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Abstract. In this paper, we shall be concerned with weak conver- 
gence of the randomly indexed versions of the standard and 'Fndepen- 
dence" empirical processes, in the general framework of stochastic 
processes indexed by classes of functions and without any distribu- 
tional assumption. We obtain, in the limit, some generalizations of well- 
-known Gaussian fields such that those arising with a deterministic 
index are embedded as a special case. 
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1. INTRODUCTION 

The aim of this work is to study the limiting behaviour of some empirical 
processes in the case where the sample size is itself a random variable. We shall 
be concerned with the randomly indexed versions of the standard and "in- 
dependence" empirical processes in the general framework of stochastic proces- 
ses indexed by classes of functions and without any distributiona1 assumption. 

The statistical motivation for introducing random sample sizes is that, in 
many applied circumstances (for example, when sampling from vegetable or 
animal species), the number of elements in the sample is not fixed a priori 
because of constraints in time, space or costs. Empirical processes with random 
sample size were considered in a pioneering paper by Kac [ lo] ,  for the par- 
ticular case of a Poisson index, and later by Csorgo [6] and many other 
authors. In particular, Nikitin [I21 proved, in the one-dimensional context, the 
weak convergence of the Kac process to a generalization of the Brownian 
bridge, within a wider class of distributions of the random index, and he ap- 
plied this result to the evaluation of the Bahadur efficiency for various good- 
ness of fit statistics. Many other applications are treated in Gnedenko and 
Korolev 181, where the asymptotic behaviour of sums of a random number of 
variables is studied under wider circumstances. 
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We now report some well-known results, and we introduce some defini- 
tions and notation to be used throughout the paper. Let (I, d) be a measura- 
ble space and XI, XZ, , . . a sequence of i.i.d. random elements with values in %. 
Let P be a common distribution of Xi. The empirical measure Pn of the sample 
XI, . . ., X, is defined by P,  = n-' z:=, dx,, where Sx, is the Dirac measure at 
the observation Xi. Given a class 9 of measurable functions f: 3" 4 R, the 
empirical process indexed by $ will be determined by 

Here we use the abbreviation Qf r JfdQ for ~ E F  and a -signed measure Q. 
For this kind of processes the modern theory of weak convergence (which 

generalizes the classic results presented in Billingsley [4]) was developed on the 
notion of weak convergence for random elements that are not necessarily Borel 
measurable (Hoffman-Jerrgensen [9]): for a complete exposition, see van der 
Vaart and Wellner [14] and Dudley [7]. This new approach yields the so- 
called "Donsker theorems", which provide general conditions on 9 under 
which 

where I" (9) denotes, as usual, the space of all bounded functions from a set 
9 to R, equipped with the supremum norm 1 1 ~ 1 1 ~  = supfelzCf)l, and =S 

means the weak convergence (see e.g. van der Vaart and Wellner 1141, p. 81). 
If (2) holds, 9 is called a Donsker class. The limiting field (Gf: f ~ 9 )  is the 
so-called P-Brownian bridge: it is a tight Borel measurable element of I" (9) 
and is defined as a Gaussian field with zero mean and covariance function 

(3) EG f Gg = P Cf- Pf) (g - Pg) = Pfg - PfPg . 
The P-Brownian bridge can also be expressed as 

where S denotes the so-called P-Brownian sheet, which is a zero-mean Gaussian 
field with covariance E(Sf5'g) = Pfg, and S (1) the P-Brownian sheet evaluated 
at f = I .  

Csorgo [5 ] ,  van der Vaart and Wellner 1141, 43.5, considered the direct 
analogue of G,, for a random sample size, i.e. 

1 
G, J;;(P,-P) = - C (8,- P ) ,  .& i = i  

where ( v , } , ~  denotes a sequence of non-negative integer-valued random var- 
iables (independent of Xis). Those authors showed that GVn weakly converges 
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to the P-Brownian bridge G, in i m ( 9 ) ,  under the assumption that 9 is 
P-Donsker and that there exists a deterministic sequence c, 4 oo such that 
v,/c, 5 v for some non-negative random variable (r.v.) v. Note that the nor- 
malizing sequence in (5) is itself random. In the present paper we are interested, 
instead, in the asymptotic behaviour of processes normalized by the deterministic 
sequence (A,),,, to be defined as the expected value of the random index 
{ v , ) , ~  More precisely, let E (v,) A A,,, Var (v,) G y,2, and introduce the following 

A s s u ~ m o ~ s .  {v,), , , is a sequence of non-negative and integer-valued 
r.v.'s such that - 

(A) v, is independent of Xi, i = 1,2,  . . .; 
(B) for all n = 1, 2, . . ., 0 < A,, y: < a ,  and 

2 
Y n lim& = my lim - = 3 0; 

n+co n+m A, 
(C) either v, is a degenerate r.v. for all n or y,2 > 0, v,,/A, + 1 in probability 

and (v,-A,),$, 4 Z -- N(0, 1) in distribution (5) as n + m. 

First, we shall focus on the process 

indexed by a collection 9 of measurable functions, for any probability measure 
P defined on (X, d)  and for v, satisfying (AHC). Let us stress that, in particular, 
($, d)  may be a product space, which implies that Xis may be random vectors 
whose components need not to be independent. If we take 9 to be the class of 
indicator functions, G,*, is hence the natural candidate for a general goodness of 
fit test, in the presence of a random sample size. The statistical importance of the 
empirical process, however, goes very much beyond that, as illustrated in part 3 
of the book by van der Vaart and Wellner [14] or in van der Vaart [13]; their 
applications include, for instance, the asymptotic theory for M- and Zestima- 
tors, the two-samples problem, testing for independence, and many other issues 
in parametric and non-parametric inference in the presence of i.i.d observations. 

A special case of (6) for v, - Poisson (n) is the functionally indexed version 
of the so-called Kac empirical process, i.e. 

Klaassen and Wellner [ll] show that if the class 9 is P-Donsker with finite 
envelope function and such that IIPIIs = sup {[Pf 1: f €9) < a ,  then 

(8) K y n - S i n l m ( F )  a s n j c o .  

In this case 9 is called a P-Kac class. Our first result can also be viewed as an 
extension of (8) to more general sequences (v,),,,. For any distribution of v,, 



we define MVJ& to be a rnod$ed Kac empirical distribution function and we 
denote it by P,*, (in the sequel we use the asterisk to stress the non-random 
nature of the normalizing factor). 

The second and third empirical fields considered here arise more directly 
when testing for independence (see Section 3 for details). They involve the case 
of a product space X = TI x x2, d = d, x d2 and corresponding i.i.d. ran- 
dom elements Xi = (Xliy X,,), i = 1, 2 ,  . . ., having distribution P and rnar- 
ginals Pi and P,.  We define 

The field Z:" is indexed by 9 = (Fl x F-2)y by which we denote the class of all 
measurable functions f, x f,: Xl x X2 NR such that 

where f, and f ,  belong to Fl and P2, respectively. Such a field arises, for 
instance, when testing for independence under the assumption that the first 
marginal is assumed to be unknown, and hence estimated from the data, and 
the second is known. 

Finally, we introduce the empirical field Tf,, which generalizes the so-cal- 
led independence empirical process to the case of a random index. We define 

where P is any measure on (El x x,), and PI and P ,  are its marginals on 
El and %,, respectively. The indexing class of functions is again 9 = (Fi x 9,) 
and the second terms in (10) obviously vanish under the null hypothesis of in- 
dependence. Again, this field is interesting for statistical applications, when testing 
for independence under the assumption that both marginals are unknown. 

2. CONVERGENCE RESULTS 

Our first result in this section is the following 

THEOREM 2.1. Under the assumptions (AHC) and for any P-Donsker class 
9 such that llPllc < coy as n + m, 

(11) GZ,,*G, in Zm(P). 

The limiting field Gg  is Gaussian, centered and with covariance 

(12) EGpfGpg = P f g - ( l - P ) P f P g .  
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P r o  of. From (6) and (5) we have 

([x] is the integer part of x). 
The first summand converges to zero in probability by Theorem 3.5.3 of 

van der Vaart and Wellner [14], by assumption (C) and by the extended 
Slutsky's lemma (see van der Vaart and Wellner [14], p. 32). 

Likewise, the second summand is negligible by assumptions (Bfand (C), by 
(2) and again the extended Slutsky's lemma. 

Finally, the third and fourth summands are independent; a e  former con- 
verges weakly to G in view of (B) and (2). For the latter we have 

where Z - N ( 0 ,  I), so that we get 

Since Gp is a tight element of Em(P), to check that the last equality holds, 
it is enough to look at the finite-dimensional distributions. As both fields 
are centered Gaussian, we just need to note that, for any f, g E 9, the covariance 
function E [G Cf)+ f i z ~ f ]  [C (g) C ~ ~ Z P ~ ]  coincides with (12), since Z is 
independent of 6. EA 

From the previous result, we can obtain the, following interesting par- 
ticular cases : 

(i) v, - Poisson (A,): P = 1, G:" =s- S; 
(ii) v, = n: f l =  0, G,*,-G; 
(iii) v, - Bin(n, p): fl  = 1 -p, 6:- 
Case (i) corresponds to a generalization of (8), while (ii) is the standard result 

for the deterministic case (see (2)). Case (iii) is of particular interest for the wide 
applicability of the binomial distribution. Finally, we remark that Gg is a gene- 
ralization of the P-Brownian bridge, to which it reduces for /? = 0 in (12). 

We now study the weak convergence of Z:-, defined in (9) on the space 
% = (XI x X,) of the two-dimensional random element (XI, X,), whose com- 
ponents are assumed to be independent (under the null hypothesis). 

THEOREM 2.2. Let 9 = (9, x 95) be P-Donsker with P = P1 x P, and 
llPlls < m. Then, for any distribution of v, satisfying (AHC), 



where Zp is the P-Kiefel-Miiller process-on (=PI x F2). Thisfield is defined to be 
centered Gaussian, and with covariance 

P r o  of. By adding and subtracting fi (PI x P2) lf, x f-), we rewrite (9) as 

07)  J;i;(p:n-p, x P 3 K  x f 2 ~ - f i ( ~ t v ~ - ~ l ) f l ~ 2 f Z .  
Since, by assumption, 9 = (F1 x 9,) is P-Donsker, we can appIy Theorem 2.1, 
which, together with Lemma 1.4.4 of van der Vaart and Wellner - [14], entails 
that ZTn is asymptotically tight. 

Then we can establish the weak convergence of (17) by analyzing the 
convergence of the finite-dimensional distributions of Z*, as follows. We con- 
sider the k-dimensional vector (Z$n (f[ x fi), . . . , Z,*n Cfik) xfik))) whose j-th ele- 
ment is defined as 

By assumption, t l ,  t2, . .. are i.i.d. random vectors and E<ji) = 0, 

E ~ Y  5:') = PI f ~ ~ ~ f ~ ' ) ( P ~  fili) fi(')- P2 fP9 P, fjl)) A Ojl .  

Therefore, by the multivariate Central Limit Theorem and by (AHC), we get 
A;112 x:, ti 5 Y- Nk(O, B), where B has 8,1 as a generic element. 

We stress that the limiting field Zp is independent of ,6: this implies that 
the empirical process Z:,, behaves in the same way, as n 4 a, whatever the 
distribution of v,, and therefore it is asymptotically equivalent to the process 
arising in the presence of a deterministic sample size. 

Finally, we consider the third empirical field T,*,, defined in (10) and in- 
dexed by (g1 x g 2 ) .  Recall that now, contrary to the previous theorems, P is an 
arbitrary measure on X = X1 x .T2 with marginals Ply PZ. 

THBOREM 2.3. Let u,, satisfy (AHC) and let 4 x F 2  -be P-Donsker; $ 
moreover, lIP1]lpl < a~ and I/Palls2 < m, we get 

The limiting field Tp,p is defied on (Fl  x P2) by 

where Z - N(0, 1) is independent of Tp, 

(20) T~ Cfi XJZ) GP(dfi - '1 fl)  Cfi f 2 ) ) 7  

and Gp is the P-Brownian bridge on 9 = (9, x 9,) .  
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Proof. By adding and subtracting &(PI x P ~ , J ( f l  x f2 ) ,  we obtain 
for (10) 

The second step can be versed by considering that the following equalities hold: 

KCfi x P 2 f 2 )  = P?,v,fi Pa f z  and P,*,(f'i fi xf2)  = PI fl P;,vnf2. 

On the other hand, we note that 

E" (P l f i  x P 2 f 2 )  f P(f'1fl  xP2f2)r  

since P:,, is not a probability measure (as P, would be in the deterministic case). 
The second term of (21) is asymptotically negligible. Indeed, from the 

assumption that F1 x F2 is P-Donsker it follows that S1 and 95 are Donsker 
with respect to the corresponding marginal measure (see van der Vaart and 
Wellner [14], Theorem 2.10.1). We can hence apply Theorem 2.1 to prove that 
&(P~,-P,) -OD in I" (PI). On the other hand, the uniform version of the 
law of large numbers also holds (see van der Vaart and Wellner [14], p. 82), so 
that IIP;,,,, f- P ,  f  l l S ,  converges to zero in outer probability. 

For the first term in (21) we get 

in view of the assumption that (PI x P2) is P-Donsker and by applying a simi- 
lar argument to that in Theorem 2.1, i.e. by adding and subtracting, 

The covariance of the limiting field is readily obtained as 
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Under the assumption that Xi and X, are independent, the last line on the 
right-hand side of (22) is equal to BPI f, P2 f2 PI g1 P2 g2, whereas the previous 
one vanishes, so that (22) reduces to 

Again the result for the deterministic case can be obtained anew by putting 
simply B = 0 in the previous theorem. Indeed, under these circumstances, (18) 
and (I 9) give the convergence of the independence empirical process to the field 
T (see van der Vaart and Wellner [14], 53.8). 

3. STATETICAL APPLICATIONS 

The limiting fields obtained from G:" and T:n are generalizations of well- 
-known Gaussian fields, depending upon the value of the parameter 8. The 
intermediate case Z:n is, to some extent, different in that the limiting field 
does not depend on p, whatever the distribution of v,. A thorough analysis of 
these and related fields can be found in Beghin [I], where various inequalities 
for their maximal distributions are obtained. 

We now present some statistical applications to independence testing pro- 
cedures in the case of a random sample size. The statistical problem can be 
defined as follows. Let (Xli, X,,), i = 1, . . ., v,, be a sample from the two- 
dimensional r.v. (XI, X,) with distribution function F (ti, t2), We are interested 
in testing the null hypothesis 

H o :  F(tl, t2) = F(tl)F2(t2) for any ti, t,€[O, 11. 

In the case where both marginah are known, we will use the two-dimensional 
version of G,*,, which can be obtained by choosing 9 = (1 (O,tl: t E [0, 112). By 
the inverse transform argument, we can assume, without any loss of generality, 
that P is uniform on [0, 1 J2; the sample space is ([0, I]', &9[0,112), SO that (6) 
reduces to 

As well known, the class of indicator functions on [O, 11' is P-Donsker with 
P = Unif [0, 112, SO that we can apply Theorem 2.1. Therefore, for v,, satisfwg 
the assumptions (AHC), (24) weakly converges, in I" (g), to the two-dimen- 
sional Gaussian field Gg, which, in this case, can be viewed as a generalization 
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of the pinned Brownian sheet. From (12) its covariance function is readily ob- 
tained as 

Moreover, for the common case where 8 < 1 (see examples (ii) and (iii) in 
Section 21, Gg is equal in distribution to the restriction on [0, 11' of the field 

- 

for u A I/-, The field (26) is the two-dimensional analogue of the so- 
-called Brownian bridge of length u (see Nikitin 1121, Beghin and Orsingher [3]): 
indeed, C: is a.s. equal to zero at the point (u, is) which is outside of the unit 
square. It can hence be viewed as a Brownian sheet S (tl, t2) conditioned upon 
(S(u, u) = 0); the classical Brownian sheet is obtained as a special case for 
u -+ + co (or equivalently fi + 1- for Gg) (example (i) of Section 2). On the 
other hand, for u 4 1 ' (or + 0') we obtain again the pinned Brownian sheet 
which vanishes at (1, 1) (example (ii) in Section 2). Many other circumstances 
are intermediate, for instance the binomial case (example (iii)). For > 1, Go is 
however well defined, but the representation (26) is no more valid. 

The two-dimemiond version of the second empirical process is obtained 
by choosing, for (9), (Xi, di) = (LO, 11, aro,l$ and @ = (l@,tl: t E [0, I]), i = 1,2. 
Again we assume, without any loss of generality, that P2 = Unif[O, 11; from 
Theorem 2.2 we hence obtain the weak convergence of 

to the two-dimensional Kiefer-Mti'ller process, i.e. the zero-mean Gaussian 
process with covariance 

(28) EZ (t1 , t21ZIs1, ~ 2 )  = @I A SI) C(t2 A ~2)-  t 2  ~21. 

As well known, Z vanishes a.s. along the line t2 = 1. We stress again that this 
limiting field does not depend on B, and hence on the distribution of v,. 

The last empirical field we have analyzed arises when both marginals are 
unknown: we specify (Xi, d i )  = ([O, 11, aro,ll), = (l(o,tl: t E [0, 11) and 
Pi = Unif [0, 11, i = 1,2. Then (10) becomes 

From Theorem 2.3 we infer that (30) converges weakly, in I" (PI  x P2), to the 
zero-mean Gaussian field Tg with covariance 
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We have 

so that Tg can be viewed as a straightforward generalization of the well-known 
tucked Brownian sheet T which corresponds to the special case for f i  = 0. 
T vanishes a.s. on the lines ti = 1, i = 1, 2, while does not share this property. 

The distributions of some functionals of the previous fields are exploited in 
Beghin and Nikitin [2], when evaluating the asymptotic Bahadw eficiency of 
some independence test statistics. 
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