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Abstract. We propose a family of confidence intervals for nonparametric
moment estimators if the observations have large or infinite variances. The
theoretical underpinnings which guarantee the soundness of the method are
demonstrated. Extensive numerical simulations show its superiority over
bootstrap and normal approximation and its wide applicability. Finally, a
confidence interval to estimate the coupling strength in neuronal networks
is proposed.
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1. INTRODUCTION

Resampling by using stable distributions was introduced in [10], but no application
and no simulation of its performance was provided at that time. The purpose of
this note is to fill this gap, to provide an effective algorithm for this resampling
procedure and to apply the method for nonparametric moment estimators.

Most existing methods for establishing asymptotically consistent confidence
intervals of parameters rely on exact distributions or on normal approximation (the
Central Limit Theorem (CLT)), provided the underlying statistic has finite vari-
ance. However, when the variance of the underlying distribution is infinite, the CLT
does not hold, no numerically efficient method seems to be known, and again when
the variance is large, the confidence intervals become too wide to permit reliable
conclusions. Thus the natural question here is to find new statistics not changing
the parameter, but allowing for calculations of asymptotic confidence intervals for
moments. A class of such new statistics is called resampling using stable motions
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in [10], here abbreviated as stable resampling.
The limiting distribution for our resampling method depends on stochastic in-

tegrals with respect to stable motions. Here we need only simple integrals of the
form

∫
f(x)M(dx). These integrals have a long history, going back to [3, 23, 24,

15, 16] to name a few. The method here should also work for multiple integrals
as introduced in [22] by Rosiński and Woyczyński. The quantiles of the limiting
distribution are not directly calculable. It is possible to use almost sure versions for
the convergence to the limiting distribution (abbreviated as ASLT in analogy to the
normal case) which are obtained in [14]. This last work only establishes the limit
of simple integrals, though the general case is likely to hold as well.

We begin in Section 2 with a description of the program to be used in the sim-
ulations. The corresponding R-code for Table 1, line 1, Table 2, line 1 and Table 4,
line 6 is given in [9]; the other entries in the tables are produced using that code
with obvious modifications of parameter settings. The program splits into two sub-
routines; the first is the estimation of confidence intervals, once quantiles are esti-
mated. This is a standard formality, but relies on the limit theorem for stochastic
integrals. The other novelty lies in the second subroutine which consists of an es-
timation of the limiting distribution function using the ASLT method. In Section 3
the theoretical background is briefly sketched leading to the specific form used
to calculate confidence intervals and to the formula which permits estimating the
unknown distribution from the data directly. This vaguely resembles a bootstrap
method, though it is an almost sure and different resampling method.

Simulations are collected in Section 4. It splits into several subsections. First,
using a simple form of the ASLT algorithm, simulations for the performance of the
estimate of the unknown distribution function are presented.

The second and major part of the section builds the core of this note. Its ap-
plications are rather wide, also due to the fact that it works for nondegenerate
U -statistics in general. In Section 4, one specific class of U -statistics is used, to
estimate confidence intervals for the mean of a distribution which has large or in-
finite variance. Its algorithm uses the full strength of the resampling algorithm.
Clearly, other moment estimators can be handled in the same way. The purpose of
this subsection is to present simulation results of various types. First of all we use
distributions with heavy tails (power-like distributions) since we shall make use of
such distributions in the last subsection. For these models (varying power law and
perturbations thereof) we examine different statistics (parametrized by the order of
the stable motion), different sample sizes and different confidence levels. In addi-
tion we compare the new method with the bootstrap method (established in [10])
and approximation by normal distribution.

Many processes observed in biology and neural science are subject to heavy tail
distributions or those where estimation of the mean is affected by large variances
even if sample sizes are large. The last subsection provides such an example. We
apply our algorithm, called Stable Resampling for Moments (SRM), to estimate
the connection strength in a complete neuronal network [12] from the expectation
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E(X) of its avalanche size distribution. It is shown that the method has advantages
over the classical confidence interval estimation for asymptotically normal observ-
ables. This is due to the fact that the variance of the distribution is about (E(X))3

and E(X)→∞ as the number of neurons increases.

2. STABLE RESAMPLING: THE ALGORITHM

This section contains the description of the algorithm on which our estimation
procedure for moments is based upon. It will be called Stable Resampling and has
a more formal description which easily enables the transformation into a code; it
consists of two subroutines, where the first one relies on the second one.

2.1. Stable resampling for moments. This subroutine will be called stable resam-
pling for moments and is abbreviated as SRM(q, q′, p, rl, ru, δ).

Let q > p > 1, q′ < q/p, ru, rl ∈ N, n0 < n ∈ N and δ ∈ {0, 1}. For each
choice of these parameters the SRM-algorithm to estimate the q′th moment based
on a sample of size n proceeds as follows:1

Data: X1, . . . Xn, iid sample following the distribution of X , with E[|X|q] <∞.
Result: Given α ∈ [0, 1], the output is a one- or two-sided α-level confidence
interval for E[Xq′ ].
Sequential steps:2

1. Calculate
µ̂ :=

1

n

n∑
i=1

Xq′

i .

2. Generate an iid sample {Yi}ni=1 (independent of the sample X1, . . . , Xn) from
a stable distribution with location parameter 1, skewing parameter 0, stability
parameter p, and scale parameter 0.5.3

3. For i = 1, . . . , n calculate

(2.1) Wi = Xq′

i Yi − µ̂Yi.

Pass the sample {Wi}ni=1 as input to the ASLT(p, rl, ru) in Section 2.2 to obtain
two estimated distribution functions Edfl and Edfu. From Edfl calculate the
lower α/2 quantile L and from Edfu calculate the upper α/2 quantile U .

1The integer n0 is a separate parameter which has a purely numerical purpose. It prevents small
number of observations having a big influence on the estimation of the p-resampled distribution in
the second subroutine. In the simulations below in Section 4 we use n0 = 9.

2Below, the symbol a← b means that a variable a is assigned a value b.
3We use here the classical parametrization of a stable distribution! Again, the scale parameter

may be chosen differently for variants of the subroutine. Also, repeat this procedure until the average
of the Y sample is between 0.7 and 1.3, say. This is no essential restriction and necessary since for
the confidence interval one needs to divide by this average.
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4. XY ←
∑n

i=1 Xi
q′Yi

n , Y ←
∑n

i=1 Yi

n .

5. If δ = 1 then CU ← XY
Y
− n1/p−1L

Y
, CL ← XY

Y
− n1/p−1U

Y
. If δ = 0 then

CU ← µ̂

Y
− n1/p−1L

Y
, CL ← µ̂

Y
− n1/p−1U

Y
.

6. Output the α-level confidence interval C(q, p, rl, ru, δ) = (CL, CU ) and the
α/2-level confidence intervals (−∞, CU ) and (CL,∞).

2.2. Estimating the p-resampled distribution function. The two distribution func-
tions needed for the SRM subroutine are called p-resampled distribution functions
and are calculated according to the following subroutine ASLT(p, rl, ru).

Data: W1, . . . ,Wn, iid sample following the distribution of W , n > n0.
Result: A pair of distribution functions Edfu and Edfl.
Initialization: CLvec ← Vector(size: rl), CUvec ← Vector(size: ru),
Sequential steps: rm ← max(rl, ru),
For perm ← 1 to rm by 1 do

1. Randomly permute W1, . . . ,Wn to obtain W ′1, . . . ,W
′
n.

2. Define T1, . . . , Tn−n0 as

(2.2) Ti = (i+ n0)
−1/p

i+n0∑
i′=1

W ′i′ .

3. Discretize the argument of T : Define m = min {Ti : i = 1, . . . , n − n0, all
perm} and M = max {Ti : i = 1, . . . , n − n0, all perm}. Define a suitable
step size h > 0.

4. For any t = m+ uh ¬M , u ∈ Z+, define

(2.3) C(t) =

(
n∑

i′=n0+1

1

i′

)−1( n∑
i′=n0+1

1

i′
1(−∞,t](Ti′−n0)

)
.

If perm ¬ rl then CLvec[perm]← C.
If perm ¬ ru then CUvec[perm]← C.

5. Output

Edfl(t) =
1

rl

∑
c∈CLvec

c(t), Edfu(t) =
1

ru

∑
c∈CUvec

c(t).

REMARK. The reason to use a different number of permutations to calculate
the p-resampled distribution function is motivated by the lack of support points for
the distribution function in tail regions. A permutation changes the values of Ti, so
the tails have different supporting points, thus also their average.
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3. THEORETICAL JUSTIFICATIONS FOR STABLE RESAMPLING FOR MOMENTS

We first demonstrate the theoretical underpinnings which guarantee the consistency
of the method SRM(q, q′, p, rl, ru, δ) described in Section 2.1, where q′ is the order
of the moment being estimated. From [10, Theorem 3.3] we have:

THEOREM 3.1. Given an iid sample X1, X2, . . . following the distribution
of X , any function h satisfying E[|h(X)|r] < ∞, and an iid sample Y1, Y2, . . .
following a centered p-stable distribution with p satisfying r > p > 1, and also
with Yi independent of Xi′ for all i, i′, we have

(3.1)
1

n1/p

∑
i¬n

(h(Xi)− Ex∼X [h(x)])Yi
weakly−−−→ GX,h,p

for some random variable GX,h,p whose distribution depends on X , h, and p.

The setting considered in the algorithm SRM(q, q′, p, rl, ru, δ) is recovered if
we apply the above theorem with h(x) = xq

′
such that E[|X|q] <∞ and p < q/q′.

Next we demonstrate that in step 3 of the algorithm of Section 2.1, the call
to the algorithm of Section 2.2 yields two distribution functions approximating
GX,h,p. This in conjunction with (3.1) will establish the veracity of the algorithm
of Section 2.1.

DEFINITION 3.1 (p-resampled distribution). For the setting considered in the
algorithm SRM(q, q′, p, rl, ru, δ), the p-resampled distribution GX,q′,p is defined
as the unique limit (in the sense of convergence in law) of n1−1/p∑n

i=1Wi as
n→∞, with Wi defined in (2.1).

From [14, Theorem 4.1] we get:

THEOREM 3.2. Let X1, . . . , Xn be an iid sample following the distribution
of X , h any real-valued function, Y1, . . . , Yn an iid sample following a p-stable
distribution with mean 0, and set

Tn(h) :=
1

n1/p

∑
i¬n

(h(Xi)− Ex∼X [h(x)])Yi.

If Yi is independent of Xi′ for all i, i′, and Tn(h)
weakly−−−→ G for some random

variable G, then for any −∞ < a < b < ∞ such that a, b are continuity points
of G, we have

(3.2) lim
n→∞

1

log n

n∑
k=1

1

k
1(a,b)(Tk(h))→ P(G ∈ (a, b)) a.s.

If Theorem 3.2 holds true under the relaxed condition that E[Yi] = 1 (see the
preceding paragraph), it implies that when SRM(q, q′, p, rl, ru, δ) calls the sub-
routine ASLT(p, rl, ru) in step 3, the two distributions which are returned both
converge in distribution to the p-resampled distribution GX,q′,p.
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Theorem 3.2 is only applicable when E[Y1] = 0. We show its veracity for
nonzero values of E[Y1] when Ex∼X [|h(x)|r] < ∞ for some r > p > 1. Without
loss of generality let Ex∼X [h(x)] = 0. Then

Tn(h) =
1

n1/p

∑
i¬n

h(Xi)Yi

=
1

n1/p

∑
i¬n

h(Xi)(Yi − E[Yi]) +
E[Yi]

n1/p

∑
i¬n

h(Xi).

Theorem 3.2 is applicable for the first part of the sum above; the second part goes
to zero because Ex∼X [|h(x)|r] <∞ and r > p (see [4]).

REMARK 3.1. The sequences {Ti}n−n0
i=1 defined in (2.2) are different for dif-

ferent permutations {W ′i}ni=1. This enables different estimates of the quantiles to
be derived by permuting the data. One can use this to reduce the variance of the
final estimate by averaging over the estimates from different permutations. This is
not possible for statistics which do not depend on the order of the samples.

REMARK 3.2. The results of [10] and [14] are also applicable to U -statistics in
general under some additional assumption. Since we are only simulating moment
estimators, we are not formulating this here.

4. SIMULATION RESULTS

As explained in the introduction, this section summarizes our simulation results for
the p-resampled distribution (in Section 4.1), the stable resampling for moments (in
Section 4.2) and an application to neuronal avalanches (in Section 4.3).

4.1. Simulations for estimating p-resampled distributions. The algorithm from
Section 2.2 when called from step 3 of the algorithm of Section 2.1 returns es-
timates for the p-resampled distribution (Definition 3.1). In general such functions
are called empirical logarithmic distribution functions in analogy to second order
averaging. Here we demonstrate the robustness of the distribution functions in-
ferred by varying the number of samples, and compare them with estimates of the
p-resampled distribution obtained by bootstrapping.

We took N random samples Zi from a Pareto distribution with shape parame-
ter 2 and location parameter 3, and independently we took N samples Yi from a
stable distribution with order p = 1.2, shape γ = 1, skewness β = 0 and mean
δ = 1. We transformed the data of the first sample using the map

x 7→ f(x) = xmax {log |x|, 1),

in order to get a distribution not in the strict domain of attraction of a stable distri-
bution (here called Pareto-like). Then, for the sample

Xi = f(Zi),
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define (as in (2.1) with q′ = 1)

(4.1) Wi = XiYi − µ̂Yi, where µ̂ :=
1

n

n∑
i=1

Xi.

The data was generated using the seed 1345 in the R-software. We compute the
empirical distributions produced by passing the sequence Wi to ASLT(1.2, 1, 1)
(using T1, . . . , Tn instead of T1, . . . , Tn−n0 in (2.2)) and (2.3). We also estimate
the p-resampled distribution by applying bootstrapping in two ways:

• bootstrapping Wi = XiYi − µ̂Yi, where µ̂ := 1
1100

∑1100
i=1 Xi,

• bootstrapping Wi = XiYi − 12.565 ∗ Yi.

Note that 12.565 is the mean of X1 calculated using 106 samples.

Figure 1. ASLT versus bootstrap

Figure 1 shows estimates of the p-resampled distribution for various sample
sizes 1000 (black), 2000 (red), 5000 (green) and 10000 (blue) (for colors see the
pdf file), using different methods. In Figure 1 the upper graphic shows the estimates
when the ASLT algorithm is used. The bottom left graphic shows the performance
for the bootstrap method with true mean and the bottom right graphic shows the
bootstrap method with estimated mean.
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The distribution functions from applying the algorithm of Section 2.2 clearly
show the heavy tail behavior of distributions: Large simulated values occur rarely,
so are seen only in larger sample size simulations. The mean differs considerably
from its median, hence the distribution is not symmetric around 0. The distribution
does not have second moments but is in the domain of attraction of a normal. The
graphics show that the estimation of the distribution function stabilizes quite well
as n→∞, as expected from Theorem 3.2.

We did not put the graphics in Figure 1 into a single picture since the differ-
ences are better seen when keeping them apart. Comparing the approximations in
Figure 1, it is first observed that the ASLT convergence is faster than the bootstrap
convergence. While the distribution functions in both cases are close for a sample
size of 10,000, the convergence for bootstrap is much slower and not at all accurate
in the tails for lower sample sizes. Moreover, for a sample size of 10,000 the tails
in the bootstrap cases seem to be underestimated. Table 5 supports that observation
on the tail behavior.

Therefore it can be said that the ASLT approach is at least as good as – if not
better than – the bootstrap approximation from the point of view of speed of con-
vergence. It should also be noticed that the bootstrap distribution seems to become
symmetric around 0. It is known from other simulations and the discussion in Sec-
tion 4.2 that the ASLT approach can even be improved by using some permutations
of the data and deleting some initial terms in the summation procedure (cf. the dis-
cussion in footnote 1 in Section 2.1 and the Remark in Section 2.2). This has been
incorporated in the algorithms of Section 2.

Figure 1 also shows the same behavior using bootstrap when the true mean µ is
replaced by an estimated µ̂. The graphics show the same type of approximation as
in the bottom left graphic of Figure 1, slightly shifted to the left, an effect due to
the underestimation of µ in the example.

4.2. Confidence intervals for the mean of power-like distributions. Here we will
investigate the performance of the SRM method for synthetic data sets. First we
introduce some metrics which will be used to evaluate the performance.

Recall that the coverage probability is the proportion pc of runs where the un-
known parameter θ∗ lies in the α-confidence interval divined by the estimation.
If pc > α, then the method is called conservative. If pc < α, then the method is
termed permissive.

Also the length of a confidence interval (CI length) is used to evaluate the ac-
curacy of an estimation method. We take the average of the lengths of confidence
intervals over all runs to obtain the CI length.

We will explicitly restrict ourselves to examples for estimating the first mo-
ment. Except otherwise stated, the data for the examples studied in this section
are generated from a random variable X ∼ Z logZ, where Z follows a Pareto
distribution with scale parameter 1, and shape parameter qP (qP varies for various
examples); these distributions are loosely called “nearly power laws”. Given these
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settings, E[|X|q] is finite for all q < qP, and is∞ for all q  qP. Whenever we ap-
ply SRM(q, 1, p, rl, ru, δ), we are careful to choose a value of p satisfying p < qP.

SRM(q, 1, 1.2, r, r, δ) versus normal approximation. We compare the perfor-
mance of SRM(q, 1, 1.2, r, r, δ), for both δ = 0 and δ = 1, to a standard CLT
based method (which uses normal approximation) in a series of examples where
we vary q < qP. We use the coverage probability and CI length to make compar-
isons. 500 runs of both methods were used; in each run 1000 samples were used,
and a two-sided 95 percentile interval was constructed. The exact results for the
case δ = 0 are recorded in Table 1; the case δ = 1 showed similar results. For
smaller values of qP (underlying distribution is more heavily tailed) the coverage
probability of normal approximations is very poor. At qP = 4, the performance
of the normal method is excellent (Table 1). The coverage probability produced
by SRM(q, 1, 1.2, r, r, 0) is near the required .95 mark for all values of qP; similar
trends hold for SRM(q, 1, 1.2, r, r, 1).

Table 1. SRM versus normal distribution. P and L are the coverage probability and CI length of
SRM(q, 1, 1.2, r, r, 0) for the nearly power laws; Pnor and Lnor are the coverage probability and CI
length for methods using normal approximations.

P L Pnor Lnor

qP = 1.5, r = 5 0.948 72.85 0.582 11.04

qP = 1.6, r = 5 0.968 38.06 0.648 4.72

qP = 1.7, r = 4 0.97 27.4 0.738 2.86

qP = 2.1, r = 2 0.946 8.42 0.804 0.95

qP = 3.1, r = 2 0.96 2.28 0.904 0.21

qP = 4, r = 2 0.97 1.33 0.942 0.11

Variation of the nearly power law. We investigate the performance of
SRM(q, 1, 1.2, rl, ru, 0) for different kinds of “nearly power laws”. In particular,
we generate a Pareto distribution with scale parameter 1 and shape parameter 1.5
(q < 1.5), and pass it through a function f to generate the ground truth data. The
performance of the method is evaluated for various choices of f ; see Table 2. The
method gives acceptable performance for deriving both one-sided and two-sided
confidence intervals for a variety of choices for f , which shows a type of robust-
ness of the method with respect to perturbations.

Using a single random permutation. As noted in Remark 3.1, the ASLT part of
the algorithm has the ability to reduce variance by taking permutations; here we
demonstrate that taking only a single permutation in the algorithm of Section 2.1
results in a rather poor final confidence interval (Table 3).

Performance under different stable distributions and sample sizes. We demon-
strate the performance of SRM(q, 1, p, 5, 5, δ) in two simulations as p varies and
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Table 2. Nearly power laws. P(0) is the coverage probability when a 95% symmetric two-sided
confidence interval is built for the mean; Pu(0) is the coverage probability when a 97.5% one
sided upper confidence interval is built; Pl(0) is the coverage probability when a 97.5% one sided
lower confidence interval is built; n is the number of samples; rl and ru are the parameters of
SRM(q, 1, p, rl, ru, 0), q ∼ 1.5.

Function rl ru n P(0) Pl(0) Pu(0) L

p = 1.2 x log |x| 5 5 1000 0.958 0.978 0.98 43.82

p = 1.2 x(1 + log x)2 2 2 1000 0.93 0.992 0.938 0.30

p = 1.2 x 5 5 1000 0.976 0.978 0.998 10.64

p = 1.2 x 4 2 1000 0.958 0.98 0.978 9.06

p = 1.2 x(1 + 1
2
cosx) 5 5 1000 0.964 0.964 1 10.32

p = 1.2 x(1 + 1
2
cosx) 5 2 1000 0.968 0.97 0.998 12.93

p = 1.2 x cosx 5 5 1000 0.994 0.998 0.996 8.02

p = 1.2 x cosx 2 2 1000 0.954 0.976 0.978 5.78

Table 3. Single permutation. Testing the performance of SRM(1.5, 1, p, r, r, δ) for making 90%
confidence intervals. P (δ) is the coverage probability when a 90% symmetric two-sided confidence
interval is built for the mean; Pu(δ) (Pl(δ)) is the coverage probability when a 95% one-sided upper
(lower) confidence interval is built; n is the number of samples. The data is created by generating a
Pareto distribution with scale parameter 1 and shape parameter 1.5, and passing the result through
the function f(x) = x log x. 500 runs are made to derive the coverage probabilities, and for each
run n samples are taken.

r n P(0) Pl(0) Pu(0) P(1) Pl(1) Pu(1) L

p = 1.1 1 1000 0.804 0.894 0.91 0.816 0.958 0.858 38.92

p = 1.2 1 1000 0.74 0.872 0.868 0.76 0.956 0.804 24.7

p = 1.3 1 1000 0.702 0.882 0.82 0.698 0.957 0.74 35.03

p = 1.4 1 1000 0.676 0.874 0.802 0.662 0.964 0.698 14.27

q ∼ 1.5. The data is generated by the same process as in Table 3. 200 runs are
made (with n samples used in every run); for run m, the output from SRM is a con-
fidence interval (u(m), l(m)). To visualize the performance, we observe the mean
and 2.5-th percentile of the upper limit u(m) (calculated across the runs) in vari-
ous controlled simulations where the value of p and n is varied. Similarly we also
observe the mean and 97.5-th percentile of the lower limit l(m) (see Figure 2). It
is observed that for p = 1.2, the 97.5-th percentile of the lower limit and the 2.5-th
percentile of the upper limit are close to the actual value of the parameter for all
values of n. This clearly is not the case when p = 1.7. The reason for the poor
performance at p = 1.7 is that the condition p < qP is violated for this example.

200 runs of SRM(1.5, 1, p, 5, 5, δ) are made, with n samples used in every run.
For each value of n, p, δ, the mean (orange •) and 2.5-th percentile (orange△) of
the upper limit of confidence intervals are indicated. Also the mean (blue •) and
97.5-th percentile (blue△) of the lower limit of confidence intervals are given.
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δ =1

δ =0
p =1.2, δ = 0

δ =1

δ =0
p =1.4, δ = 0

δ =0
p =1.7, δ = 0

δ =1

δ =0 δ =1
p =1.2, δ = 1

δ =1

δ =0

p =1.4, δ = 1

δ =1

δ =0δ =1

δ =0

p =1.7, δ = 1

                     Number  of samples 

Boundary of con�dence interval 

Figure 2

In the second simulation we give the results for SRM under various choices of
parameters when the underlying data is generated from the same nearly power laws
as the data for Table 1 (with qP = 1.5). The results are summarized in Table 4. It
is notable that when p, rl and ru are fixed, the coverage probability increases with
the sample size, so the method gets more conservative.
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Table 4. Performance of SRM(q, 1, p, rl, ru, δ) when 500 runs of the method are used, each having
n samples. P(δ) denotes the coverage probability of the two-sided CI for the particular value of δ;
Pl(δ) (Pu(δ)) is the coverage probability of the one-sided CI [zα,∞) (CI (−∞, zα]) where α =
0.025 (α = .975).

rl ru n P(0) Pl(0) Pu(0) P(1) Pl(1) Pu(1) L

p = 1.1 5 5 500 0.962 0.976 0.986 0.978 1 0.978 74.77

p = 1.1 5 5 1000 0.986 0.988 0.998 0.99 1 0.99 89.69

p = 1.1 5 5 2000 0.976 0.98 0.996 0.996 1 0.996 71.7

p = 1.1 2 5 500 0.914 0.932 0.982 0.952 0.99 0.962 74.34

p = 1.2 5 5 500 0.944 0.98 0.964 0.948 1 0.948 48.68

p = 1.2 5 5 1000 0.958 0.978 0.98 0.958 1 0.958 43.82

p = 1.2 5 5 2000 0.974 0.984 0.99 0.966 1 0.966 48.67

p = 1.2 3 6 500 0.932 0.946 0.964 0.946 0.996 0.95 24.69

p = 1.2 6 7 500 0.934 0.97 0.968 0.97 1 0.97 50.45

p = 1.2 3 6 1000 0.93 0.952 0.978 0.96 0.992 0.968 52.52

p = 1.2 6 7 1000 0.968 0.982 0.986 0.97 0.998 0.972 168.52

p = 1.2 3 2 2000 0.93 0.972 0.958 0.938 0.998 0.94 236.21

p = 1.2 2 4 2000 0.946 0.956 0.99 0.946 0.986 0.96 41.4

p = 1.3 5 5 500 0.91 0.974 0.936 0.888 1 0.888 44.88

p = 1.3 5 5 1000 0.936 0.964 0.972 0.928 0.998 0.93 37.03

p = 1.3 5 5 2000 0.954 0.972 0.982 0.942 0.998 0.944 35.56

p = 1.3 5 7 500 0.89 0.964 0.934 0.91 0.998 0.912 37.24

p = 1.4 5 5 500 0.858 0.952 0.906 0.864 0.998 0.866 36.86

p = 1.4 5 5 1000 0.898 0.96 0.938 0.888 0.994 0.894 43.51

p = 1.4 5 5 2000 0.926 0.964 0.962 0.94 0.996 0.944 29.27

p = 1.4 6 7 500 0.88 0.964 0.916 0.87 0.998 0.972 31.86

p = 1.4 5 8 1000 0.928 0.96 0.968 0.92 0.998 0.922 34.02

Bootstrapping versus ASCLT algorithm. In the final set of simulations we see
what happens if we pair the resampling approach with bootstrapping (see [11]),
instead of the ASLT algorithm. Briefly, the bootstrap method BRM(q′, p,m) fol-
lows the lines of the algorithm of Section 2.1, with the only difference being that
the two estimated distribution functions Edfl and Edfu are not estimated using the
algorithm of Section 2.2 but by using a bootstrap sample of size m (see [13] for
details). The results are given in Table 5; the underlying data is generated from the
same nearly power laws as for Table 1 (with qP = 1.5). For all the methods studied,
two-sided symmetric 95% confidence intervals for the mean are derived by mak-
ing 500 runs, each using 1000 samples. The coverage probabilities for the SRM
methods remain relatively closer to the desired 95% for all values of parameters
and sample size (see Table 4, section pertaining to p = 1.2 for more details) when
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compared to the BRM setting. Table 5 shows that as m grows, BRM(1, 1.2,m) be-
comes more conservative; similar trends were observed for SRM(q, 1, 1.2, 5, 5, δ)
as the size of samples was increased, but the results become far less conservative
for the SRM(q, 1, 1.2, ·, ·, ·) methods (see Table 4, section pertaining to p = 1.2
for more details).

Table 5. SRM versus bootstrap. Comparison of different estimators for a 95% CI for two-sided
symmetric 95% confidence intervals for the mean are derived by making 500 runs, each using 1000
samples.

Estimator Coverage probability Length of CI

SRM(1.5,1,1.2,5,5,0) 0.96 44.27

BRM(1,1.2,50) 0.984 33.72

BRM(1,1.2,200) 0.988 35.96

BRM(1,1.2,500) 0.994 34.87

Normal 0.576 6.26

Comments on the choice of parameters. In order to apply the previous estimations
to a given data set (Xi)i¬n, one needs to have some pre-information on the exist-
ing moments q. This can be done by obtaining a rough numerical or theoretical
estimate of the decay of the distribution on the X-variables. Since q′ is given as the
moment to be estimated, the choice of p is determined by q′ < q/p but the quotient
should not be close to q′ (see Table 4). The parameters ru, rl and n0 are chosen
to make the estimation more precise. One needs min {ru, rl}  2 (see Table 3)
but should not have too many of those permutations since otherwise limiting pro-
cedures for permutation statistics may interfere. As mentioned before, there is an
intuitive reason for choosing these parameters  2: Since we need to estimate tail
probabilities of distributions which have widely spread out tails, one needs to have
many points in those tail regions. This is accomplished by the permutation proce-
dure. Certainly, for very large sample sizes n one may not need this trick. The role
of n0 was explained in footnote 1 in Section 2.1. The notation δ = 0 or 1 is used
to denote the way how the confidence interval is centered, either by XY

Y
or by X

Y
.

The simulation shows that there is not much difference choosing either of them.
The R-code of the program is available in [9].

4.3. An application to neural avalanches. The Abelian distribution is important in
models studying neural avalanches (see [12, 17, 18]), and it belongs to the class
of Quasi Binomial II distributions [5]. Neural avalanches were observed in field
studies, for example by Beggs et al. [1, 2]. Cultured slices from the brain were at-
tached to multielectrode ensembles, and LFP (Local Field Potential) signals were
recorded. The data retrieved showed brief intervals of activity, when electrodes
detected LFPs above the threshold. The period between these short bursts of ac-
tivity was marked by idleness. A sequence of such sustained activity was called
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an avalanche. There are models [12] where the avalanche size (number of neurons
firing during an avalanche) statistic follows an Abelian distribution. Recall that this
distribution is a probability distribution on {1, . . . , N} defined by the probability
density

P (ZN,p = b) = CN,p

(
N − 1

b− 1

)
pb−1(1− bp)N−b−1bb−2,

where CN,p is the normalization constant defined by CN,p = 1−Np
1−(N−1)p with

N ∈ N and p ∈ (0, 1/N) ([17], see also [18]). The p in the Abelian distribution is
often taken as α/N , where 0 < α < 1. It is known [17, 18] that

(4.2) E(ZN,α/N ) =
N

N − (N − 1)α
, hence lim

N→∞
E(ZN,α/N ) =

1

1− α
,

and (see [7])

(4.3) lim
N→∞

V (ZN,α/N ) =
α

(1− α)3
.

We note that (4.3) can be proved by borrowing results about Quasi Binomial II dis-
tributions [6], and asymptotic properties of incomplete gamma integrals. However,
an elementary simple proof is given in [7].

The parameter N represents the number of neurons; in practice it is a large
number. Also avalanches have been observed for collections of neurons of various
sizes [1, 19, 21, 27, 25, 20, 8]; as such, they are not presumed to be a phenomenon
dependent on N . For a healthy brain the parameter α is hypothesized to be close
to 1 (see [12]). At α = 1 it is easy to show that (see [17])

lim
α→1

lim
k→∞

lim
N→∞

P (ZN,α/N = k)

Ck−1.5
= 1.

All of this has three main consequences:

1. For neural avalanche data the ratio of the underlying variance and mean will
be very large.

2. The distribution follows a nearly power law with critical exponent 1.5. This
is in agreement with experimental observations where avalanche size distributions
have been found to follow power-law statistics, possibly with exponential cut-
off [26, 1].

3. The quantity α is a useful parameter to be estimated from the data, since the
extent of its closeness to 1 is thought to be a measure of the health of the brain.
The quantity α can be estimated by estimating the mean.

So this motivates us to estimate the mean of neural avalanche data (using (4.2),
one can estimate the confidence interval for α using the confidence intervals for
the mean) using the SRM algorithm.
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Outline of simulations

Data: We use synthetic data. Our data is generated from a 1.5 exponent power law
with upper cut-off at xm (we will analyze several data sets with different values
of xm). We will generate n = 1000 iid instances of the data for each experiment,
denoted by X1, . . . , Xn.

Results and discussion: CLT and SRM methods (p value used is 1.7) for cal-
culating confidence intervals for α for three different values of xm are shown in
Figure 3.
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Figure 3

On the x-axes we indicate the method used to obtain confidence intervals for α.
On the y-axes is shown the range of the 4% confidence interval obtained for each
method. Red dots indicate the ends of the confidence intervals. The blue▽ symbol
indicates that a lower bound for the confidence interval cannot be calculated using
the method in question. To calculate confidence intervals we use 1000 instances of
synthetic data. The points indicated by × show the sample mean calculated from
900000 instances of synthetic data. The leftmost inset is to show the SRM results
for this case more prominently.

Our simulation studies throw up some features worth noting:

1. To check if our results are accurate we derive the sample mean from a much
larger amount of synthetic data than what is used for establishing confidence inter-
vals. This estimate will be called the precise sample mean and is marked by a × in
Figure 3.

2. When xm = ∞, the data is generated from a 1.5 exponent power law
over all of the positive integers. This distribution has both infinite first and sec-
ond moments. In such a setting both the SRM and CLT methods will fail. As
xm grows larger, the accuracy of both methods deteriorates. However, because
the CLT method depends on higher moment conditions, its accuracy deteriorates
faster. Note, however, that for xm = 105 the precise sample mean is near the center
of the confidence interval calculated by the SRM method. But for xm = 8×105 the
lower bound of the confidence interval is quite far away from the precise sample
mean.



38 A. Das, M. Denker, A. Levina, L. Tabacu

3. It is interesting to note that the methods can sometimes fail to give any lower
bound for the confidence interval. The reason for this is as follows: We derive
the confidence interval for α from the confidence interval for the mean µ using the
understanding µ = 1

1−α . For this one requires that both upper and lower confidence
bound estimates for the mean be positive; absence of such conditions can result in
lack of bounds. This happens in the case of the CLT method for xm = 8× 105 and
xm = 6×105. Although the underlying data is non-negative valued, the variance is
so large that the lower confidence bound obtained for the mean using CLT becomes
negative.
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