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Abstract. In this paper, we shall be concerned with weak conver-
gence of the randomly indexed versions of the standard and “indepen-
dence” empirical processes, in the general framework of stochastic
processes indexed by classes of functions and without any distribu-
tional assumption. We obtain, in the limit, some generalizations of well-
-known Gaussian fields such that those arising with a deterministic
index are embedded as a special case.
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1. INTRODUCTION

The aim of this work is to study the limiting behaviour of some empirical
processes in the case where the sample size is itself a random variable. We shall
be concerned with the randomly indexed versions of the standard and “in-
dependence” empirical processes in the general framework of stochastic proces-
ses indexed by classes of functions and without any distributional assumption.

The statistical motivation for introducing random sample sizes is that, in
many applied circumstances (for example, when sampling from vegetable or
animal species), the number of elements in the sample is not fixed a priori
because of constraints in time, space or costs. Empirical processes with random
sample size were considered in a pioneering paper by Kac [10], for the par-
ticular case of a Poisson index, and later by Csérgo [6] and many other
authors. In particular, Nikitin [12] proved, in the one-dimensional context, the
weak convergence of the Kac process to a generalization of the Brownian
bridge, within a wider class of distributions of the random index, and he ap-
plied this result to the evaluation of the Bahadur efficiency for various good-
ness of fit statistics. Many other applications are treated in Gnedenko and
Korolev [8], where the asymptotic behaviour of sums of a random number of
variables is studied under wider circumstances.
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We now report some well-known results, and we introduce some defini-
tions and notation to be used throughout the paper. Let (', &) be a measura-
ble space and X, X,, ... a sequence of i.i.d. random elements with values in Z.
Let P be a common distribution of X;. The empirical measure P, of the sample
X4, ..., X, is defined by P, =n"1 ZL , 8x,» Where Jy, is the Dirac measure at
the observation X;. Given a class # of measurable functions f: & — R, the
empirical process indexed by % will be determined by

1) Gof = /AP f === 3 Gx—P)f =—= 3 (FX)—Pf), feF
NS ﬁ

Here we use the abbreviation Qf = [fdQ for fe # and a signed measure Q.

For this kind of processes the modern theory of weak convergence (which
generalizes the classic results presented in Billingsley [4]) was developed on the
notion of weak convergence for random elements that are not necessarily Borel
measurable (Hoffman-Jorgensen [9]): for a complete exposition, see van der
Vaart and Wellner [14] and Dudley [7]. This new approach yields the so-
called “Donsker theorems”, which provide general conditions on % under
which

(2) G,=+/n(P,—P)=G in I*(F),

where [° (%) denotes, as usual, the space of all bounded functions from a set
Z to R, equipped with the supremum norm |jzl|g = sups.s|z(f)|, and =
means the weak convergence (see e.g. van der Vaart and Wellner [14], p. 81).
If (2) holds, & is called a Donsker class. The limiting field {Gf: fe #} is the
so-called P-Brownian bridge: it is a tight Borel measurable element of [* (%)
and is defined as a Gaussian field with zero mean and covariance function

(3) EGfGg = P(f—Ff)(g—Pg) = Pfg—FfPg.
The P-Brownian bridge can also be expressed as
@ G(f) £8(/)-S()Ff,.

where S denotes the so-called P-Brownian sheet, which is a zero-mean Gaussian
field with covariance E (SfSg) = Pfg, and S (1) the P-Brownian sheet evaluated
at f=1.

Csorgo [5], van der Vaart and Wellner [14], §3.5, considered the direct
analogue of G, for a random sample size, ie.

©) Gun = /1 (P, = P) = \/lv— Y. Gx=P)

where {v,},> denotes a sequence of non-negative integer-valued random var-
iables (independent of X;’s). Those authors showed that G,, weakly converges




Weak convergence of empirical processes 335

to the P-Brownian bridge G, in [* (%), under the assumption that & is
P-Donsker and that there exists a deterministic sequence ¢, » oo such that
v,,/c,.£>v for some non-negative random variable (r.v.) v. Note that the nor-
malizing sequence in (5) is itself random. In the present paper we are interested,
instead, in the asymptotic behaviour of processes normalized by the deterministic
sequence {,},>; to be defined as the expected value of the random index
{Vu}nz1. More precisely, let E (v,) = 4,, Var(v,) =y2, and introduce the following

ASSUMPTIONS. {v,},>; is a sequence of non-negative and integer-valued
r.v.’s such that -

(A) v, is independent of X;, i=1,2,..;

(B) for al n=1,2,...,0<4,, y2 < o, and

lim 4, = o, hmy—"—ﬁ 0;

R— 00 . n—aw A.
(C) either v, is a degenerate r.v. for all n or y2 > 0, v,/A, = 1 in probability
and (v,—A,)/ys = Z ~ N(0, 1) in distribution (%) as n— co.
First, we shall focus on the process

1 - :
> (Z Sx,~AnP) = \/I(IN‘,H—P) N,, = Y ox,
n j=1

n J=

©® G =

indexed by a collection & of measurable functions, for any probability measure
P defined on (%', &) and for v, satisfying (A}{C). Let us stress that, in particular,
(Z, &) may be a product space, which implies that X;’s may be random vectors
whose components need not to be independent. If we take & to be the class of
indicator functions, G} is hence the natural candidate for a general goodness of
fit test, in the presence of a random sample size. The statistical importance of the
empirical process, however, goes very much beyond that, as illustrated in part 3
of the book by van der Vaart and Wellner [14] or in van der Vaart [13]; their
applications include, for instance, the asymptotic theory for M- and Z-estima-
tors, the two-samples problem, testing for independence, and many other issues
in parametric and non-parametric inference in the presence of iid. observations.

A special case of (6) for v, ~ Poisson (n) is the functionally indexed version
of the so-called Kac empirical process, ie.

(7) K,, = ﬁ(}é dx,—nP)=\/n (% N, —P).

Klaassen and Wellner [11] show that if the class & is P-Donsker with finite
envelope function and such that ||P||z = sup {|Pf|: feF} < 0, then

(8) K, =8 in I[*(¥#) as n-— oo.

In this case & is called a P-Kac class. Our first result can also be viewed as an
extension of (8) to more general sequences {v,},>;. For any distribution of v,,




336 L. Beghin

we define N, /A, to be a modified Kac empirical distribution function and we
denote it by P* (in the sequel we use the asterisk to stress the non-random
nature of the normahzmg factor).

The second and third empirical fields considered here arise more directly
when testing for independence (see Section 3 for details). They involve the case
of a product space & = & X X, & = & x A, and corresponding i.id. ran-
dom elements X; = (Xy;, X5,), i =1, 2, ..., having distribution P and mar-
ginals P, and P,. We define

9) Z (fi, ) = S n(PE—PE, X P) (f1 % f2) -
= \/_( Z O(X 11, %20 _il Ox, ¥ Pz) (f1 % f2)-

- The field Z}, is indexed by & = (%, x %), by which we denote the class of all
measurable functions f; xf;: & x ¥, —R such that

(f1 % f2) (x4, X3) = f1(x1) f2(%2),

where f; and f, belong to #; and #,, respectively. Such a field arises, for
instance, when testing for independence under the assumption that the first
marginal is assumed to be unknown, and hence estimated from the data, and
the second is known.

Finally, we introduce the empirical field Ty, which generalizes the so-cal-
led independence empirical process to the case of a random index. We define -

(10)  T%(fy Xf2) = /A [(PE— fvn m) (P—Py x P)1(fy xf2)
- \/—|:< Zl 6(X11X21) }_2 Z 5X11 Z 5qu> (P—Pl XPZ)]Ul xfz),

nJ—

where P is any measure on (%; X &), and P; and P, are its marginals on
%, and &,, respectively. The indexing class of functions is again F = (%1 x % )
and the second terms in (10) obviously vanish under the null hypothesis of in-
dependence. Again, this field is interesting for statistical applications, when testing
for independence under the assumption that both marginals are unknown.

2. CONVERGENCE RESULTS

Our first result in this section is the following

THEOREM 2.1. Under the assumptions (A){C) and for any P-Donsker class
F such that ||Pllg < 00, as n— oo,

(11) Gy =Gy in I®(F).
The limiting field Gﬂ' is Gaussian, centered and with covariance
(12) . EGy fGgg = Pfg—(1—-P)PfPg.
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Proof. From (6) and (5) we have

v, v,
(13) G;k" = ,{_ (Gvn G[)_"]) + (\/; > G[A"] + G[l"] + \/_ (_ ) P

([x] is the integer part of x).

The first summand converges to zero in probability by Theorem 3.5.3 of
van der Vaart and Wellner [14], by assumption (C) and by the extended
Slutsky’s lemma (see van der Vaart and Wellner [14], p. 32).

Likewise, the second summand is negligible by assumptions (Byand (C), by
(2) and again the extended Slutsky’s lemma.

Finally, the third and fourth summands are independent; the former con-
verges weakly to G in view of (B) and (2). For the latter we have

—

where Z ~ N(0, 1), so that we get
(15) G%=G+./BZP £ G,.

Since Gy is a tight element of [* (%), to check that the last equality holds,
it is enough to look at the finite-dimensional distributions. As both fields
are centered Gaussian, we just need to note that, for any f, g € %, the covariance
function E[G(f )+\/B ZPf1[G (g)+\/ﬁ ZPg] coincides with (12), since Z is
independent of G. =

From the previous result, we can obtain the, following interesting par-
ticular cases:

@) v, ~ Poisson(4,): p=1, Gf¥ =8§;

@) v,=n: =0, G} =G;

(iii) v, ~ Bin(n, p): p=1—p, G¥ =G, _,.

Case (i) corresponds to a generalization of (8), while (ii) is the standard result
for the deterministic case (see (2)). Case (iii) is of particular interest for the wide

applicability of the binomial distribution. Finally, we remark that Gy is a gene-
ralization of the P-Brownian bridge, to which it reduces for f=0 in (12).

We now study the weak convergence of Z¥, defined in (9) on the space
= (4, X &,) of the two-dimensional random element (X, X,), whose com-
ponents are assumed to be independent (under the null hypothesis).

'THEOREM 2.2. Let & = (%, x %,) be P-Donsker with P =P, xP, and
IIPll# < co. Then, for any distribution of v, satisfying (A)HC),

Ztn:Zp in lm(fl sz),
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where Zp is the P-Kiefer—Miiller process on (%, x %,). This field is defined to be
centered Gaussian, and with covariance

(16) EZp(fixf2)Zp(g1Xg2) = P1f191 (P2 f292— P31 f2 P2 93).
Proof. By adding and subtracting \/_ (P4 X Py)(f1 xf3), we rewrite (9) as
1) PPy x Py %f)~/Tn(PEo,~P1) i P2 .

Since, by assumption, & = (¥ X & ,) is P-Donsker, we can apply Theorem 2.1,
which, together with Lemma 1.4.4 of van der Vaart and Wellner [14], entails
that Z¥ is asymptotically tight.

Then we can establish the weak convergence of (17) by analyzing the
convergence of the finite-dimensional distributions of Z;_as follows. We con-
sider the k-dimensional vector (Z¥ (fi xf3), ..., Z¥ (f{¥ x fz("))) whose j-th ele-
ment is defined as

Zt,.(fl(j) fo(j)) = Z (6()(11 X2i) 5X1. X PZ)(f(DXfZU))

ﬁ.
f >, FOK LA (X2)—Pa S =

By assumption, &,, &,, ... are iid. random vectors and E&P =0
EXP P = Py fPfP (P, [P —Pof? P f9) = 6.

Therefore by the multivariate Central Limit Theorem and by (AHC), we get
1/22 e 4 Y~ N,(0, ®), where © has O, as a generic element. =

We stress that the limiting field Zp is independent of f: this implies that
the empirical process Z; behaves in the same way, as n — oo, whatever the
distribution of v,, and therefore it is asymptotically equivalent to the process
arising in the presence of a deterministic sample size.

Finally, we consider the third empirical field T}, defined in (10) and in-
dexed by (#; x #,). Recall that now, contrary to the previous theorems, P is an
arbitrary measure on & = %'y x &, with marginals P,, P,.

THEOREM 2.3. Let v, satisfy (A){C) and let %, x %, be P-Donsker; if,
moreover, ||Py||z, < co and ||P;]|#, < 00, we get

(18) Th =T inI®(F xF).
The limiting field Tp; is defined on (%, x #,) by

(19) Tpy = To+~/BZ[P—2P, x P,],
where Z ~ N (0, 1) is independent of Tp,

(20) I (/i xfz)éGP((f1—P1f1)x(fz—sz2)),
and Gp is the P-Brownian bridge on F = (F | X F ).
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Proof By adding and subtracting \/A_,,(Pl x P%, )(fi1 xf,), we obtain
for (10)
21) T3, (fixf)
= /(P = P)(fy X f) =/ 4Pt .~ P1) 1 Py, o= P1 fi /70 (P30, = P2 5
= /2P, —P){(i—P1 f) X (f,— P2 f)—[P1 fi x P2 f31}
~ /7Pt 4, —P) [y (P%,,—P2) f>.
The second step can be verified by considering that the following equalities hold:
Py (fix Py f3) =P}, fiP,f» and Py (Pyfixfo)=Pifi P, [
On the other hand, we note that
P} (Py fix Py f3) # P(Py fy x P3 f2),

since P¥ is not a probability measure (as P, would be in the deterministic case).

The second term of (21) is asymptotically negligible. Indeed, from the
assumption that &, x &, is P-Donsker it follows that #; and &, are Donsker
with respect to the corresponding marginal measure (see van der Vaart and
Wellner [14], Theorem 2.10.1). We can hence apply Theorem 2.1 to prove that

\/}._,,(P‘{‘,v"—Pl) = Gy in [* (F;). On the other hand, the uniform version of the
law of large numbers also holds (see van der Vaart and Wellner [14], p. 82), so
that ||P%,, f—P, f|l#, converges to zero in outer probability.

For the first term in (21) we get

\/;'::I:ﬁjgl 5(X11’X21)_\/v—"P:| (i—P1 fi))x(f2— P2 f2)

+\/)~—n<%ﬁ—1>[P(fl—P1f1)x(fz—szz)—(P1f1 X P, f5)]
= Gp[(fi—P1fi) X (f,— P2 f:)1+~/BZ[P—2P; x P,1(f1 x£2),

in view-of the assumption that (#; x #,) is P-Donsker and by applying a simi-
lar argument to that in Theorem 2.1, ie. by adding and subtracting,

1 [An]
<\/%_ 1> (\/ [11"] J';;[ 5(X11-ij)_ ['1"] P> (fl —P, fl) X (fZ_P2 f2) B

The covariance of the limiting field is readily obtained as
(22)  ETpp(f1 xf3) Ip,5(91 X 92)
= E{Gp[(fi—P; f) x(f2— P2 2)1 Gp [(g1—P191) x (92— P> g)1}
+B[P—2P; x P (f1 xfo)[P—2P; x P,1(g1 % g2)
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= P{[U1—P1f1)x(fz—P2f2)] [(g.—P, 91)X(92—P292)]}
—P[(fi—P, fi)x(f2—P, 5)1 P[(g1—P191) X (92— P, g,)]
+B[P—2P x P](f1 xf2) [P—2P x P,](g1 X g).

Under the assumption that X, and X, are independent, the last line on the
right-hand side of (22) is equal to P, f; P, f> Py g, P, g,, whereas the previous
one vanishes, so that (22) reduces to

(23) (P1f191—P1f1P1g)(P1 29:—P; f2 P2 95)+ PPy fi P> f2 P1g1 P2 gs.

Again the result for the deterministic case can be obtained anew by putting
simply B = 0 in the previous theorem. Indeed, under these circumstances, (18)
and (19) give the convergence of the independence empirical process to the field
T (see van der Vaart and Wellner [14], §3.8).

3. STATISTICAL APPLICATIONS

The limiting fields obtained from G}, and T, are generalizations of well-
-known Gaussian fields, depending upon the value of the parameter f. The
intermediate case Z¥, is, to some extent, different in that the limiting field
does not depend on f, whatever the distribution of v,. A thorough analysis of
these and related fields can be found in Beghin [1], where various inequalities
for their maximal distributions are obtained.

We now present some statistical applications to independence testing pro-
cedures in the case of a random sample size. The statistical problem can be
defined as follows. Let (X;, X3,), i=1,...,v,, be a sample from the two-
dimensional r.v. (X, X,) with distribution function F (t,, t,). We are interested
in testing the null hypothesis

Hy: F(ty, t2) = F(t1) F,(¢2) for any 1y, t,€[0, 1].

In the case where both marginals are known, we will use the two-dimensional
version of GY,, which can be obtained by choosing # = {1, 4: te[0, 1]*}. By
the inverse transform argument, we can assume, without any loss of generality,
that P is uniform on [0, 1]?; the sample space is ([0, 11%, B0,1)2), so that (6)
reduces to

1 -
(24 Gy (1, t2) = \/)Tn(/l— Lixy <t Xzt — b1 tz)-
ni=1

As well known, the class of indicator functions on [0, 1]? is P-Donsker with
P = Unif[0, 1]? so that we can apply Theorem 2.1. Therefore, for v, satisfying
the assumptions (A)}{C), (24) weakly converges, in I* (), to the two-dimen-
sional Gaussian field G,, which, in this case, can be viewed as a generalization
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of the pinned Brownian sheet. From (12) its covariance function is readily ob-
tained as

(25) EGp(ty, t2)Gg(s1, S3) = (t1 A 81)(t2 A S2)—(1— Pty 51 L5 5;.

Moreover, for the common case where f < 1 (see examples (ii) and (iii) in
Section 2), G, is equal in distribution to the restriction on [0, 1]* of the field

) Gults, 1) = S (1, )= S 0),  0<t, 13 <,

for u = 1/./1—p. The field (26) is the two-dimensional analogue of the so-
-called Brownian bridge of length u (see Nikitin [12], Beghin and Orsingher [3]):
indeed, G, is a.s. equal to zero at the point (u, ) which is outside of the unit
square. It can hence be viewed as a Brownian sheet S(¢;, z,) conditioned upon
{S (u, u) = 0}; the classical Brownian sheet is obtained as a special case for
u— + o0 (or equivalently f — 1~ for Gp) (example (i) of Section 2). On the
other hand, for u = 1* (or § = 0%) we obtain again the pinned Brownian sheet
which vanishes at (1, 1) (example (ii) in Section 2). Many other circumstances
are intermediate, for instance the binomial case (example (iii)). For f > 1, G, is
however well defined, but the representation (26) is no more valid.

The two-dimensional version of the second empirical process Z? is obtained
by choosing, for (9), (%, ;) = ([0, 1], Bjo,1) and F; = {1 4: te[0, 1]}, i=1, 2.
Again we assume, without any loss of generality, that P, = Unif[0, 1]; from
Theorem 2.2 we hence obtain the weak convergence of

L 1
(27) Z;k,.(tl’ tZ) = \/IT"(/I— Z 1{X1i$t1yxzi<t2)_rz 1(X11$t1} tZ)
=1 ni=1

n i

to the two-dimensional Kiefer—Miiller process, i.e. the zero-mean Gaussian
process with covariance

(28) EZ (ty, t;) Z (1, 53) = (ty A 51) [(E2 A 52)— 2 52].

As well known, Z vanishes a.s. along the line ¢, = 1. We stress again that this
limiting field does not depend on B, and hence on the distribution of v,.

The last empirical field we have analyzed arises when both marginals are
unknown: we specify (%, &) = ([0, 11, 0,19, Fi= {loa: t€[0, 1]} and
P, =Unif[0, 1], i=1, 2. Then (10) becomes

1 Vn 1 Vn Vn
(29) T:'kn (tla tl) - ‘\/Z(A_ ‘Zl 1(X1i$t1,X2i=<.tz)—F._le(xlistl} l_zl 1(X21<t2}>'

From Theorem 2.3 we infer that (30) converges weakly, in [ (% x £,), to the
zero-mean Gaussian field Ty with covariance

(30) ETy(ty, t) Ty(s1, S3) = [(t1 As1)—t1 511 [(E2 A s2)—t252]+ Bty 5115 5,.
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We have
T(ts, t2) = T(ts, t2)—/Bt::8(1, 1)
= S(t1, t;)—115(1, t)—t,8(ts, D+ (1 — /B 11 1,5(1, 1),

so that T; can be viewed as a straightforward generalization of the well-known
tucked Brownian sheet T, which corresponds to the special case for § =0.
T vanishes a.s. on the lines ¢; = 1, i = 1, 2, while T; does not share this property.

The distributions of some functionals of the previous fields are exploited in
Beghin and Nikitin [2], when evaluating the asymptotic Bahadur efficiency of
some independence test statistics.
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