k, j = 0 , . . . , T - 1 the cross-correlation function (Xk (m), Xj(n)) depends only 
on m-n. The correlation function of a T-dimensional stationary sequence is 
a T x T-matrix valued sequence defined as [Kjgk (n)] = [Xk (n)] [Xk (O)]*, that is 
Kj.k (n) = (Xj(n), Xk (0)). A T-dimensional sequence [Xk (n)] is stationary iff 

- 
there is a unitary operator U in M x  = sp (Xk (m): k = 0, . . . , T - 1, m E 9) 
such that Xk (n) = Un Xk (0) for every n E Z and k = 0, . . . , T - 1. The operator 
U is referred to as the sh# operator of [Xk (n)]. If [Xk(n)J is a T-dimensional sta- 
tionary sequence, then writing Un = lr einx E (dx) we obtain 

2rr 

(4) - ~ j . k  (n) = J einx r J ', ( dx), 
0 

where rjlk(A) = (E (A) X'(O), Xk (O)), k ,  j = 0, . . . , T - 1, is a complex measure 
on [O, 2 4 .  The T x T-matrix measure T (A) = [Ti>k (A)] is called the spectral 
measure of a T-dimensional stationary sequence [Xk(n)]. If r is absolutely 
continuous with respect to a nonnegative a-finite measure p, then its Ra- 
don-Nikodym derivative dr/dp(t) is p-almost everywhere a nonnegative defi- 
nite T x T-matrix. Every T x d-matrix valued function A (t) with coordinates in 
I?(%) such that 

d r  
- (t) = A (t) A ( I ) * ,  p-a.e., 
d~ 

will be called a square root of the density dr/dp(t). 
If A (-) is a square root of dr/dp, then the rows A0 (-), . . . , AT-' (.) of A ( m )  

are elements of the Hilbert space L2(Cd) and 
2% 

1 eicn-m)t ( ~ j ( t ) ,  Ak (t)) ,u (dt) = I C j S k  (n  - m), j, k = 0, . . . , T -  1 ,  n, rn E 3, 
0 

where the inner product (Aj(t), Ak(t)) is in Vd. Therefore, any T-dimensional 
stationary sequence [Xk (n)] is equivalent to an L? (Cd)-valued T-dimensional 
stationary sequence [Yk (n)] defined by 

where A(t) is a square root of the density dT/dp of [Xk(n)]. This is known as 
Kolmogorov's Isomorphism Theorem. 

2. PC SEQUENCES: BASIC FACTS 

Theory of PC sequences was set by Gladyshev in [ 5 ] .  In this section we 
review Gladyshev's results concerning the structure and the spectrum of PC 
sequences. 
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DEFINITION 2.1, A stochastic sequence (x(n))  is called periodically correl- 
ated (PC) with period T if K x  (n ,  m) = K, (n + T ,  rn -t T )  for every n ,  m E 3. 

If (x(n))  is PC with period T then the function K,{n+p, n) is T-periodic 
in n for every p~ 3, and hence 

T - 1  

(6) Kx(n+p, n)  = C e2xijn/T aj (PI 
j = O  

where 
T - 1  

(7) . a j ( p ) = ( l / T )  e-2nijnITK X (  n + P ,  n). 
n = O  

Let us put M ,  = @ { x  (n): n E 3). I f  ( x  (n)) is PC with period 7: then 
the mapping V: x (n) + x (n  + T ) ,  n E 3, extends linearly to a unitary operator 
V: M ,  M,. The operator V is called the T-shift operator of (x(n)). I f  U 
is a unitary T-th root of that is U is a unitary operator in a space K z  M ,  
such that UT = V on M,, then p (n) = U-" x (n) is a T-periodic sequence 
in K and 

T - l  ,-Zxinq/T Define W q  (0) = (l/T) En = (I p(n)  and W q  (n) = Un W4 (0). Then [Wq (n)] 
is a T-dimensional stationary sequence in K and 

T-1 

(9) ln) = c e 2 n i ~ q / ~  W'J (n) ,  n ~ 3 .  
q = O  

Conversely, if (x (a)) has the form (9), then x (n) = U" p(n), where U is the shift of 
[Wk(n)]  and (p(n))  is a T-periodic function in K defined by 

This proves the following characterization of PC sequences: 

PROPOSIT~ON 2.2 (Gladyshev [5 ] ) .  A sequence (x (n)) is PC with period T i g  
there are a Hilbert space K 2 M,, a unitary operator U in K, and a T-periodic 
sequence (p (n)) in K such that x (n) = Un p (n), n E J, or, equivalently, iflthere are 
a HiZbert space K 2 M ,  and a T-dimensional stationary sequence [Wk(n)]  in 
K such that (x(n) )  has a representation (9). 

Any T-dimensional stationary sequence [Wq(n)]  in K 2 M ,  that satisfies 
(9) will be called a generating sequence of ( ~ ( n ) ) .  

If a T-dimensional stationary sequence [ W k  (n)J generates a PC sequence 
(x(n)),  then 

T - 1  T - 1  

(1 1) K ,  (n + p, n) = C ezZijnlT ( C e2"*pIT ( W k  (p) ,  wk-j(~))) ,  
j = O  k = O  

6 - PAMS 19.2 
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where k, j€fZT (that is, the subtraction is modulo T). Therefore the coefficients 
aj(p) in (6) can be written as 

T - 1  Zn T - 1  

(12) q ( p )  = C eZnikptT ( Wk ( p ) ,  wk-j(0))  = 1 sips C Tkgk- j (ds- 27ck/~) ,  
k=O 0 k=O 

j E fZT ,  p E 3, where [rj-k] is the spectral measure of [Wq (n)] (algebraic opera- 
tions in [O, 27t) are modulo 27t). Writing ngj(ds) = Cz:: ~ ~ * ~ - j ( d s  -2nk/T), we 
obtain 

Za 

(I3) - pj(p) = 5 eiPs yj(ds), ~ E S ' ~ ~  ~ € 3  
0 

Define a measure F on [O,27c) x [O,2x) as F = x:=-: 4, where F j  is the image 
of yj through the mapping Zj: s (s, s-2xj/T), which maps [O, 2x1 onto the 
line segment 

Lj = ((s, s -27c j/T): s E [0, 2n)} c [O, 27~) x [O,  24.  
Then 

2n 2n T - 1 2n S J d ( ' ~ - * ~ ) F ( d s ,  dt) = C eZnijRIT J ei(m-n)S$(ds, ds-27tj/T) 
0 0 j = O  0 

T - 1  2n T- 1 

= C eZxijnIT J ei(m - n ) ~  yi (ds) = C e"ijm/T aj(m-n) = Kx(m, 4, 
j = O  0 j=O 

which shows that (x (n)) is harmonizable and its spectrum is equal to F. 

PROPOSITION 2.3 (Gladyshev [5]) .  A sequence (x (n)) is PC with period T iff 

where F. (ds, dt) = zJT=-; 4 (ds, dt) and support of Fj E Lj ,  j = 0, . . . , T - 1. 

Note that although a generating sequence [ W k  (n)] of (x (n)) is not unique, 
the measure F, is unique. In consequence, the measures y j ,  j E 9-, are unique in 
the sense that two PC sequences with period T have the same sets of yj's iff they 
are equivalent. Customarily, not F,, but the family ( y j ) ,  j~%", ,  is named the 
spectrum of a PC sequence. 

DEFINITION 2.4. Let (x(n)) be a PC sequence with period T The family of 
measures ( y j ) ,  j E ZT, defined by (13) is called the spectrum of ( x  (n)). 

From the definition of ( y j )  it follows that if [Wk(n)] generates (x(n)) and 
[ r j s k ]  is the spectral measure of [Wk(n)],  then 

T - 1  T - 1  

(14) yj(ds) = C ~ ~ * ~ - j ( d s - 2 x k / ~ )  = C ( ~ , ( d s - 2 x k / ~ )  wk (0), wk-'(O)), 
k=O k=O 

where E ,  is the spectral resolution of the shift U of [Wk (n)]. From the Schwarz 
inequality we infer therefore that l y j  (ds)12 < yo (ds) yo (ds -2x j /T) ,  j E 2TT, so all 
the measures y j  are absolutely continuous with respect to yo. 
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The weakness of Gladyshev's construction of a generating sequence is that 
neither a triple (Un, p ( n ) ,  K) in Proposition 2.2 nor a generating sequence 
[W4 (n)] in (9) nor a measure [Tjpk] in (14) are uniquely determined by (x (n)) or 
(yj ) .  Although the T-shift operator V is uniquely defined, there are many dif- 
ferent unitary T-th roots U of V and each of them leads to a different gene- 
rating sequence. If U = {:' eit E~ (dt) is such that UT = V on M x ,  then 

2 x  2n: 

V = 1 eitT EU (dt) = l eis Ev ids), 
0 0 

where the ipectral resolution E,  of V is obtained by "stretching" the measure 
E, by a factor T to a measure over the interval [ O ,  2n TT), and then "wrapping" 
it T times around the unit circle [O, 274, that is 

If E, is given, then the construction of a unitary T-th root U of V means an 
opposite operation, that is "splitting" E ,  into T mutually orthogonal pro- 
jection valued measures EL, r = 0, . . . , T - 1, placing them on intervals 
[27rr, 27c (r+ l)), r = 0, . . . , T- I, respectively, and "squeezing" the sum to 
[0,2rc). If T > 1 and the dimension of MX is more than one, then this clearly 
can be done in many different ways. 

The standard example of a generating stationary sequence is the sequence 
created by the principal T-th root of V defined as U = 1;" eitl' Ev (dt), where 
Ev is the spectral resolution of V (see [5J). In terms of "splitting" Ev, the 
spectral resolution of U is obtained when Eg = Ev and the other E','s are zero. 
The generating sequence produced in such a way will be called the principal 
root sequence. The principal root sequence is given by 

2x/T 

(16) Wq(n )  = eitn E y ( ~ d s )  w q ( 0 ) ,  n ~ b ,  q = 0, . . . , T -  1, 
0 

where W q  (0) = (~/T)Z::: e-2xikq1T (uUk x (k)). Note that since the spectral 
measure of [W4(n)]  is supported on [O,27c/T), the principal root sequence is 
always deterministic (Proposition 3.1), and hence it fails to reflect regularity 
properties of (x (n)). This observation prompts a problem of constructing a gen- 
erating sequence which shares the prediction properties of a PC sequence it 
generates and the spectrum of which can be uniquely expressed in terms of (y j ) .  
Such a construction will be presented in Section 4. 

We finish this section with a restatement of Proposition 2.2 in the spirit of 
Kolmogorov's Isomorphism Theorem. In what follows, a nonnegative measure 
p on [O,2n) is called (2n/T)-invariant if p(A) = p ( A  f 2 ~ / T )  for every Bore1 set 
A c KO, 2x1). 
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PROPOSITION 2.5. A sequence (x jn))  is PC with period T iff there are 
a (2n/T)-invariant measure p, an integer 0 < d < T, and a T-periodic sequence 
( ~ ( n ) )  offunctions in I? (p; Cd) such that (x (i)) is equivalent to an I? (p; Cd)-valued 
sequence 

If this is the case, then the spectral measures ( y j )  of (x(n))  are absolutely con- 
tinuous with respect to p and 

where Aq (.) = (1~7') e- 2eniT C(n)(-), q = O ,  ..., T-1. 

The proposition above is merely a restatement of Proposition 2.2, and 
hence inherits its nonuniqueness. The proof follows immediately from Proposi- 
tion 2.2 and (5). 

3. PREDICTION PROBLEM 

For any T-dimensional sequence [Xk (n)] in a Hilbert space H let us write 

~ , ( n )  = w{xk(m): k = 0, ..., T-1, m 4 n}, M x ( - a )  = ~ ~ ( n ) ,  
n 

Mx = Mx (m), and Nx (n) = Mx (n) 8 Mx (n - 1). 

If Mx (n) = Mx for all n E 3, then the sequence is called deterministic; if 
M x ( - a )  = {O}, then the sequence is called regular. If [Xk(n)] is stationary, 
then the dimension of Nx(0) is called the rank of the sequence [Xk(n)]. 

The objectives of prediction theory is to describe the predictor (Xp(n) I ~ ~ ( m ) ) ,  
m < n, in terms of the spectrum of the sequence, which is assumed to be known. 
Intermediate questions are concerned with a decomposition of a sequence into 
deterministic and regular parts, spectral characterizations of regularity, 
computation of the prediction error, etc. The prediction problem is almost 
completely solved for stationary sequences, however still no explicit analytic 
expressions for regularity or predictor of a T-dimensional stationary sequence 
in terms of its density are available for T > 1 (for more information and refer- 
ences see [I81 or 1161). The accessible characterizations are in the language of 
conjugate analytic square roots of the spectral density, and the prediction for- 
mula is in the equivalent language of moving average series. The next two 
propositions summarize known results in the stationary case. 

I€ the spectral measure of a T-dimensional stationary sequence is 
absolutely continuous with respect to the Lebesgue measure, then its Ra- 
don-Nikodym derivative G (s) = [drj.k/ds(s)] will be referred to as the spectral 
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density of the sequence. Any d-dimensional stationary sequence [ti], n E 3, 
such that [(f LC;]* = la 6,-,, n, rnE 3, where 1, is the d x d identity matrix, 
will be called a d-dimensional innovation (or innovation, if d = 1). 

PROP~SITION 3.1. Let [Xk (n)] be a T-dimnsionaI stationary sequence. The 
following conditions are equivalent: 

(i) [ X k  (n)] is regular; 

(ii) the spectral measure of [Xk (n)] is equivalent to the Lebesgue measure 
and the spectral density G (s) of EXk (n)] admits a conjugate analytic square root 
A (-1; 

(iii) theye are an integer d < II: a d-dimensional innovation [tk], and a se- 
quence Ak , k = 0 ,  1 ,  . . . , of T x d matrices such that 

The series representation (18) is called a moving average representation of 
[Xk (n)].  Matrices Ak in (18) are given by A, = (I/&) eikt A (t) d t ,  k ,o, 
where A ( t )  is a conjugate analytic square root of G(s). A representation (18) 
does not guarantee that the orthogonal projection of [Xq(n)] onto Mx(m), 
m < n, is a tail of the series (18), i.e. 

A moving average representation with the property (19) will be called optimal. 
The corresponding property of A(s)  is called outerness. 

DEFINITION 3.2. Functions f k ( . )  EE? (gd), k = 0, . . . , N, are said to be 
jointly outer in (Wd) if 

A T x d matrix function A (s) is called outer if the rows Aq ( a ) ,  q = 0, . . . , T- 1, 
of A( - )  are jointly outer in L2- (P). 

Retrieving the coeficients A,, k 2 0, of an optimal moving average 
representation of [Xq (n)] from its spectrum constitutes a solution to the predic- 
tion problem. 

PROPOSITION 3.3. Let [Xk (n)] be a regular T-dimensional stationary se- 
quence of rank r. 

(A) Matrix coeficients Ak,  k 2 0, in (18) can be chosen so that d = r and 



(B) A necessary and suficient condition for a sequence of T x r-matrices 
A,, k a O7 to satisfy (20) is that the function A (s) = ( l j f i )  z;=, Ak e-iks is an 
outer square root of the spectral density G(s) of [Xq(n)]. 

The function A(s) in part (B) is unique up to a unitary matrix, that is, if 
A(s)  and B(s) are two outer square roots of G(s), then there is a unitary 
r x r-matrix D such that A (s) = B ((s D, ds-a.e. If A,, k 2 0, satisfy (20), then the 
om-step prediction error matrix is given by 

- In this 'paper we study the prediction problem for PC sequences. It is 
rather simple to see that part (A) of Proposition 3.3 holds true for PC se- 
quences, we just need to alter slightly the definition of an innovation. 

DEFINITION 3.4. A sequence (tk) of elements of a Hilbert space H is called 
a 0-1 innovation if <,'s are mutually orthogonal and llckll = 1 or 0 for every 
k~ 3. The set St = ( k  E 9: 5, # 0) is called the support of a 0-1 innovation (t,). 
A 0-1 innovation is said to be T-periodic if (ll{kll) is T-periodic. 

If (x (n)) is PC with period then the dimension of M ,  (0) 0 M ,  ( - 7') or, 
equivalently, the number of non-zero elements in the set ((x(n)lN,(n)): 
n = 0, - 1,  . . . , - T + 1) will be called the rank of a PC sequence (x (n)). Hence 
the rank of a T-periodic 0-1 innovation is the cardinality of the set 
SSn{O, - 1, . . . , - T + 1). Regular PC sequences of period T and rank T are 
called completely regular. 

The following is a slight extension of the construction presented in [lo] in 
the case of completely regular PC sequences. 

PROPOSITION 3.5. Let (x(n)) be a PC sequence with period T The sequence 
(x(n)) is regular if there are a T-periodic 0-1 innovation (5,) in M,, and 
T-periodic (in n) sequences of scalars k 2 0, such that 

w 

@I) (~(n)IMx(m))= f i t n - k ,  n 7 m ~ 9 ,  m G n -  
k = n - m  

If this is the case, then (tk) and the coefJicients (fi) can be chosen so that 
(U-1) Po 2 0 for all n E  3, 
(U-2) 8:'" = 0 provided m 4 SS, k 2 0, 

and then (fi) and (tn) are unique, the rank of (x (n)) is equal to the rank of (t,), and 
the one-step prediction error Ilx (n)- (x(n) I M, (n - 1))11 = f i ,  n E 9'. 

P r o  of. If (x (n)) satisfies (21), then M ,  (n) G Me  (n), n E 3Y7 and hence ( x  (n)) 
is regular. 

To prove the necessity suppose that (x(n)) is regular and define 
z, = (x (n) I N, (n)), n E 9. Let 5, = zR/Ilznli if zn + 0, and zero otherwise. Then 
(5,) is a T-periodic 0-1 innovation, and S, E N,(n) c M,(n), n €9'. Since 



Prediction of PC sequences 297 

8. N .  ( 4  = M., every Y M ,  has an expansion y = C z  - (Y) t,, which is 
unique, provided that c j ( y )  = 0 if T j  = 0. In particular, x (n) = xy= - 9 (x (n)) )tj, 
n E 2. Since 5,1M,(n - I), we also have 

Deiine = cn -, ( x  In)) = ( X  (n), en - k). Since the T-shift operator V of (x (n)) 
maps Mx(n) onto M,(n+T), we obtain 

and hence V t j  = tj+=, j~ 3. Therefore 

that is (Bi) are T-periodic in n. By definition, f i  = Il(x (n) I N ,  (n))ll 2 0, n E %, 
and P;+" = (x (m+  k), t,) = 0 if e, = 0, that is, if m$Sr. 

To see the uniqueness suppose that 

where (t,) and (cn) are 0-1 innovations in M,, and the sequences (a:) and (/Q, 
k 2 4 are T-periodic in n and satisfy (U-1) and (U-2). Then (x(n) 1 N,(n)) = 
f i  4. = a x n ,  n ~ % .  Since the rank of (x(n)) is r, exactly r of (x (n)l N,(n)), 
n = 0, 1, ..., T-1, are nonzero, say for n's in the set S c {O, ..., T-1). If 
[n] E S, then BxSn = at [,, # 0 and, because of (U-1), Po = a b n d  4, = 5,. If 
[n] E S and k > 0, then (x (n + k) I Nx(n)) = fi'k tn = in, and since we have 
just proved that t,, = c,, we conclude that B;+k = k 2 0. Finally, if [n] $S,  
then t,,'s and 5,'s are zero, because @, N,(k) = M,, and both innovations are 
assumed to be in M,. Therefore St = Sg = (n E 9: [n] E S) and, by (U-2), 

k + n  - flk -O=u:+" for all k > O  and [n]$S. s 

Note that if (x(n)) satisfies (211, (U-1) and (U-2), then the mapping 

maps (x(n)) into an equivalent I? (%)-valued PC sequence (y (n)): 

(in fact, the sum is over the set of all k 2 0 such that n - k E Sg, but this is taken 
care of by the assumption that = 0 if n- k $ St). Putting 



we obtain y (n) = eiH' C(n), n E %, which is a particular form of (17). From Prop- 
osition 3.5 we conclude that the spectral densities gj(s)  = (dyj/ds) (s) of ( x  (n)) are 
given b y  

where 

The fo~mulas (23) and (24) allow us to compute the spectrum of (x(n)), given the 
coeficients (Br). The main effort in this paper is the opposite: to construct the 
coefficients pk) of the optimal moving average representation (21) of (x (n)) from 
the spectrum ( y j )  of the sequence, similarly as matrices Ak in Proposition 3.3 in 
the stationary case. We will also obtain an alternative external version of an 
optimal moving average representation for regular PC sequences. 

4 INDUCED SYATIONAEY SEQUENCE 

Let T > O  and let ( x  (n)) be a sequence in a Hilbert space. For every n E 3 
and q E 2FT let Zq (n) be an element of K = M: whose p-th coordinate is 

(25) 2 4 ( n ) ( p ) = ( l / ~ ) x ( n - ~ ) e - ~ ~ ~ ( " - p ) ~ ~ ,  p = 0 ,  ..., T - I .  

In other words, for a fixed n E Zq (n) (-) is a part of the trajectory of the 
infinite sequence (1/T) x (n  - .) e-2"iq("-')iT that is seen in the window 
{O, ...7 T-11. 

PROPOSI~ON 4.1. Let (x(n)) be a PC sequence with period T ( y j )  be the 
spectrum of (x(n)), and let Zq(n) be deJined by (25). Then: 

(1-1) [Zq(n)] is a T-dimensional stationary sequence in K = Mf with the 
correlation 

(26) ~ j . k  (n) = a . (n) e- 2nijniT 
~ - k  , j ,  ~EST? ~ E S ,  

where aj(n) are deJined in (7). The spectrum ( y j )  of (x (n)) and the spectral measure 
[ri,k] of [Zq(n)] are related through 

(27) ri9k (A)  = (1/T)  y j -k  (A + 2n j/T), 

(28) ~ ~ ( A ) = ~ r j ~ - ~ ( d - - 2 n j / ~ ) ,  j , k € S T .  

(1-2) x (n) = &Ti: eZsiqn/' ZQ  (n), n provided M ,  is ident@ed with 

~ , 0 ( 0 ) 0  ... ~(0). 
(1-3) Mz= M: and M,(n)= M,(n)@M,(n-1)e ... OMx(n-T+1) ,  

n E 3 Consequently, ( x  (n)) is regular (deterministic) [.Zk (n)] is regular (deter- 
ministic, respectively). 



Prediction of PC sequences 299 

(1-4) For every rn, n E Z FI n my 

Note that despite the fact that M,(m) is much larger than M,(m), the 
property (29) states that 

(30) (x ( 4  I M ,  Im)) = (x (n) I MZ b)), n 2 m. 

The idea of an induced sequence comes from 141. In the above form it 
appeared in [17] and the properties (1-1) and (1-2) were proved therein. Also in 
[I71 a probabilistic version of an induced sequence was introduced and was 
used to show that every, not necessarily of finite variance, periodically distrib- 
uted sequence admits a representation (9). Property (1-3) was proved in [19]. 

Proofs. (1-1) Since K,(m-p, n-p) is T-periodic in p, by substituting 
r = n - p  in the second line below we obtain 

Hence [zk (n)] is a T-dimensional stationary sequence and its correlation 
equals 

~ j . k  (,) = (fp) e -  2"injiT 
a j -k  In). 

Writing both sides of the above as the integrals (4) and (13), we obtain (27) 
and (28). 

(I-2) Since x:~: eZninq/T = 0 if n # 0 modulo T and zT-' q = o  ehinqJT = T if 
n = 0 modulo T 

where the only nonzero entry is at the place [n-r] (recall that [m] is the 
remainder in division of m by T). If r = n, then we obtain (1-2). 

(1-3) and (1-4). The inclusion 
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is obvious. On the other hand, if we fix j~ (0, . . . , T -  1) and m E 9, and 
substitute r = n-j in (31), then for every n < rn we obtain 

T -  1 

C e2nitn-J7q/T Zq (n) = (0, 0, , . . , x (n -13, 0, . . . , 0) E Mz (m). 
q = O  . -  

ti) 
Hence 

M z ( m ) 2 { O ) @  ...@ ~ , ( m - j ) ~ { 0 } ~  . . .@{ O), j = O  , . . + ,  T-1, - 
(17 

which proves (1-3). The property (1-4) is an immediate consequence of (1-3). 

' Clearly, the converse of Proposition 4.1 also holds true. 

P R O P ~ S I ~ O N  4.2. If [Zg(n)] in (25) is a T-dimensional stationary sequence 
in M,T, then ( ~ ( n ) )  is PC with period 7: 

Proof. The formula (31) holds true for any (not necessarily PC) sequence 
(x(n)). Therefore, if [Zq(n)] is stationary and U is its shift, then 

T-1 

UT (x (n), 0, . . . , 0) = C e2"i"4/T UT Zg (n} 

q = O  

so UT x (n) = x (n + T), n E %. Hence ( x  (n)) is PC with period 7: FA 

DEFINITION 4.3. I f  (x(n))  is PC with period TT; then the T-dimensional 
stationary sequence [Zq(n)] defined in (25) is said to be induced by (x(n)). 

From Proposition 4.1 it follows that if ( y j }  is the spectrum of a PC se- 
quence with period II: then [rjvk] = (117') [ y j d k  ( A  + 2n j/T)] is the spectral mea- 
sure of a T-dimensional stationary sequence. This correspondence is bijective. 

COROLLARY 4.4. (A) If ( y j ) ,  j E .ZT, is the spectrum of a PC sequence, then the 
T x T-matrix measure [rj,k (A)] = (l/T) [y j - k  (A +2xj/T)] is the spectral mea- 
sure of a T-dimensional stationary sequence. 

(B)  If the spectral measure [ f ivk]  of a T-dimensional stationary sequence 
satis$es 

(32) rj .k(~)=ri+d,k+d (A -2xd/T) for every j, k ,  d E ST and BoreI A ,  

then the measures yk (A)  = ~ ~ p s ~ - ~  ( A  - 2np/7'), k > ST, form the spectrum of 
a PC sequence with period T. 

P r o  of. Part (A) has already been noticed. Suppose therefore that [rjyk] is 
the spectral measure of a T-dimensional stationary sequence [Xk (n)]. Define 
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Then (x(n))  is PC and from (14) we conclude that the spectrum (yj) of (x(n))  is 
given by 

T-1 

y k ( A )  = r h j - k ( A - 2 ~ j / T )  = T I ' ~ * P - ~ ( A - - ~ . ~ ~ ~ / T ) ,  
j = O  

because by (32) all the components in the sum above are equal. 

Corollary 4.4 is just another form of Gladyshev's Theorem 1 from [5 ] :  
A kernel K ( m ,  n) = xT-' e2xijnlTaj(m-n) is the correlation function of a PC 
sequence with per io6=0~ the T x T - m t r i x  sequence with entries 
~ j . h  (n) = gj-  (n) e -  Z x i k n I T .  is the correlation function of a T-dimensional sta- 
tionary- sequence. 

The induced sequence meets all our requirements. It generates the sequence 
(x(n)) (1-2); the spectral characteristics of both sequences are related to each 
other in a very simple and one-to-one way (1-1); it controls prediction proper- 
ties of a PC sequence (x(n))  and predicting x ( n )  is equivalent to predicting 
[Zq(n)] ((1-3) and (1-4)). The induced sequence has been already used in [I91 to 
relate autoregressive representations of the predictors of (x In))- and [ZQ (n)] to 
each other. In the next section we will employ the induced sequence technique 
to study the prediction problem for PC sequences. 

It should be pointed out here that the spectral theory of continuous time 
PC processes is also very well developed (see, for example, [6]-[9], [14]); in 
particular, a construction of an induced process goes through for continuous 
time PC processes [14]. A process [Zk(t)]  induced by a continuous parameter 
locally square integrable PC process x (t)  is an infinite-dimensional continuous 
stationary process with values in K = ([0, T), dt; M,). The main dficulty of 
retrieving a PC process back from its induced process was recently resolved in 
[13]. A method of reconstruction of a PC process used in that paper essentially 
differs from (1-2) and reveals a strong link between induced stationary processes 
and unitary representations of groups induced from their subgroups. In this 
framework, part (B) of Corollary 4.4 is equivalent to a special case of Mackey's 
Imprimitivity Theorem. Please see [13] for details. 

Since a PC sequence (x(n)) is regular iff its induced sequence [Zk(n)] is 
regular, and the regularity of the latter depends on the absolutely continuous 
part of its spectral measure, we will be assuming in this section that the spectral 
measures (yj) of (x(n)) are absolutely continuous with respect to Lebesgue 
measure. Let us put 



Also, in order to simplify notation, let E be the T x T-matrix whose j, k-th 
entry is eZnijklT and let E- l  be its inverse, that is 

E = [e2nijk/T] and E -  1 = (1/T) Ce- 2zijk/T]. 

Since G(s) = [Gi.k(s)] is the spectral density of [Zk(n)], a simple 
adaptation of Proposition 3.1 gives the following regularity criteria for PC 
sequences. 

PROPOSITION 5.1. Let (x (n)) be a PC sequence with period T and absolutely 
continuous spectrum (yj) .  Let gj(s) and [Cjyk(s)] be as in (33) and (34). The 
followitzg conditions - are equiualent : 

- (i) -The sequence ( x  (n)) is regular. 
(ii) There exist Q positive integer d d T and conjugate analytic functions 

Ak ( a )  E L2- (vd), k E 2ZT, such thut for euary j, k E ZT 

(35) gk (s) = T (AJ($-  2n j/T), Aj-k (s - 2n j/T)), ds-a.e., 

where ( a ,  .) is the inner product in P. 
(iii) (x(n))  is equivalent to an I?- (@)-valued sequence 

(3 6) y(n)(-) = (I/&) f C! ei(n-k). ,  
k = 0  

where (C!), k 2 0, are T-periodic (in n) sequences in @ and d < 7: 
(iv) There exist K z M,, a positive integer d 6 T, a d-dimensional innoua- 

tion [I;:] in K, and %?q-vaEued T-periodic sequences (G), k 2 0, such that 
CO 

(37) x(n)= C C![C-J, n ~ 3 .  
k = O  

(Ci E gd above are row-vectors C[ = [Ci*', CE", . . . , C$d-l] and [l:-k] are 
columns as usual, so that CE [l: - J = 61 CiVq 1: - .) 

Observe that the right-hand side of (35) does not depend on j. Also note 
that (36) is equivalent to the representation y (n) ( a )  = ei"' C (n) (.), n E 5?, where 
(C(n)) is a T-periodic sequence in L?- (gd). 

P r o  of. (i) * (ii). If (x (n)) is regular, then its induced sequence [Zq (n)] is 
regular, and hence its density G (s) admits a conjugate analytic square root A (.) 
(Proposition 3.1). If Ak(-) is the k-th row of A(s), then 

(A' (s) , Ak (s)) = fPk (s) = (1/T) g - (S + 27~ j/T) , 
which gives (35). 

(ii) .;> (iii). Let A (s) = [Aq (s)] be the T x d-matrix valued function whose 
q-th row is Aq(s). From (35) it follows that the L2(gd)-valued sequence 
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is equivalent to (x (n)). Let C (s) = EA Is), s E [0, 2x), Cq (.) be the q-th row of 
C (-1, and let C (n) (-) = CCnl (a), that is 

' T-1  

(39) C (n) (-) = eZ"'.4jTA4 (.), n€  3. 
g=O 

Then (C(n)) is a T-periodic sequence of conjugate analytic functions and 
y (n) ( - 1  = ein. C (n) (.I. I f  we write C (n) (s) = (I/,/%) z:' Ci ee ikS ,  then we 
obtain (36). 

(iii) =+ (iv), Define C (s) = (0, . . . , 0, eins/,/%, 0 ,  . . . ,. O ) ,  n e Z where the 
only nonzero entry is at the q-th place, q = 0, . . . , d - 1. Then Cz EI? (@) and 
[l:] is a d-dimensional innovation in LZ (Vd). I f  c = [cop . . . , cd- ,] fed is a row 
vector, then the matrix multiplication of c by [ S t ]  gives 

d -  1 

e [(: (s)] = C c, (s) = (co eins, cl e", . . . , s- eiU)/& = c e i n s / f i .  

Therefore (36) can be rewritten as (37). 

(iv) (i). Since M ,  (n) G Adc (n) and [[i]  is regular, the sequence (x (n)) is 
regular. 

Even in the stationary case (T= 1 and d = 1) the representation (37) is not 
optimal, unless C (n) ( a )  = C ( - )  is outer, In the PC case the situation seems to be 
yet worse; even if the functions C (n) (-), n E 9, are jointly outer in L'- (w"), there 
is a doubt whether ( y  (n) 1 My (m)) = (I/&) zr=n-m C; ei(n-k)., simply because 
My (m) is much smaller than Am = eim' L2- (@. Nevertheless, it turns out that 
due to the property (30) of an induced sequence both projections coincide. 

PROPOSITION 5.2. If (x(n))  is a regular PC sequence of rank r, then (Cz) in 
(37) can be chosen so that d = r and 

Namely, one can take C;1 to be the [nl-th row of the matrix Ck = EAk, where 
A (s) = (I/,,/%) x:=, A, e-iks is an outer square roof of the function C ( s )  defined 
in (34). 

Proof. Let [Zq(n)] be induced by ( x  (n)). From Proposition 4.1 (1-3) it 
follows that [Zq(n)] is regular, and hence its density G(s) admits an outer 
square root A (s). Write 

m 

A(s)  = (I/@) x A,e-ih 
k=O 

and define 
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Let Cq(-) be the q-th row of C(.) and let Cf be the q-th row of Ck. Define 
g, 

(41) y (n) (s) = ei" c["' (3) = (I/&) Cpl ei'n-k)s. 
k = O  

Then (JJ (n)) is an L~ (vd)-valued PC sequence and y (n) = c::: s Z u i n q ~  Yq ( n )I 
where [Yq(n)] is a T-dimensional stationary sequence in L2(vd) defined by 
Yq (n) (.) = ein' A4 (a). Since G (3) is the spectral density of [Yg (n)],  the mapping 
a: Z4 (n) + Yq (n) extends to an isometry from Mz onto MI = @ (Wd). More- 
over, 

T - 1  

8 (x (n)) = 9 ( C ezninqlT Zq ( n 1) = Y (n). 
q=o 

Consequently, @(M,(rn)) = M,(m) and, by (30), 

Since Aq(-), q = 0, . . . , T -  1, are jointly outer in I? (qd), M y @ )  = A', = 

e'"' I?-- (Vd), and hence 

(42) (y (n) 1 M, (n)) = (Y (n) 1 A,,,) = (l/&) f CP1 ei(n-k)' , m G n ,  n ~ % " .  
k-n-m 

Applying @ to the above we obtain representation (40) with 
[: = @-l(O, ..., 0, eh./,,&, 0, ..., 0). 

It  remains to prove that d = rank ([Zq (n)]) = r. Denote for simplicity 
qp=(x(-p)]N,(-p)), andZp(0) =(ZP(O)IN~(O)), p=O,  ..., T-1. The rank 
of (x(n)) is equal to the number of nonzero q,'s in the set (qO, . . . , q,-,), 
and the rank of [Zq(n)] is equal to the dimension of the span of 
{Zq(0): q = 0, . . . , T - 1). From Proposition 4.1 0-4) it follows that 

Since 

we conclude that rank([Zq(n)]) >r. On the other hand, since each 2410) is 
a linear combination of such vectors, namely 

rank (tZq (n)]) < r . BI 
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Proposition 5.2 is a version of a prediction formula for PC sequences and 
provides a description of the predictor coeficients Ci in terms of an outer 
square root of C (s). The moving average representation (40) is external in the 
sense that innovation lives in the space bigger than M,. In the next lemma we 
show that the property (32) forces a special structure of the matrices Ck, which 
links the moving average representations (40) and (21). 

LEMMA 5.3. Let G (s) be the spectral density of a T-dimensional regular 
stationary sequence a d  Jet A (s) = (l/&) zkm==, Ak e-iks be a T x r outer square 
root -of G(s) .  Suppose that G(s) has the property that G ' fd ,k+d( s )  = 

@ p k  ( s  +2n-d/T),;ds-a.8. l o r  all j ,  k, d E 2FT. DeJine Ck = EAk, k 2 0. Then the 
rows ~i of Co are mutually orthogonal elements of qr and exactly r of them are 
nonzero. Moreover, there are T-periodic (in n) scalar sequences (g), k 3 0, such 
that 

(43) C ~ l = ~ C ~ - k l ,  n ~ z ,  k20. 
Proof. By Corollary 4.4 and 0-3) of Proposition 4.1, GIs) is the spectral 

density of a stationary sequence [Zq(n)] induced by some regular PC sequence, 
say (x(n)).  From Proposition 5.2 it follows that (xln)) is equivalent to the 
sequence ( y  (n)) defmed in (41). Therefore 

that is CFi, eim' E N ,  (m) for every m E 9 and n 2 m. Since N ,  (m) is at most 
one-dimensional, we conclude that for every rnE 2' there is at most one-dimen- 
sional subspace Dm of %', such that 

(44) C F l m ~ D ,  for all n ~ 3 ,  n > m .  
If n = m, this implies that C",D,, n = 0, ..., T-1. 

We will show that the rows of C, are orthogonal, and so are the subspaces 
Do, D l ,  .. ., D T - l ,  and that exactly r of them are nonzero. Since A(s)  is an 
outer square root of G(s), the one-step prediction error matrix of [Zq(n)] is of 
the form 

60 = [(Zj (0) I N z  (O))] [(Zj (0) l N z  (O))] * = A 0 A: * 

Hence there is a unitary mapping !P: N ,  (0) + %' such that Y (Zq (0)) = A{, 
where &(o) = (Zq (0) 1 Nz(0)) and At is the q-th row of A,. Recall that in Propo- 
sition 5.2 we have shown that 

where q,  = ( x ( - p ) I N , ( - p ) ) ,  p = 0 ,  . .. , T-1. Putting [ W q  = E [2q(0) ] ,  we 
obtain 

T-1 

w[-d = C e - 2 x i . i d T g j  (O)=(O ,..., O,Vq,O ,..., o), q = O  ,..., T-1, 
j = O  w 

(4) 
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and hence the vectors WO, . . . , W T -  are orthogonal to each other. Therefore 

are mutually orthogonal. By Proposition 5.2, r = rank([Zg(n)]), and since the 
latter is equal to rank (Go) = rank (Ao) = rank (CO), we conclude that the ma- 
trix Co has exactly r nonzero rows. Consequently, exactly r out of T-subspaces 
DO, . . . , DT- are nonzero. 

Since V (My (Pn) O M,(m- 1)) = A4, (mT)@ M ,  (mT - 1), where V is the 
T-shift operator of (y (a)) (which in our case is the operator of multiplication by 
eiT'j, we-conclude that Dm = Dm+,, for every p ~ z  and so Dm = DIml, m ~ 9 .  
Hence for every m E 3 the subspace Dm is spanned by the [ml-th row C[,"l of the 
matrix Co = EA,. Substituting m = n-k in (441, we obtain C F ] E D ~ ~ - ~ ] ,  and 
therefore there are scalars aj: such that 

Namely, one can take 

ol; = 
(@I, C6" - k l )  

(lck-ky2 
(where 010 = 01, and then (at) is T-periodic in n for every k 3 0. ria 

Recall that in Proposition 3.5 we proved that any regular PC sequence 
(x(n)) of period T and rank r can be written as 

where (c,) is a T-periodic 0-1 innovation in Mx of rank r. Sequences (B), k 2 0, 
are T-periodic (in n) and can be chosen so that 

(U-0) (x (n) I Mx (m)) = ~ ~ = n - m  E t, -, for all my n E 3, ,< n, 
(U-1) Po 2 0 for all n €3 
(U-2) fli+" = 0 for all m$ St and k 2 0, 

and then (8;) and (5,) are unique. Below we present a "spectral domain" con- 
struction of the predictor coefficients @). 

THEOREM 5.4. Suppose that (x(n))  is a regular PC sequence of period T and 
rank r, and let (gj), j ~ 3 ,  be the spectral densities of (x (n)). Let 

(i) Qpk(s) = (1/T)gj-k(s+2nj/T), j, k€2TT, 
(ii) A(s)  be an outer square root of [CGi.k(s)], 

(iii) Ah = (1/,/%)~:' eikt A ( t )  dt, Ck = EAk, k 3 0, 

(iv) 8; = (CE;"], Cg-kl)/liCk-klli, n ~ 2 ,  k 2 0, where Ct denotes the q-th row 
of CAY and the norm and the inner product are in qr (we use the convention that 
o/o = 0). 
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Then the sequences (pa, k 3 0, are T-periodic in n and satisfy the conditions 
(U-0), (U-1) and (U-2) above. Moreover, the one-step prediction errors are 
given by 

IIx(n)-(~(n)l~,(n--1))11=p",, n ~ z .  

Proof.  From Proposition 5.2 it follows that there is an r-dimensional 
innovation [la in a Hilbert space K 2 M ,  such that 

m 

Define - - - .  

r - l  

tn=-- C ' ~ ~ ' - ~ ~ ~ ~ ~ ~ - L  c c ~ I ~ ~ ~ : ,  n ~ l  
Il cb II q=  0 

(0/0 = 0). By Lemma 5.3, Crl = atCg-", where a! = (CF1, C ~ L k 1 M I C ~ - k 1 1 / 2 .  
Therefore from (47) we infer that for all m, n ~ 2 ,  m m n, 

From (48) we obtain (x (n) IN, (n)) = B", en, n E and hence (5,) is a 0-1 in- 
novation in M,. Directly from the construction it also follows that the se- 
quences (Bnk) satisfy (U-1) and (U-2). 

Below we will show that a converse theorem is also true. In order to 
simpllfy the formulation we will say that functions f (.) E L2- (gT), k = 0 ,  -. ., N,  
are jointly P-outer if 

where Vk = %' or Vk = (01, and exactly r of % i s  are nonzero. For example, the 
rows A h ( - )  of a T x T matrix function A(s) = [Ak,j(s)] are jointly Y-outer if 
T - r  columns of A(s )  are zero ds-a.e. and when they are removed from the 
matrix, the rows of the resulting T x r matrix function are jointly outer in 
L2- (v). 

THEOREM 5.5. Let (x(n))  be a regular PC sequence of period T and rank r, 
(gj) be its spectral densities and let G i , k (~)  be as in (34). Suppose that @), k 2 0, 
are T-periodic (in n) and satisfy the conditions (U-0), (U-1) and (U-2), where (t,) 
is a 0-1 innovation in M,. Define 

where (e,) is the standard basis in qT; 

7 - PAMS 19.2 
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m 

(ii) Cq  (s) = (I/,,/%) z q e - "" 
k = O  

T - 1  

and (s)  = ( 1 j T )  C e-2"iqkiT Cq 0, s k , q = 0  ,..., T - I .  
q = o  

  hen the rank of (en) = r, the WT-valued functions Ak(s )  are jointly r-outer, and 

(49) gk (s) = T ( A ~ ( s  - 2 ~  j /T),  A ' - ~  ( s - 2 ~  j / ~ ) ) ,  ds-a&., j ,  k E LYT. 

In other words, if we remove from the matrix function A (s) = [Ak {s)] the 
T -  r zero columns, then the resulting T x r-matrix function is an outer square 
root of [Gi*k (s)] .  

Proof. First we will show that the matrix function A ( s )  = [Ak{s)]  is 
a square root of the density 6 (s) = [G-'.k (s)]. Let us put 

m 

c,=[cg,  A ~ = E - ~ C ~ ,  c ( ~ ) = [ c q ( ~ ) ] = ( i / @ ) C  &cikS, 
k = O  

and 
m 

A(s)  = (I/,/%) A,e-iks = E-I  C(s). 
k = O  

e2riqn/T Yq (n), n E 9, so that Let Yg (n) (s) = e'"" Aq (s) and let y (n) = zq=, 
[Yq(n)] generates ( ~ ( n ) ) .  From the definitions of Ck and A, it follows that 

y (n) (-) = (l/fi) Cp oi(" - k). = ( l j f i )  f ~ ; e ~ ~ - ~ ~ e ~ ( ~ - ~ ) .  , n ~ 3 .  
k = O  k = O  

By v-0) we have 

and hence (y (n) )  is equivalent to (x (n)), where the equivalence is achieved 
through the mapping @(( , )  = ern] ein', En # 0. Therefore (g j )  are the spectral 
densities of ( y (a)). Since [Yq (n)] generates ( y (n)), we obtain 

(Proposition 3.5). We will show that in fact [Yq(n)J is equivalent to the se- 
quence induced by (y(n)) ,  that is 

Because of (50), it is enough to show that functions ( A P ( s - 2 n p / T ) ,  
AP-q(s-271/T)) do not depend on p. From the definition of Ah it follows 
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that 
T - 1  T - 1  

A: = ( l / T )  C e -  2"ijqIT - - e- 2xiqjIT ( C e -  2xiqrtT & + j  gr) ,  
B k  [4 kl - 

q=O r = O  

and hence 

4 m T-1 - =.(fpn 7-21 C C-e'- 2xipLk-  j)/T e-2rriqj/T C e -  2rriqrlT r +  k r+  j e - i k r  ijt 
P k  B j  e .  

k = O  j = O  r = O  

Therefore 

does not depend on p. Note that the formula above also gives an explicit 
expression for the spectral densities (g,) of (x(n))  in terms of (/I:), namely 

which is simpler than (23)-(24). 

I 
We shall prove that A(s)  is an r-outer square root of G(s). From (51) it 

I follows that there is an isometry Qj from Mz onto M ,  such that 
8 Z q  (n) = Yq (n) = ei"' Aq ( a )  and, consequently, 

T - 1  

8~ = e2"iqn/T @ 

q = o  
(zq (4) = Y (4.  

Note that if U is the .shift of [Zq(n)], then from the definition of [Zq(n) ]  it 
follows that for every (zo,  z,, . . . , ZT- ,) E M,T = M Z  

where V is the T-shift of (x (n)). Therefore 

By iterations we obtain 

(recall that N,( j )  is identified with N ,  lj)@ (0) @ . . . @ {O)  c Mz). Since @ is 
unitary, the same relationship holds for the pair [Yq(n)] and (y(n)) .  



We shall compute My(0 ) .  From (U-0) it follows that, for every n ~ z  
N,(n) = sp (/3: c,,) = sp (l,), because if jl+ 0 while 5, # 0, then t, would not 
be in M,. Therefore N,(m) = sp (Cbml eim'). Since the shift of [Yq(n)]  is the 
operator of multiplication by eis, from (54) applied to the pair [Yq (n)] and 
(y (n)) we conclude that Cg-PI ein' E N y  (n) for all p 2 0 ,  and hence 

where Wk is either (0)  or 5%' depending on whether P t  is zero or not. This shows 
that My (0) = I?- (eo @ . . . @ VT- Since the rank of (x (n}) is r ,  exactly r terms 
in the sequence f l : ,  . . ., pg-' are nonzero, and hence Aq(.), q = 0, ..,, T -  1, 
are johtly r-outer. 

Theorems 5.4 and 5.5 are PC analogues of Proposition 3.3, part (B). Since 
the rows of A (s) are r-outer iff the rows of C ( s }  = EA (s) are r-outer, the proof 
of Theorem 5.5 yields the following corollary: 

COROLLARY 5.6. Let (x(n)) be a regular PC sequence with period T and 
rank r. Suppose that there is a 0-1 innovation of rank r in M ,  such that 

where (El, k = 0, 1 ,  . . . , are T-periodic in n and satisfy (U-1) and (U-2). Then the 
representation (55) is optimal (i.e. (U-0) holds true) ifl the functions C q ( . ) ,  
q = 0 ,  . . . , T - 1, dejined in Theorem 5.5 are jointly r-outer. 

If a sequence (x(n))  is completely regular, then r = T and the phrase 
r-outer in Theorem 5.5 is replaced by a familiar phrase outer in CT. The predic- 
tion problem for completely regular PC sequences was studied earlier in [10], 
where the authors introduced a new notion of a T-complete system: A system 
of T functions fo, . . . , fT-, E L2- (%) is said to be T-complete if for every 
k = 0, ..., T - 1  

If (x(n))  is a completely regular PC sequence with period T and (P;t) are the 
coeficients in the optimal moving average representation of (x(n)), then the 
functions f, (s) = C,",, f i  e-'k" n = 0 ,  . . . , T - 1, form a T-complete system, 
and hence the results of this section also characterize T-complete systems. 

6. OTHER ASSOCIATED SEQUENCES 

Stationary block sequence. Perhaps the most natural stationary sequence 
associated with a PC sequence is a block sequence, which is constructed by 
partitioning a PC sequence into adjacent blocks of length T. The starting point 
for a partition can be arbitrary, depending on what predictor is of interest. 
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DEFINITION 6.1. Let (x(n))  be a PC sequence with period T and let 
0 < d < ?: A T-dimensional stationary sequence [X!(n)] defined by Xi (n )  = 

x (d + nT + q), n E g = 0, . . . , T - 1, will be called a block sequence fat d)  as- 
sociated with (x (n)). 

A block sequence has excellent properties. It takes values in M,; for a fixed 
d the correspondence between (x(n))  and [X j (n ) ]  is a bijection from the set of 
all PC sequences with period T onto the set of all T-dimensional stationary 
sequences; both sequences are simultaneously regular or deterministic; rank of 
[Xi (n)] is equal to the rank of (x (n)); the shift of [X: (n)] is equal to the T-shift 
operator of (x(n)),  and, finally, doing prediction of both is the same task 
because Mx, In) = M ,  (d + (n  + 1) T - 1). A block sequence was successfully used 
in many papers on PARMA models (e.g. [21], [23]), and also was employed in 
[19] to obtain the Wold-Cramer decomposition of a PC sequence. 

The major disadvantage of a block sequence is that its spectrum and the 
spectrum of a corresponding PC sequence are related in a rather complex 
way. To see the relation let us put J ,  = [2nr/T, 2n (rf l)/T), r E ST, and let 
w: [O, 27~) 4 [O, 291) be a function defined by 

T - 1  

(56) w(s) = T (s-2nr/T)IND,(s), 
r=O 

where I N D ,  denotes the indicator of a set A. If p is a measure on [0, 24, then 
the image of p under w will be denoted by Wp, that is ( W p ) ( A )  = p(w-l (A)). 
The operator W splits p into the sum of its restrictions p,(A) = p(AnJ,)  to 
J,, r = 0 ,  . . . , T - 1, shifts each p, to the left by 2nr/T, adds the shifted mea- 
sures up and then stretches the resulting sum to the interval [0, 2n), that is: 

T-1 

( W p )  (ds) = pr (ds/ T + 2nr/T).  
r=O 

Note that if f is Wp-integrable and has period 2n/T then 

Zx 2x 

(57) 1 f ( s )d(Wp)(ds)  = j f ( T s ) d p .  
0 0 

PROPOSITION 6.2 (cf. [5]). (A) Let (x (n)) be a PC sequence with period T > 1 
and spectrum (y j )  a d  let [X:(n)] be a block sequence of (x (n)). Then [X: (n)] is 
stationary and the p, q-th entry of its spectral measure is given by 

(B) Let [Xq(n) ]  be a T-dimensional stationary sequence with the spectral 
measure [TPyq] and let x (a) = XIn1 (Q (n)), n E % where n = Q (n) T + [n], 
0 < [n] < T Q (n) E 6 Then ( x  (n)) is PC with period T and the spectrum ( y j )  of 
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(x(n))  is uniquely determined by the relations 

P r o  of. (A) Suppose that ( x  (n)) is PC with period T and let [Xi (n) ]  be its 
block sequence (at d). Then from (6), (7), and (57) we obtain 

Hence [X: (n)] is stationary and rfq (ds) = w ~:=-t eZrij(" cqyT  eiCLq)' Y j (ds)). 

(B) Suppose that [Xq(a) ]  is a T-dimensional stationary sequence and 
x (n) = XLnI(Q (n)), n E 2 Then (x (n)) is PC with period T  and [ X q n ) ]  is its 
block sequence at d = 0. Substituting d = 0 and p = [ q  + r ] ,  r = 0,  . . . , T - 1, in 
(58), we obtain p - q = r - Q (r  + q)  and hence 

Multiplying both sides by e iQ(r+q) iThnd taking the inverse discrete Fourier 
transform, we obtain (59). The relations (59) determine ( y j )  uniquely despite that 
Wp = Wv does not imply that p = v. However, if W (eir" (ds)) = W (eus v (ds)) 
for r = 0, ..., T - 1 ,  then 

2s 2n 

einTs W (eks p (ds)) = 1 einT" (tPS v (as)), n E 9, 

'" ei(nT+r)s (ds) = 1: e i ( n T i r ) s  and, by (57),1,  ~ ( d s ) ,  n ~ z  r = 0, ..., T-1. Hence 
p = v .  !a 

The relations (58) and (59) are not only complicated, but additionally the 
operator W does not transfer conjugate analytic roots of [ddrP,q/dsJ into con- 
jugate analytic factors of (yj/ds), and this is the main reason that an induced 
sequence was used in the paper instead of a block sequence. However, the 
predictors of (x(n)) and the predictors of its block sequence are obviously 
related through a time domain procedure, and therefore the results of Sec- 
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tion 5 link the coefficients ( P i )  of an optimal moving average representation of 
a PC sequence with matrix coeficients of an optimal moving average represen- 
tation of its block sequence. Since each T-dimensional stationary sequence 
arranged in a linear order forms a PC sequence with period ?: the author 
believes that the technique of induced sequences and the results of this paper 
may also contribute to the prediction theory of T-dimensional stationary 
sequences. 

Generating stationary sequences ia M,. An induced stationary sequence 
Iives in much bigger space than M,, and this raises the question of whether it is 
possible ti5 find a generating sequence [Wq(n)] with values in M,, which at least 
controls the regularity of (x(n)). The principal root sequence, so far the only 
generating sequence of (x(n)) constructed in M,, is always deterministic, and 
hence does not meet this requirement. 

THEOREM 6.3. A PC sequence (x (n)) with period T has a regular generating 
sequence with values in M ,  iff (x (n)) is completely regular. Moreover, each regu- 
lar T-dimensional stationmy sequence in M ,  that generates a completely regular 
PC sequence is of rank 1. 

The fact that a completely regular PC sequence admits a regular gene- 
rating sequence in M ,  was first noted in [lo]. 

Proof. (=) Assume that [ Wq (n)] is a regular T-dimensional sequence in 
M, such that 

T- 1 

x (n) = C e2"'"4iT Wq (n), n E 9'. 
q=o 

Let r be the rank of [Wq(n)]. Then [Wqn)] is equivalent to an L2 (Wr)-valued 
sequence Yq (n) (t) = eit" Aq (t), where [Aq (.)I is a conjugate analytic square root 
of the spectral density dr /d t  of [W4 (n)] and rank (a (0)) = r, Hence the se- 

T -  eZnin4jT Yq (n) is an I? (%?)-valued PC sequence equivalent quence Y ( 4  = C4'* 
to (x (n)). Note that the shift U of [Yq(n)] is the operator of multiplication by eis 
and that M y  = M y ,  because by assumption Mw = M,. Since [Yq(n)] generates 
(y (n)), we conclude that V = UT is the operator of multiplication by elT? Con- 
sider the group Vn = (UT)", n E 9, and let el, . . . , e, be the standard basis in Vr. 
The functions u ~ , ~  = eik' eq, k = 0, - 1, . . . , - T + 1, q = 0, . . . , r - 1, have the 
property that the rTsubspaces = i@ {Vn u ~ , ~ ,  n E 63 are orthogonal. Since 
the spectral type (see [3], pp. 916918, or [16], Section 2.3) of each vector u ~ , ~  is 
the Lebesgue measure, which is the maximal spectral type of the group Vn, we 
conclude that the multiplicity of the group V" in My is rT On the other hand, 
the subspaces Vn (My (0) -My ( - T)), n E 3, also span M y  = My. Hence the mul- 
tiplicity of V" in M y  is at most d = dim (My (0) -My (- T)) which is at most T 
Comparing this with previously computed multiplicity we infer that 

multiplicity of V" in My = rT < d < T, 



which is possible only if r = 1 and d = dim ( M ,  (0) M,( -  T)) = that is if 
[Wq(n)] is of rank 1 and (x (n)) is completely regular. Note that we also proved 
the "moreover" part. 

(G) Suppose now that (x(n)) is completely regular. Then it is regular and 
from Proposition 3.5 it follows that (x(n)) can be written as x(n) = 

Ckm_, pi 5n-ky n E z where [<,,I is an innovation in M ,  and the coefficients 
p;i satisfy (211, (U-1) and (U-2) of Proposition 3.5. Define the unitary operator 
U: M ,  + M ,  as a linear extension of the mapping U t ,  = <,+ l, n E 2 Since (p ; )  
are T-periodic, LIT x (n) = x (n + T),  n E 9, so U is a T-th root of the T-shift 
operator V of (x(n)). Define 

m T-1 

p ( n ) =  W q ( 0 ) = ( l / T )  e-2"iiqiT 
j= 0 

P ~ ) I  and 
k = O  

Wq (n) = Un Wq (0), n E 3. 

Then Wq (n) E Me (n), and so [Wq (n)] is regular. Moreover, 
m T - 1  

x (n) = C f i  (,, - = Un p (n) = e2"'4"IT Wg (4 ,  n ~ z ,  
k = O  q=  0 

and hence [Wq(n)] generates (x(n)). H 

7. PARMA SEQUENCES 

In the case of T-dimensional stationary sequences an explicit computation 
of an outer square root of its spectral density is possible only in few cases. One 
of them is the case when a sequence is a solution to an ARMA system of 
equations. A PC analogue of an ARMA sequence is called PARMA, and is 
defined to be a PC sequence (x(n)) that satisfies a system 

where it is assumed that: 
(A-I) the sequences p(n), q (n), 6, (n), and Bk (n) are periodic with the same 

period 7: 
(A-2) (<,J is an orthonormal sequence (innovation). 
Setting 4, (n) = 0 and Oi(n) = 0 for p (n) < k < L and q (n) < j < R, where 

L 2 max {p (n): p(n) # 0, n E 3) and R 2 max (q (n): q (n) # 0, n E S}, we may 
assume that p(n) = L, and q(n) = R are constants. 

Our goal in this section is to compute spectral densities gj = dyj/ds, j E TT, 
of a PARMA sequence (x(n)) and identify coefficients in the optimal moving 
average representation of (x (n)), provided that (61) has a unique PC solution in 
Me A literature on PARMA sequences is vast and many diverse methods for 
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studying PARMA systems, including procedures for retrieving predictor coef- 
ficients and for computing spectral densities, have been already developed (see 
for example [I], [l2], [21]-[23] and references therein). This section should be 
viewed as an example of an application of an induced process technique rather 
than a systematic analysis of PARMA models. 

The system (61) may have no solution at all. Even if it does have, it is not 
obvious whether a solution is PC, whether it belongs to the space M p  or is 
unique, although it is easy to see that if (61) has a unique solution (x(n)) in the 
space Mt, then this solution must be PC and its T-shift operator V is equal to 
UT, where U :  M e  + M ,  is defined by U<, = <, + ,, n~ %3 B y  proper partitioning 
the sums on both sides of (61), Vecchia [23] rewrote (61) in terms of 
a T-dimensional block sequence Xq(n) = x (nT + q), n E q = 0, . . . ., T- 1, 
and transformed a PARMA system into a T-dimensional ARMA systems in- 
volving [Xq(n)] .  However, due to a complicate relationship between the spec- 
tra of a PC sequence and its block sequence, Vecchia's construction is not very 
suitable for our purpose. Our main tool here will be an induced sequence 
instead. An induced sequence technique is very similar to the approach used by 
Sakai in [22] for the same purpose. 

Recall that a T-dimensional sequence [Zq(n)] is said to be induced by 
a sequence (x (n) )  if Zq(n) E M,T is defined by 

(62) Zq(n)(k) = ( I / T ) X  (n- k) e-2"iqC-k)iT , k =  0, ..., T-1, 

n ~ z  q =  0,  . .. , T -  1. Propositions 4.1 and 4.2 state that (x(n))  is PC with 
period T iff [Zq(n)] is T-dimensional stationary. Observe that if [Z! (n)] is 
induced by an innovation (c,), then 

1/T if n = m  and p = q ,  
= {O otherwise. 

Hence 

satisfies [C] [6$]* = IT 6,-, ,  that is [ [ : I  is a T-dimensional innovation in MT.  
Clearly, Mc = M T  (Proposition 4.1, (1-3)). 

Consider a PARMA system 

where 4,(n), Ok(n) and (53 satisfy (A-1) and (A-2). Let A, and B, be 



316 A. Makagon 

T x T-matrices defined by 

where i denotes the discrete Fourier transform (2) of a T-periodic sequence 
( ~ ( n ) ) .  Let us put 

L 1 
(48) A(z)  = I -  A,zm and Biz) = - B,zm, Z E W ,  

m =  1 J G m - n  

and cbnsiddr the ARMA system 
L R 

(69) CXj(n)l- C Ak C W n  - k)l = C Bk CSi - k l  r 
k =  l k = O  

where [[:I is the T-dimensional innovation in MF defined in (64). 

LEMMA 7.1. The PARMA system (65) has a PC solution tfS the ARMA 
system (69) hm a stationary solution. 

Proof. For convenience rewrite the system (65) as 

(-) Suppose that (x (n)) is a PC solution to (70) and let [Zq (n)] be the 
sequence induced by ( ~ ( n ) ) .  Then [Zq(n)] is a T-dimensional stationary se- 
quence and 

2 4  (n) (p )  = ( I / T )  e -  2mq(n-p) /T  ( C $ k ( n - ~ ) x ( n - k - ~ ) +  z &In-p) ) S n - k - p )  
k =  1 k = O  

R T - 1  
+ ( l / T )  C e-2"'4(n-~)/T e2xi j (n-p) /T  6 ~ j )  t 

k n - k - p  
k = O  j= 0 
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Since all components of the sums above are T-periodic in j, substituting 
q-j = r we obtain for each n ~ z  q€ST, and p = 0, ..., T - 1  

2 4  (n) ( p )  = c c a-2n"k/T &c ~ q - ~ ) ~ ' ( n - k )  (PI 
k = l  r = O  

Therefore [Z'(n)] is a T-dimensional stationary solution to (69). Note that if 
x (n) is a salution in IMo then M ,  E Mc, and from the property (1-3) of Proposi- 
tion 4.1 it follows that M ,  = M: G MT = Mc, that is z ' ( n ) ~ M < .  

(-) Suppose now that [XJ(n)] is a T-dimensional stationary sequence that 
satisfies (69). Defme x (n) = z:r: e2"wjTXq (n). Then (x (n))  is PC with period T, 
and 

Writing 

and 

and using the fact that C,' e2niq(n-~)lT = 0 except when n = j, we obtain 

x (n) = C #k (n) ( C e - 2rrir(n - k)lT Xr ( 
k =  1 r = O  

?I - k)) 

5, = (c , ,  0, . . ., 0) (again Mc is identified with since ( 1 / f i )  xrTTTi e-2nirnlT 
M,@(O)@ ... @{0) c M t ) .  a 

From the proof it follows that if (x(n)) is a PC solution to (65) and if the 
system (69) has a unique stationary solution, then the latter must be the se- 
quence induced by (x (n)). The conditions for existence and uniqueness of a sta- 
tionary solution to a T-dimensional ARMA system are well known (e.g. 121). 
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LEMMA 7.2. The system (69) has a unique stationmy solution ifldetA (2) has 
no zeros on the unit circle. Moreouer, $this is the case, then the only stationary 
solution is giuen by 

where Dk = (l/fi)~: e" A (ewi?-l B (e-? dt ,  ke d 
By definition the matrices A, and Bk have the property that, for every 

k 3 0, a 2 n i r k / T ~ r  and aZnirk/T 3:'' depend only on q-r. We will show that if 
[Xq.(n)] in (71) is cbhsal, then the coefficients Dk also have this property. 

LEMMA 7.3. If det A (z) has no zeros on the unit disc (121 < I), then the system 
(69) has a unique stationary solution 

and the matrices I), have the form 

where q,, k 2 0, are functions of 4 - r .  

Proof.  The first part is well known. If detA(z) has no zeros on the unit 
disc {lz] < I), then d (2) = l/det A(z) is analytic in {lz] < 1 + E )  for some E > 0, 
and hence A-'(2) and A-'(2) B(z) are analytic. Therefore 

which in view of Lemma 7.2 yields (72)- Multiplying the above equation by 
A(z) we obtain 

from which one can recursively compute the coefficients Dk, k 2 0: 

where Aj = 0 if j > L, and Bk = 0 if k > R. We will show that each Dk has the 
form (73), given that matrices Bk and Ak do. Clearly, Do = Bo does. Suppose 
that Do, .. . , D k - ,  have the property (73). If (AjDk-j)q.' is the q,  r-th entry of 
the matrix AjDkWj, then 
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Hence, for every j = 1, . . . , k, Aj  D,- has the property (73), and so does 
Dk = Bk+A1Dk-l+AZDk-2+ ... + A k D O .  H 

A moving average representation (72) does not have to be optimal. It will 
be if Mx(m) = Mc(m), that is, if [Xk(n)]  is invertible. By  changing the roles of 
[Xk(n)] and [c!] in the previous lemmas it is clear that [Xk(n)]  is invertible if 
det B (2) has no zeros in the unit disk. Therefore, if det A (z) and det B (2) have 
no zeros in the closed unit disc {lrl < I), then D ( t)  = ( l / & ) ~ k m = o ~ k  e-" is 
an outer square root of the density of [Xq(n)]. 

The following theorem is the main result in this section. 

THZORE~ 7.4. Suppose that $k (n), Bk (n)  and I<,) satisfy (A-1) and (A-21, A (2) 
and B (2) are defined by (66), (67) and (68), and that det A (2) and det B (z) have no 
zeros in the closed unit disc (lzl 6 I). Let Dk, k 2 0, be defined by the equation 
A- ' (z )B(z)  = ( l / f i ) ~ k m = o D k i ,  lrl < 1 +E. Then: 

(i) the system (65) has a unique PC solution (x (n) )  in M,; 
(ii) the solution is giuen by 

m T- 1 

x ( n )  = j3i tnPk, n E 3, where f i  = e2"'jnlT D ~ V O .  k y 

k =  0 j= 0 

(iii) the moving average representation above is optimal, that is 

(iv) the spectral measures ( y j )  of (x(n))  are absoiutely continuous with 
respect to the Lebesgue measure and their densities are given by 

where D ( t )  = A (e-7;' B(e-jt) = (I/&) x'=, 4 e-itk. 

Proof.  Consider an associated system (69), where [ :EM[ is defined 
by (64). From Lemmas 7.2 and 7.3 it follows that the system (69) has a unique 
solution [Xq (n)], which is in M g  = MT and is given by (72). Since det B (z) # 0 
in the unit disc, 

00 

(78) [ (X4(n)IMx(m))]= z DkCG-kl, n , m ~ z ,  m < n .  
k=n-nt 

Define r (n) = zrit e2"ip1T X q  (n), n c X Then (x (n)) is a PC sequence with 
period T and from the proof of Lemma 7.1 it follows that ( ~ ( n ) )  satisfies (65) 
with 
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We will show that x ( n ) ~  Mc @ {O) 8..  . @ (0). From (72) and (73) we obtain 

where-vh ( g )  are as- in (73). Therefore 
m T - 1  

x (n) = fi: (gn-k, Oy . . . , O) ,  where f i  = s2"ijn/T qk Cj), 
k = O  j = O  

and hence x  ( n ) ~  Me = MC@{O) @ .  . . @ {O) .  Note that we have also proved 
part (ii), because by definition qk lj) = D:', j~ ST, k 3 0. TO see uniqueness, 
assume that (z(n)) is a PC solution to (65) in Mc different than (x(n) ) .  The 
sequences induced by (x(n) )  and (z(n)) are then two digerent stationary solu- 
tions to (69), but by Lemma 7.2 this is impossible. 

To prove part (iii) note that from the uniqueness of a stationary solution 
to (69) and from the proof of Lemma 7.1 it follows that [Xq (n)] is the sequence 
induced by (x (n)). Therefore from Proposition 4.1, 0-4), we obtain 

T - 1  

( ( x  (n) I M~ (m)), 0, . . . , 0) = $"'qnIT Xq n 
q=o 

( OlMx(m)) 

T-1 m T- I  

The same computation as in the proof of part (ii) gives (76). 
Since [Xq (n)] is induced by a PC sequence ( x  (n)), from (28) we infer that 

(dyJds)(s) = TGo3-k(s), ds-a.e., k€3YTy where G(s) is the spectral density of 
[Xq(n)]. Since D (t) = A (e-")- ' B (e-") is a square root of G (t), we have 

The matrices Dk can be obtained recursively from (754, and hence the 
theorem produces an algorithm for computing an optimal moving average 
representation and the spectrum of a PARMA sequence ( ~ ( n ) ) .  

Lemmas 7.1 and 7.2 also produce a certain condition for existence of a PC 
solution to (65) in terms of the discrete Fourier transforms of the coefficients of 
the system. For example, if T =  2 and ( x  (n)) is a PAR(1) sequence that satisfies 
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then 

where P = $(o)~-c$(~)~. Hence det A(z )  has no zeros in the unit disc iff 
lPl < 1. Since A (z)-l = (det A (z))-' (It A l  z), provided [PI i 1, D,, = Pk I and 
DZk+ = pk A, ,  k 3 0. Consequently, 

(80) /?", = pk and fl",,. = P~($(O)+(-~T&(~)) ,  ~ E Z ,  k 3 0. 

This is consistent with the solution obtained for example in [23] or [Ill. To 
see this. wiite B(0) = (112) (# (0) + #J (1)) and &(I) = (1/2j (6 (0) - 4 (1)). Then 
P = 4/01 4 (11, and 

(81) 
Pk#(0) if n is even, fik = P and 

Although in this example the condition IPI = I #  (0) # (111 < 1, that guaran- 
tees the existence of a unique causal PC solution to (79), can be easier obtained 
by Vecchia's block sequence approach or by direct solving the system, it seems 
likely that for some special PARMA systems (for example, if #,(n) and Bk(n) 
have only few nonzero harmonics) phrasing the solution in terms of Jk ",o and 
&(n) may be advantageous. 
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