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Abstract. The purpose of this paper is to study the asymptotic be-
haviour of linear combinations of order statistics (L-statistics)

Ln :=
kn∑
i=1

ci,nXi:kn

with real scores ci,n for variables with heavy tails. The order statisticsXi:kn

correspond to a non i.i.d. triangular array (Xi,n)16i6kn of infinitesimal
and rowwise independent random variables. We give sufficient conditions
for the convergence of L-statistics to non-normal limit laws and it is shown
that only the extremes contribute to the limit distribution, whereas the mid-
dle parts vanish. As an example we consider the case, where the extremal
partial sums belong to the domain of attraction of a stable law. We also study
L-statistics with scores defined by ci,n := J

(
i/(n+ 1)

)
with a regularly

varying function J , a case which has often been treated in the literature.
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1. INTRODUCTION

Let X1,n, . . . , Xkn,n denote an infinitesimal triangular array of rowwise inde-
pendent, possibly not i.i.d. real random variables (r.v.s). Denote by X1:kn 6 . . . 6
Xkn:kn the corresponding order statistics of the n-th row for positive integers kn
such that kn →∞ as n→∞. For real scores ci,n we will discuss the asymptotic
behaviour of L-statistics

Ln :=
kn∑
i=1

ci,nXi:kn .(1.1)

Important examples are, amongst others, empirical counterparts of general non-
parametric L-functionals; see Van der Vaart [25], sec. 22.1, as well as Witting and
Müller-Funk [29], ex. 7.145. Moreover, L-statistics are used for testing statistical
hypotheses, see e.g. Mitra and Anis [16] or Tchirina [24].
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For special situations, central limit theorems for L-statistics are well studied
in the literature. In particular, the case of i.i.d. r.v.s has been treated by Shorack
[20], Stigler [23], Helmers and Ruymgaart [7] and in the book of Shorack and
Wellner [22]. Their work was continued by Mason and Shorack [15], Viharos [26]–
[28] as well as Li et al. [12]. Under special assumptions Mason and Shorack [14]
and [15], sec. 2, already obtained non-normal limit laws for Ln in the i.i.d. case.
A key condition in most of these papers is the regular variation of a score function
J defining the scores ci,n = J

(
i/(n+ 1)

)
.

Central limit theorems forLn under independent but not identically distributed
random variables can be found in Shorack [21], Stigler [23] and Ruymgaart and
van Zuijlen [19]. Here Shorack [21] (see also Shorack and Wellner [22], p. 821 ff.)
used reduced empirical processes in order to handle non i.i.d. variables, whereas
Stigler [23], sec. 4, used Hájek’s projection lemma combined with variance and
covariance arguments. These papers studied r.v.s with light tails leading to normal
limit laws.

In the more general case of not necessarily identically distributed r.v.s, Janssen
[9] found sufficient conditions for convergence of extreme sums of triangular ar-
rays with distributional convergent partial sums to infinitely divisible laws. This
corresponds to the case where ci,n ∈ {0, 1} holds in various settings. He has shown
that the extreme order statistics have an important influence on the asymptotics of
partial sums, whenever non-normal limits occur. Functional limit laws of this kind
are published in [10].

In this paper we first prove tightness of well-centered L-statistics. We give a
complete overview of the spectrum of their weak accumulation points without nor-
mal parts. Moreover, we give sufficient conditions for the scores ci,n, so that only
the extreme parts of the L-statistics contribute to the limit law. Roughly speaking,
the upper and lower extremes substancially contribute to the limit law of Ln which
is represented by an infinite sum. This series representation is linked to the series
representation in an earlier work [9] for infinitely divisible laws without normal
components. As examples, we study extremal partial sums which belong to the do-
main of attraction of a stable law and exemplify the limit behaviour of L-statistics
with scores ci,n = J

(
i/(n+ 1)

)
given by a regularly varying function J . Sec-

tion 2 states the main results and all proofs are given in Section 3.

2. MAIN RESULTS

It will turn out that the concept of shift-compactness is substantial for this
paper; see, for instance, Le Cam [11]. Let us shortly recall its definition.

DEFINITION 2.1. (i) We call a sequence of real r.v.s (Yn)n∈N shift-compact
iff there exists a real sequence (an)n∈N ⊂ R such that (Yn − an)n∈N is tight, i.e.
their distributions are relatively compact with respect to the topology of weak con-
vergence.
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(ii) A triangular array (Xi,n)16i6kn of real r.v.s is called infinitesimal iff
max16i6kn P (|Xi,n| > ε)→ 0 holds for each ε > 0 as n→∞.

The following crucial lemma motivates further investigations of L-statistics.
Here we use the notation Y + := Y ∨ 0 := max(Y, 0) and Y − := −Y ∨ 0 to de-
note the positive and negative parts, respectively, of the real r.v. Y = Y + − Y −.
In addition, let X+

i:kn
:= (Xi:kn)

+ which is order preserving. Also define Y ∗− :=

min(Y, 0) = −(Y −) with Y = Y + + Y ∗−. This procedure is also order preserv-
ing with

X∗−i:kn := (Xi:kn)
∗− and Xi:kn = X+

i:kn
+X∗−i:kn .

Observe that also
|Xi:kn | = X+

i:kn
−X∗−i:kn .

LEMMA 2.1. Suppose that (Xi,n)16i6kn is an infinitesimal triangular array
with shift-compact partial sums

∑kn
i=1Xi,n.

(i) Let (ci,n)16i6kn be uniformly bounded coefficients with |ci,n| 6 k for all
i 6 kn and n ∈ N. Then the sequence of L-statistics Ln =

∑kn
i=1 ci,nXi:kn is shift-

compact. Moreover, the same result holds for
∑kn

i=1 ci,n |Xi:kn | ,
∑kn

i=1 ci,nX
+
i:kn

and
∑kn

i=1 ci,nX
∗−
i:kn

.
(ii) Suppose that each Xi,n has finite variance and that, in addition, ci,n >

δ > 0 holds for some δ and all i 6 kn and n ∈ N. If lim supn→∞Var(Ln) <∞
holds, then, conversely, the partial sums

∑kn
i=1Xi,n are shift-compact.

All proofs are presented in Section 3.
For a real r.v. Y and truncation points ±τ, τ > 0, we denote by

Eτ (Y ) := E
(
Y 1(−τ,τ)(Y )

)
the expectation of the truncated variable.

In view of Lemma 2.1 (i) it is interesting to know which type of limit laws of
L-statistics given by (1.1) may occur.

2.1. Cases without normal part. We will see that new classes of limit distri-
butions may occur if the limit distribution of the partial sums

∑kn
i=1Xi,n does not

have a normal part.
We first recall some well-known results about infinitesimal triangular arrays

(Xi,n)16i6n of rowwise independent, real-valued r.v.s; see Gnedenko and Kol-
mogorov [5] or Petrov [17]. Suppose that we have the convergence in distribution
of partial sums to some infinitely divisible r.v. Y :

n∑
i=1

Xi,n − an
D−→Y,(2.1)

where (and throughout the paper) D−→ means convergence in distribution. Here
the centering constants an can be substituted by truncated expectations in the limit.
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Then there exists a shift α such that the convergence
∑kn

i=1[Xi,n − Eτ (Xi,n)]
D−→

Y + α holds for all continuity points τ ̸= 0 of the Lévy measure η of Y . Now the
Lévy–Khinchin formula implies that the law µ := L(Y + α) has the characteristic
function

µ̂(t) := exp

(
− σ2t2

2
+

∫
R\0

[(
exp(iut)− 1− iut

)
1(−τ,τ)(u)

+
(
exp(iut)− 1

)
1(−τ,τ)c(u)

]
dη(u)

)
,

where η denotes a Lévy measure. It is also convenient to write
µ = µ1 ∗N(0, σ2) ∗ µ2(2.2)

with negative and positive Poisson parts µ1 and µ2, respectively; see Janssen [9],
p. 1767. Here ∗ indicates convolution of distributions. Defining η1 := η|(−∞,0), we
will analyse the quantile function ψ1 : (0,∞)→ (−∞, 0] of the Lévy measure η1
given by

ψ1(y) := inf{t : η1(−∞, t] > y} ∧ 0.(2.3)

In the same way, we will also study the right-continuous inverse function ψ2 :
(0,∞)→ [0,∞) of η2 := η|(0,∞), given by ψ2(y) := sup{t : η2[t,∞) > y} ∨ 0.

Assume that (Yn)n∈N and (Ỹn)n∈N are two mutually independent sequences of
i.i.d. standard exponentially distributed r.v.s with partial sums Sn :=

∑n
i=1 Yi and

S̃n :=
∑n

i=1 Ỹi, respectively. Under (2.1) we have the convergence in distribution
of the r lowest and upper extremes:

(2.4) (X1:kn , . . . , Xr:kn , Xkn:kn , . . . , Xkn+1−r:kn)

D−→
(
ψ1(S1), . . . , ψ1(Sr), ψ2(S̃1), . . . , ψ2(S̃r)

)
as n→∞. The proof follows from a Poisson limit law for multinomial distribu-
tions. An early proof for the convergence of the lower extremes is due to Loève
[13]; see also Janssen [9]. A modern approach establishes the proof via the con-
vergence of the point process of extremes

∑r
i=1 εXi:kn

+
∑r

i=1 εXkn+1−i:kn
to the

Poisson point process
∑r

i=1 εψ1(Si) +
∑r

i=1 εψ2(S̃i)
; see Resnick [18], p. 222 ff.

Now we introduce the infinite sums Γ1 and Γ2 given by |ci| 6 k, |dj | 6 k for
all i, j:
(2.5)

Γ1 :=
∞∑
i=1

ci
[
ψ1(Si)− Eτ

(
ψ1(Si)

)]
, Γ2 :=

∞∑
j=1

dj
[
ψ2(S̃j)− Eτ

(
ψ2(S̃j)

)]
,

where again Eτ (·) denotes truncated expectations. The existence of the indepen-
dent r.v.s Γ1 and Γ2 is shown in the following lemma.
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LEMMA 2.2. The infinite sums Γ1 and Γ2 converge almost surely (a.s.).

REMARK 2.1. Lemma 2.2 extends the known series representation for in-
finitely divisible laws without Gaussian components (see Janssen [9], sec. 4). Via
integration by parts it is related to an equivalent integral representation given by
Poisson processes (see [9], Remark 4.2). In a special case a related integral rep-
resentation of Γ1 and Γ2 as a limit of L-statistics is also known (cf. Mason and
Shorack [15], sec. 2). We will see that the extremes given in (2.4) contribute by a
one-to-one correspondence to the series (2.5), which is a nice interpretation of the
limit behaviour of L-statistics.

In contrast to earlier work we do not assume that the coefficients ci,n are gener-
ated by a score generating function J . Except for Example 2.2 assume throughout
that |ci,n| 6 k uniformly holds in i and n.

Motivated by Lemma 2.1 (i), our aim is to study accumulation points of our
L-statistics (1.1). By setting ci,n = 0 for i > kn and i < 0 we obtain two sequences
xn := (ci,n)i∈N and yn := (ckn−j+1,n)j∈N in the compact Polish space [−k, k]N.
Turning to subsequences we may assume without loss of generality the conver-
gence of ci,n → ci and cn−j+1,n → dj as n→∞ for all i, j ∈ N. In this subsec-
tion we will see that the well-centered L-statistics converge in distribution if the
limit distribution µ in (2.2) is not trivial and has no Gaussian part. This is made
precise in the following theorem.

THEOREM 2.1. Let (Xi,n)16i6kn be an infinitesimal array of rowwise inde-
pendent r.v.s satisfying (2.1) for a real sequence (an)n∈N and a non-trivial r.v. Y
without Gaussian part, i.e. σ2 = 0, η ̸= 0. Suppose that the upper and lower scores
converge to some limit scores, i.e. we have

(2.6) ci,n −→
n→∞

ci, cn+1−j −→
n→∞

dj for all i, j.

Then the corresponding L-statistics converge in distribution:

kn∑
i=1

ci,n[Xi:kn − Eτ (Xi:kn)]
D−→Γ1 + Γ2 as n→∞.(2.7)

We also obtain the following two corollaries.

COROLLARY 2.1. Under the assumptions of Theorem 2.1 we have the con-
vergence in distribution of the positive and negative parts:

L+
n :=

kn∑
j=1

ckn+1−j,n[X
+
kn+1−j:kn − Eτ (X+

j:kn
)]
D−→Γ2,

L−n := −
kn∑
i=1

ci,n[X
∗−
i:kn
− Eτ (X∗−i:kn)]

D−→Γ1

as n→∞. Moreover, L+
n and L−n are asymptotically independent.
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COROLLARY 2.2. Suppose that the assumptions of Theorem 2.1 are fulfiled
and define middle parts

Mn :=
kn−sn∑
i=rn

ci,n[Xi:kn − Eτ (Xi:kn)] for 1 6 rn 6 kn − sn.

If min(rn, sn)→∞, then Mn → 0 in probability as n→∞.

REMARK 2.2. Let Yi,n = |Xi,n|. Then the shift-compactness of
∑kn

i=1Xi,n

also implies the shift-compactness of
∑kn

i=1 Yi,n and
∑kn

i=1 ci,nYi:kn .

As an example we study the case of a non-normal stable limit distribution.

EXAMPLE 2.1. Suppose that (2.6) holds and let Y1, Y2, . . . denote a sequence
of i.i.d. r.v.s such that

b−1n

n∑
i=1

Yi − an
D−→Y

converges to some non-degenerate r.v. Y . Then it is well-known that Y is a sta-
ble r.v. with index 0 < α 6 2; see Feller [4], p. 165f. Here α = 2 corresponds to
the normal case (central limit theorem) with η = 0. For 0 < α < 2 and x > 0
we have η1

(
(−∞,−x]

)
= k1x

−α and η2
(
[x,∞)

)
= k2x

−α for constants ki > 0,

i = 1, 2, max(k1, k2) > 0 and σ2 = 0. It is easy to see that ψ1(u) = −k1/α1 u−1/α

and ψ2(u) = k
1/α
2 u−1/α hold true. Thus we obtain the convergence in distribution

b−1n

n∑
i=1

ci,n
[
Yi:n − E

(
Yi:n1(−bnτ,bnτ)(Yi:n)

)] D−→Γ1 + Γ2,

where

Γ1 := −k1/α1

∞∑
i=1

ci[S
−1/α
i − E

τk
−1/α
1

(S
−1/α
i )],

Γ2 := k
1/α
2

∞∑
j=1

dj [S̃
−1/α
j − E

τk
−1/α
2

(S̃
−1/α
j )].

In addition, for 0 < α < 1 it can be shown that the convergence holds without
centering constants, i.e. we have

b−1n

n∑
i=1

ci,nYi:n
D−→ − k1/α1

∞∑
i=1

ciS
−1/α
i + k

1/α
2

∞∑
j=1

djS̃
−1/α
j .

For ci,n = 1 this corresponds to Lemma 4.1 (c) of Janssen [9]. Furthermore, these
results extend earlier considerations about extremal partial sums for r.v.s which
belong to the domain of attraction of a stable law; see Janssen [8] and the references
therein. The middle part asymptotically vanishes (see Corollary 2.2).
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2.2. Cases with normal part. In this subsection we treat the case where the
normal part in (2.2) does not vanish, i.e. the law of the limit r.v. Y satisfies the
conditionL(Y +α) = µ1 ∗N(0, σ2) ∗µ2 with σ2 > 0. In this situation, the scores
cn,i must fulfil stronger conditions than in Theorem 2.1 to obtain (2.7).

THEOREM 2.2. Let (Xi,n)16i6kn be an infinitesimal array of rowwise inde-
pendent r.v.s satisfying (2.1) for a real sequence (an)n∈N and a non-degenerate
r.v. Y . In addition, assume that the scores ci,n fulfil (2.6) and

max
bn6i6kn−bn

(ci,n) −→
n→∞

0(2.8)

for all sequences bn ∈ N with bn 6 kn/2 and bn →∞. Then (2.7) holds true.

As application of the above theorem we study the limit behaviour of L-statistics
with scores ci,n = f

(
i/(n+ 1)

)
given by a regularly varying function f which

may be unbounded. Thus a new normalisation is necessary.

EXAMPLE 2.2. Let f : (0, 1)→ R+ be a function regularly varying at 0 with
index −α, α > 0, and regularly varying at 1 with index α. So we have f(x) =
x−αl1(x) as x ↓ 0 and f(1 − x) = x−αl2(x) as x ↓ 0, where l1, l2 are slowly
varying at zero. Suppose further that we have the convergence

f
(
1− 1/(n+ 1)

)
f
(
1/(n+ 1)

) −→
n→∞

k

for some k > 0 and that f is bounded on every compact subinterval of (0, 1), i.e.
for all ε > 0 there exists kε > 0 with supε6x61−ε |f(x)| 6 kε.

Then the convergence in distribution

1

f
(
1/(n+ 1)

) n∑
i=1

f

(
i

n+ 1

)
[Xi:n − Eτ (Xi:n)]

D−→Γ1 + Γ2

holds as n → ∞. Here the limit r.v.s on the right-hand side are as in (2.5) with
scores ci = i−α and dj = kj−α.

3. THE PROOFS

The following lemma is used as a main tool in Janssen [9]. For i.i.d. variables
it is due to Bickel [1]. The proof follows from Hájek [6], Lemma 3.1.

LEMMA 3.1. Suppose that each variable Xi,n of the rowwise independent
array (Xi,n)16i6kn has finite variance. Then the corresponding order statistics
are non-negatively correlated, i.e. Cov(Xi:kn , Xj:kn) > 0 holds for all i, j 6 kn.

The proof of Lemma 2.1 is splitted into two parts. The extremes have to be
dealt with separately by a truncation argument, whereas central parts of the sums
require the following variance arguments.
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LEMMA 3.2. Let (Xi,n)16i6kn be as in Lemma 3.1.
(i) If |ci,n| 6 k holds for all i 6 kn, then the following inequality holds true:

Var
( kn∑
i=1

ci,nXi:kn

)
6 k2Var

( kn∑
i=1

Xi,n

)
.(3.1)

(ii) If ci,n > δ > 0, we have

Var
( kn∑
i=1

Xi,n

)
6 1

δ2
Var

( kn∑
i=1

ci,nXi:kn

)
.(3.2)

P r o o f. By Lemma 3.1 we have

Var
( kn∑
i=1

ci,nXi:kn

)
=

kn∑
i=1

kn∑
j=1

ci,ncj,n Cov(Xi:kn , Xj:kn)

6 k2
kn∑
i=1

kn∑
j=1

Cov(Xi:kn , Xj:kn)

= k2Var
( kn∑
i=1

Xi:kn

)
= k2Var

( kn∑
i=1

Xi,n

)
.

This proves the first part. Under the conditions of the second part the same reason-
ing yields

Var
( kn∑
i=1

ci,nXi:kn

)
> δ2Var

( kn∑
i=1

Xi,n

)
and the proof is completed. �

REMARK 3.1. It is easy to see that the shift-compactness of two sequences
(Rn)n∈N and (Sn)n∈N implies the shift-compactness of the sum (Rn + Sn)n∈N.

First we prove the existence of Γ1 and Γ2.

P r o o f o f L e m m a 2.2. We will give the proof for ψ1 and 0 6 ci 6 1.
The general result follows by linearity. Assume first that η1

(
(−∞,−τ ]

)
= 0 holds.

The quantile transformation of the Lévy measure implies

∞∫
0

ψ1(u)du =
0∫
−∞

x2dη(x) <∞.(3.3)

Now we introduce the Poisson process N(·) and the process R(·) defined by

N(t) :=
∞∑
i=1

1[0,t](Si), R(t) :=
∞∑
i=1

ci1[0,t](Si), 0 6 t.(3.4)



Asymptotics of heavy-tailed L-statistics 293

Direct arguments show that V (t) := Var
(
R(t)

)
6 Var

(
N(t)

)
= t, since

Cov
(
1[0,t](Si),1[0,t](Sj)

)
> 0 for all i, j ∈ N

follows by a slight generalisation of Lemma 3.1. Consider the process M(t) :=
R(t) − E

(
R(t)

)
which is adapted to the filtration Ft = σ

(
N(s) : s 6 t

)
. Since

M(t) has independent increments, it is easy to see that it is also a martingale with
respect to Ft. Next we introduce stopping times τn := inf{t : N(t) > n}. The op-
tional stopping theorem yields thatMn :=M(τn) is also a martingale with respect
to the same filtration. We notice that

n 7→
n∑
i=1

ci
[
ψ1(Si)− E

(
ψ1(Si)

)]
=

τn∫
0

ψ1dM =: αn

is a further martingale. Observe that

Var
( t∫

0

ψ1dM
)
=

t∫
0

ψ1(u)
2dV (u) 6

t∫
0

ψ2
1(u)du 6

0∫
−∞

x2dη(x)

holds by (3.3) for each t>0. Thus (αn)n∈N is a martingale with uniformly bounded
second moment. The martingale convergence theorem gives us the a.s. convergence
of (αn)n∈N and the convergence in L2 in this special case.

Let now η1 be an arbitrary Lévy measure on (−∞, 0). Define

η̃ := η1|(−τ,0) + δε−τ for δ := η1
(
(−∞,−τ ]

)
.

Its quantile function is given by

ψ̃ = ψ1(u)1(δ,∞)(u)− τ1(0,δ](u) for u > 0.

The first part of our proof implies a.s. convergence of the infinite sum

∞∑
i=1

ci
[
ψ̃(Si)− Eτ

(
ψ̃(Si)

)]
=
∞∑
i=1

ci
[
ψ1(Si)1(δ,∞)(Si)− Eτ

(
ψ1(Si)

)]
− τ

∞∑
i=1

ci1(0,δ](Si),

sinceψ1(u) 6 −τ holds for u 6 δ. Notice that both infinite sums
∑∞

i=1 ci1(0,δ](Si)
and

∑∞
i=1 ciψ1(Si)1(0,δ](Si) are a.s. convergent, since Si → ∞ a.s. as i → ∞.

A combination of these arguments proves the result in its general form. �

Before we prove Lemma 2.1 we state the following helpful result.
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LEMMA 3.3. Let (Xi,n)16i6n be an infinitesimal triangular array of rowwise
independent, real r.v.s that fulfil (2.1) and suppose that (2.6) holds. If −δ < 0 is a
continuity point of the Lévy measure of Y, then the convergence

kn∑
i=1

ci,nXi:kn1(−∞,−δ](Xi:kn)
D−→

∞∑
i=1

ciψ1(Si)1(−∞,−δ]
(
ψ1(Si)

)
(3.5)

holds as n→∞.

P r o o f. Observe first that, by (2.4) and the continuous mapping theorem, the
convergence (3.5) holds for a finite number of weighted extremes. Moreover, for
each ε > 0 there exists some j ∈ N with P

(
ψ1(Sj) 6 −δ

)
6 ε. Now the portman-

teau theorem together with (2.4) imply that lim supn→∞ P (Xj:kn 6 −δ) 6 ε. An
application of Theorem 4.2 of Billingsley [2] gives the result. �

P r o o f o f L e m m a 2.1. Part (ii) is a direct consequence of Lemma 3.2 (ii)
and the Chebyshev inequality. The first part requires different arguments.

First, we assume that Xi,n 6 0 holds for 1 6 i 6 kn. Let us remark that Pro-
horov’s theorem implies that the sequence of L-statistics is shift-compact iff for
each subsequence there exists a further subsequence such that the adequate shifted
L-statistics converge in distribution along this subsequence.

Let now
∑kn

i=1Xi,n be shift-compact. Turning to subsequences we assume
without loss of generality that

kn∑
i=1

Xi,n − an
D−→Y(3.6)

is convergent in distribution to some infinitely divisible r.v. Y . Let η be the Lévy
measure of the Lévy–Khinchin representation of the characteristic function of Y .
The conditions for the convergence of (3.6) given by Gnedenko and Kolmogorov
[5], p. 116 ff., state that for every continuity point ε with η({ε}) = 0 the following
assertions hold:

kn∑
i=1

P (Xi,n 6 ε) −→
n→∞

η
(
(−∞,−ε]

)
,(3.7)

sup
n∈N

Var
( kn∑
i=1

Xi,n1(−ε,ε)(Xi,n)
)
<∞.(3.8)

As a direct consequence of (3.7) and (3.8), Poisson’s limit law for independent
Bernoulli variables implies the convergence in distribution

Nn :=
kn∑
i=1

1(−∞,−ε](Xi,n)
D−→R,(3.9)
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where R is a Poisson distributed r.v. with parameter λ := η
(
(−∞,−ε]

)
. Hence

Var(Nn)→ λ holds as n→∞.
To apply Remark 3.1, we use an order-preserving truncation argument which

allows us to treat middle and extreme parts separately. Let us define

φε(x) := x1(−ε,0](x)− ε1(−∞,−ε](x), ϱε(x) :=
(
x− φε(x)

)
1(−∞,0)(x).

(3.10)

Then the non-positive r.v.s Xi,n can be splitted into two parts:

Xi,n = Zi,n + Z̃i,n, Zi,n := φε(Xi,n), Z̃i,n := ϱε(Xi,n).(3.11)

If we turn to the order statistics of the Zi,n and Z̃i,n, we see that the equalities

Zi:kn = φε(Xi:kn), Z̃i:kn = ϱε(Xi:kn) for 1 6 i 6 kn

imply Xi:kn =Zi:kn+Z̃i:kn , 16 i6kn. Next we apply the inequality Var(S+T )
6 3

(
Var(S) + Var(T )

)
to Zi,n = Xi,n1(−ε,0](Xi,n) − ε1(−∞,−ε](Xi,n). Thus

(3.2), (3.8) and (3.9) imply supn∈NVar
(∑kn

i=1 Zi,n
)
<∞. By Lemma 3.2 we ob-

tain supn∈NVar
(∑kn

i=1 ci,nZi:kn
)
<∞. Hence

∑kn
i=1 ci,nZi:kn is shift-compact.

By Remark 3.1 it remains to prove that
∑kn

i=1 ci,nϱε(Xi:kn) is shift-compact.
Observe that we can assume without loss of generality that (2.6) holds as (ci,n)n∈N
is a sequence in the compact set [−k, k]N. Now, for each t > 0 we have

kn∑
i=1

P
(
ϱε(Xi,n) 6 −t

)
6

kn∑
i=1

P (Xi,n + ε 6 −t)→ η
(
(−∞,−t− ε]

)
<∞.

By turning to subsequences, we infer from Theorem 1 (Section 25) of Gnedenko
and Kolmogorov [5] that the sequence

∑kn
i=1 ϱε(Xi,n), n ∈ N, converges to a com-

pound Poisson limit law and is therefore shift-compact. Applying Lemma 3.3 for
ε = δ yields the desired shift-compactness of

∑kn
i=1 ϱε(Xi:kn).

For the general case consider the decomposition

Xi,n = X+
i,n +X∗−i,n .(3.12)

By Lemma 3.3 and (3.8), the inequality Var(|Y |) 6 Var(Y ) and shift-compactness
of

∑kn
i=1Xi,n yield shift-compactness of

∑kn
i=1 |Xi,n|. This implies the shift-com-

pactness of
∑kn

i=1X
+
i,n and

∑kn
i=1X

∗−
i,n by linearity. By Remark 3.1 the decompo-

sition (3.12) completes the proof. �

P r o o f o f T h e o r e m 2.1. Suppose that, in addition to our general as-
sumptions, the condition (2.6) holds for our scores. It is sufficient to give the proof
for the negative parts L−n (see Corollary 2.1). The positive part L+

n can be treated



296 A. Barczyk et al.

similarly and (2.4) will imply the asymptotic independence of positive and neg-
ative parts. Since our L-statistics are shift-compact, we only have to identify the
set of possible weak accumulation points of our sequence (which always exists
along subsequences). Moreover, we can assume without loss of generality that
0 6 ci,n 6 1 holds. We will now use Theorem 4.2 of Billingsley [2] and an ob-
vious extension; see Janssen [9], Appendix, Lemma B. In order to split L−n into
two parts, we fix some continuity point −δ of η1, −τ < −δ < 0. For each k ∈ N
we have the convergence

E
( k∑
i=1

ci,nXi:kn1(−τ,−δ](Xi:kn)
)
→ E

( k∑
i=1

ciψ1(Si)1(−τ,−δ]
(
ψ1(Si)

))
.

By the monotone convergence theorem we have

E
( k∑
i=1

ciψ1(Si)1(−τ,−δ]
(
ψ1(Si)

))
→ E

( ∞∑
i=1

ciψ1(Si)1(−τ,−δ]
(
ψ1(Si)

))
as k →∞. By the arguments given in Lemma 5.2 of Janssen [9] and label (5.15)
therein, the upper tail can be made small for sufficiently large k, i.e.

lim sup
n→∞

∣∣E( kn∑
i=k+1

ci,nXi:kn1(−τ,−δ](Xi:kn)
)∣∣

6 lim sup
n→∞

τ
kn∑

i=k+1

P (Xi:kn 6 −δ) −→
k→∞

0.

Thus the convergence

E
( kn∑
i=1

ci,nXi:kn1(−τ,−δ](Xi:kn)
)
→ E

( ∞∑
i=1

ciψ1(Si)1(−τ,−δ]
(
ψ1(Si)

))
follows. This together with Lemma 3.3 shows the convergence in distribution

k∑
i=1

ci,n
[
Xi:kn1(−∞,−δ](Xi:kn)− Eτ

(
Xi:kn1(−∞,−δ](Xi:kn)

)] D−→L−δ ,

where

L−δ :=
∞∑
i=1

ci

[
ψ1(Si)1(−∞,−δ]

(
ψ1(Si)

)
− Eτ

(
ψ1(Si)1(−∞,−δ]

(
ψ1(Si)

))]
.

Moreover, for δ ↓ 0

lim sup
n→∞

Var
( kn∑
i=1

ci,nXi:kn1(−δ,0)(Xi:kn)
)

6 lim sup
n→∞

k2Var
( kn∑
i=1

Xi,n1(−δ,0)(Xi,n)
)
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can be made arbitrarily small. Observe also that L−δ
D−→Γ1 holds for δ ↓ 0, which

can be shown in the same way as in the proof of Lemma 2.2. Furthermore, as in
that proof, we may assume that the Lévy measure η1 is supported on (−τ, 0). Then
L−δ = Mδ is an L2-convergent martingale as δ ↓ 0. Again the same truncation
method as in the proof of Lemma 2.2 can be applied. These arguments complete
the proof for the convergence L−n

D−→Γ1. �

P r o o f o f C o r o l l a r y 2.1. Confer the proof of Theorem 2.1. �

P r o o f o f C o r o l l a r y 2.2. Define new coefficients

c′i,n = ci,n1[rn,kn−sn](i).

Then we have ci = dj = 0 for each i and j of our limit scores. Hence Γ1 +Γ2 = 0
holds by Theorem 2.1. �

P r o o f o f T h e o r e m 2.2. As in the proofs of Lemma 2.1 and Theorem 2.1
we may restrict ourselves to non-positive variables Xi,n 6 0. For τ = ε we may
use the decomposition (3.11). It is easy to see that the variables Zi,n := ϱτ (Xi,n)
correspond to a case with compound Poisson limit distribution for the partial sums
and we can apply the above results. Thus we just have to treat the case −τ <
Xi,n 6 0 as in the proof of Lemma 2.1.

Observe that by Theorem 1 (Section 25) of Gnedenko and Kolmogorov [5] we
have

lim
ε↓0

lim sup
n→∞

Var
( kn∑
i=1

Xi,n1(−ε,ε)(Xi,n)
)
= σ2.

Hence we may assume that lim supn→∞Var
(∑kn

i=1Xi,n

)
<∞. Otherwise, τ can

be decreased. By using (2.4), (2.6) and standard arguments we find a sequence
rn 6 kn/2, rn →∞, such that

rn∑
i=1

ci,n[Xi:kn − E(Xi:kn)]
D−→Γ1 and

kn∑
i=kn+1−rn

ci,n[Xi:kn − E(Xi:kn)]
D−→ 0

in distribution as n→∞. Moreover, our assumptions and Lemma 3.1 imply

Var
( kn−rn∑
i=rn+1

ci,nXi:kn

)
6 max

rn+16i6kn−rn
(ci,n)

2 Var
( kn∑
i=1

Xi,n

)
→ 0

as n → ∞. Thus the middle part asymptotically vanishes, which completes the
proof. �
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P r o o f o f E x a m p l e 2.2. We show that the scores

ci,n :=
f
(
i/(n+ 1)

)
f
(
1/(n+ 1)

) , 1 6 i 6 kn,

fulfil the conditions of Theorem 2.2. By the regular variation of f it is easy to
see that (2.6) holds with given scores ci = i−α and dj = kj−α. Hence we only
have to prove (2.8). Suppose first that lim infn→∞ bn/n = κ > 0 holds. Then, for
sufficiently large n, we can find an ε > 0 such that

max
bn6i6n−bn

|ci,n| 6 max
εn6i6(1−ε)n

|ci,n| 6 kε f

(
1

n+ 1

)−1
−→
n→∞

0,

which implies (2.8). Thus it remains to study the case when bn/n→ 0. As above,
by the boundedness of f we infer that maxεn6i6(1−ε)n |ci,n| → 0 holds for every
0 < ε < 1 as n→∞. Moreover, since f is regularly varying at 0, we can find a δ
with 0 < δ < α and some ε > 0 such that the inequality x−α−δ 6 f(x) 6 x−α+δ

holds for all 0 < x 6 ε. Hence, for sufficiently large n we have

|ci,n| =
f
(
i/(n+ 1)

)
f
(
1/(n+ 1)

) 6
(
i/(n+ 1)

)−α+δ(
1/(n+ 1)

)−α−δ 6 i−α+δ
(

1

n+ 1

)2δ

6 i−α+δ,

which implies

max
bn6i6εn

|ci,n| 6 b−α+δn → 0 as n→∞.

In the same way, by the regular variation of f at 1 we obtain the convergence
max(1−ε)n6i6n−bn |ci,n| → 0. This completes the proof. �
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