Abstract. Let G be an LCA group, Γ its dual group, and H a closed subgroup of G such that its annihilator Λ is countable. Let M denote a regular positive semidefinite matrix-valued Borel measure on Γ and $L^2(M)$ the corresponding Hilbert space of matrix-valued functions square-integrable with respect to M. For $g \in G$, let Z_g be the closure in $L^2(M)$ of all matrix-valued trigonometric polynomials with frequencies from $g + H$. We describe those measures M for which $Z_g = L^2(M)$ as well as those for which $\bigcap_{g \in G} Z_g = \{0\}$. Interpreting M as a spectral measure of a multivariate wide sense stationary process on G and denoting by J_H the family of H-cosets, we obtain conditions for J_H-singularity and J_H-regularity.

2020 Mathematics Subject Classification: Primary 42A10, 43A25, 60G25, 43A05; Secondary 94A20.

Key words and phrases: LCA group, multivariate stationary process, positive semidefinite matrix-valued measure, trigonometric approximation, J_H-singularity, J_H-regularity, sampling.

The full text is available [here]({#full_text_link}).