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Abstract. This paper consists of two parts. In part I, existence and unique-
ness of solution for fractional stochastic differential equations driven by
G-Brownian motion with delays (G-FSDEs for short) is established. In part
II, the averaging principle for this type of equations is given. We prove un-
der some assumptions that the solution of G-FSDE can be approximated by
solution of its averaged stochastic system in the sense of mean square.
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1. INTRODUCTION

Fractional stochastic differential equations (FSDEs for short) have been applied to
describe problems that arise in a variety of fields with memory effect, including
finance, physics and optimal control. Among the important theoretical results on
FSDEs, we cite the existence and uniqueness of solution, stability results, and the
averaging principle for fractional systems with perturbations [3, 2, 4, 12].

On the other hand, the theory of sublinear expectation has been of interest to
many researchers due to important potenial applications in uncertainty problems.
The concept of uncertainty in fluctations was studied by Peng [9, 10, 11], who es-
tablished a new stochastic process called G-Brownian motion as a way to incorpo-
rate the unknown volatility into financial models. Denis and Martini [5] suggested
a structure based on quasi-sure analysis from abstract potential theory to construct
a similar structure using a tight family of possibly mutually singular probability
measures. To date, problems with uncertainty based on G-Brownian motion have
been widely studied by several authors.

The solution properties of FSDEs have also been widely studied. Zhang et al.
[16] studied the existence and uniqueness of solution for SDEs of fractional order
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q > 1 with finite delays. Moghaddam and Zhang [8] studied sufficient conditions
for existence and uniqueness of solutions of fractional stochastic delay differential
equations. The averaging method is a powerful tool to strike a balance between
complex models that are more realistic and simpler models that are more amenable
to analysis and simulation. For the averaging principle for FSDEs we refer to [1,
7, 13, 14].

In this paper we study, under suitable assumptions, the existence and unique-
ness of solution, as well as the theory of averaging, for the following G-FSDE:

(1.1)

{
Dα

t X(t) = b(t,Xt)dt+ h(t,Xt)d⟨B⟩t + σ(t,Xt)dBt, t ∈ [0, T ],

X0 = Ψ := {Ψ(θ) : −τ ¬ θ ¬ 0},

where Xt = {X(t + θ) : −τ ¬ θ ¬ 0}, τ ∈ [0,+∞[, and Dα
t is the Caputo

fractional derivative with α ∈ (1/2, 1). The coefficients b, h, σ are in the space
M2

G([0, T ];R) and {⟨B⟩t, t  0} is the quadratic variation process of G-Brownian
motion. We denote by BC([−τ, 0];R) the family of bounded continuous R-valued
mappings ϕ defined on [−τ, 0] with norm ∥ϕ∥ = sup−τ¬θ¬0 |ϕ(θ)|.

This article is organized as follows. In the next section, we give some prelimi-
naries. In Section 3, we present the existence and uniqueness of solution for frac-
tional stochastic differential equation driven by G-Brownian motion. In the last
section, the averaging principle for this type of equation is given.

2. PRELIMINARIES ON SUBLINEAR EXPECTATION

In this section, we introduce notations and preliminary results in the G-framework
which we need. Further details can be found in [6, 9, 10, 11].

Let Cb,lip(Rn) be the space of all bounded and Lipschitz continuous functions
on Rn. Let T ∈ R+ be a fixed time. Consider the space Ω of all real valued
continuous functions on [0, T ] such that ω(0) = 0 equipped with the following
distance:

ρ(ω1, ω2) =
∞∑
n=1

2n
(
max
t=[0,n]

|ω1
t − ω2

t | ∧ 1
)
, ω1, ω2 ∈ Ω,

and consider the canonical process Bt(ω) = ωt for t ∈ [0,∞) and ω ∈ Ω. Let

Lip(Ωt) := {ϕ(Bt1 , Bt2 −Btn) : t1, . . . , tn ∈ [0, t], ϕ ∈ Cb,lip(Rn)},

Lip(Ω) :=
∞⋃
n=1

Lip(Ωn).

We have Lip(Ωt) ⊂ Lip(ΩT ) for each t ∈ [0, T ].
A functional Ê : H := Lip(Ω) → R is a consistent sublinear expectation on

the latticeH of real functions if it satisfies:
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• Monotonicity: for all X,Y ∈ H, X  Y ⇒ Ê[X]  Ê[Y ].

• Constant preserving: for all c ∈ R, Ê[c] = c.

• Subadditivity: for all X,Y ∈ H, Ê[X + Y ] ¬ Ê[X] + Ê[Y ].

• Positive homogeneity: for all λ  0, Y ∈ H, Ê[λX] = λÊ[X].

The triplet (Ω,H, Ê) is a sublinear expectation space.

DEFINITION 2.1. Let Y = (Y1, . . . , Yn) be an n-dimensional random vector
on (Ω,H, Ê). It is said to be independent of an m-dimensional random vector
X = (X1, . . . , Xm) if for each φ ∈ Cb,lip(Rn+m),

Ê[φ(X,Y )] = Ê
[
Ê[φ(x, Y )]x=X

]
.

DEFINITION 2.2 (G-Brownian motion). The canonical process (Bt)t0 on
(Ω,H, Ê) is called a G-Brownian motion if the following properties are satisfied:

(1) B0 = 0.

(2) For any t, s  0 the increment Bt+s −Bt is N (0, [sσ2, sσ2])-distributed.

(3) (Bt1 , . . . , Btn) is independent of Bt for all n  1 and t1, . . . , tn ∈ [0, t].

We denote by Lp
G(ΩT ) (p  1) the Banach space completion of Lip(ΩT ) un-

der the natural norm ∥X∥p := Ê[|X|p]1/p and we consider the following simple
processMp,0

G (0, T ): for a given partition πT = {t0, t1, . . . , tN} of [0, T ],{
ηt(ω) =

N−1∑
j=0

ξj(ω)I[tj ,tj+1)(t), ξj ∈ Lp
G(Ωtj )

}
.

Let us denote byMp
G(0, T ) the completion ofMp,0

G (0, T ) under the norm

∥η∥Mp
G(0,T ) :=

[T∫
0

Ê[|ηs|p] ds
]1/p

, p  1.

For each η ∈M2,0
G (0, T ), the related Ito integral of (Bt)t0 is defined by

I(η) =
T∫
0

η(s) dBs :=
N−1∑
j=0

ηj(Btj+1 −Btj ),

where the mapping I : M2,0
G (0, T ) → L2

G(ΩT ) is continuously extended to
M2

G(0, T ). The quadratic variation process ⟨B⟩t of (Bt)t0, defined by

⟨B⟩t := B2
t − 2

t∫
0

Bs dBs.
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For each η ∈M1,0
G (0, T ), let J :M1,0

G (0, T )→ L1
G(ΩT ) be given by

J(η) =
T∫
0

η(t) d⟨B⟩t :=
N−1∑
j=0

ξj(⟨B⟩tj+1 − ⟨B⟩tj ).

Then J can be extended continuously toM1
G(0, T ).

DEFINITION 2.3. We define the capacity C associated with Ê by putting

C(A) := sup
p∈P

P (A), A ∈ B(Ω).

We will say that a set A ∈ B(Ω) is polar if C(A) = 0. We say that a property holds
quasi-surely (q.s. for short) if it holds outside a polar set.

LEMMA 2.1 ([11]). Let X ∈ Lp
G(Ω). Then for each α > 0,

C(|X| > α) ¬ Ê[|X|p]
αp

.

The following two lemmas are the G-BDG type inequalities with respect to the
quadratic variation process ⟨B⟩t and Bt respectively.

LEMMA 2.2. Let p  1, η ∈Mp
G(0, T ) and 0 ¬ s ¬ t ¬ u ¬ T . Then

Ê
[
sup

s¬t¬u

∣∣∣ t∫
s

ηv d⟨B⟩v
∣∣∣p] ¬ C1|u− s|p−1

u∫
s

Ê[|ηv|p] dv,

where C1 is a positive constant independent of η.

LEMMA 2.3. Let p  2, η ∈Mp
G(0, T ) and 0 ¬ s ¬ t ¬ u ¬ T . Then

Ê
[
sup

s¬t¬u

∣∣∣ t∫
s

ηv dBv

∣∣∣p] ¬ C2|u− s|p/2−1
u∫
s

Ê[|ηv|p] dv,

where C2 is a positive constant independent of η.

We will need the generalized Gronwall lemma:

THEOREM 2.1 ([15]). Let β > 0 and b  0. Assume that a, u are nonnegative
and locally integrable functions defined on [0, T ] such that

u(t) ¬ a(t) + b
t∫
0

(t− s)β−1u(s) ds.

Then

u(t) ¬ a(t) +
t∫
0

[ ∞∑
n=1

(bΓ(β))n

Γ(nβ)
(t− s)nβ−1a(s)

]
ds for each 0 ¬ t < T.
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COROLLARY 2.1 ([15]). Under the hypotheses of Theorem 2.1, let a(t) be a
nondecreasing function on [0, T ). Then

u(t) ¬ a(t)Eβ(bΓ(β)t
β),

where Eβ is the Mittag-Leffler function defined by Eβ(z) =
∑∞

k=0
zk

Γ(kβ+1) .

3. EXISTENCE AND UNIQUENESS

The objective of this section is to prove, under suitable conditions, existence and
uniqueness of the solution of equation (1.1), where the functions b(·, x), h(·, x)
and σ(·, x) are inM2

G([0, T ]) for each x ∈ R. To this end, we make the following
assumptions:

(H1) The functions J = b, h, σ : [0, T ] × BC([−τ, 0];R) × Ω → R satisfy
the Lipschitz condition with respect to x, uniformly in t, that is, for any
x, y ∈ BC([−τ, 0];R),

|J(t, x)− J(t, y)|2 ¬ D∥x− y∥2 q.s.,

(H2) |J(t, 0)|2 ¬ P q.s.

uniformly with respect to t, where D and P are positive constants.

DEFINITION 3.1. We say that the process X ∈ M2
G([−τ, T ]) is a solution of

equation (1.1) with initial condition Ψ if for all t ∈ [0, T ],

X(t) = Ψ(0) +
1

Γ(α)

t∫
0

(t− s)α−1b(s,Xs) ds(3.1)

+
1

Γ(α)

t∫
0

(t− s)α−1h(s,Xs) d⟨B⟩s

+
1

Γ(α)

t∫
0

(t− s)α−1σ(s,Xs) dBs

and X(t) = Ψ(t) for all t ∈ [−τ, 0].

THEOREM 3.1. Let assumptions (H1) and (H2) be satisfied. Then the G-FSDE
(1.1) has a unique solution inM2

G([−τ, T ]).

Proof. Uniqueness. Let X,Z ∈ M2
G([−τ, T ]) be two solutions of (1.1) with

the same initial condition Ψ. First, observe that for all 0 ¬ s ¬ T ,

∥Xs − Zs∥ ¬ sup
u∈[−τ,s]

|X(u)− Z(u)| ¬ sup
u∈[0,s]

|X(u)− Z(u)|.
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It is clear that for 0 ¬ t ¬ T ,

X(t)− Z(t) =
1

Γ(α)

t∫
0

(t− s)α−1[b(s,Xs)− b(s, Zs)] ds

+
1

Γ(α)

t∫
0

(t− s)α−1[h(s,Xs)− h(s, Zs)] d⟨B⟩s

+
1

Γ(α)

t∫
0

(t− s)α−1[σ(s,Xs)− σ(s, Zs)] dBs,

so that

sup
t∈[0,T ]

|X(t)− Z(t)|2 ¬ 3

Γ(α)2
sup

t∈[0,T ]

∣∣∣∣ t∫
0

(t− s)α−1[b(s,Xs)− b(s, Zs)] ds

∣∣∣∣2
+

3

Γ(α)2
sup

t∈[0,T ]

∣∣∣∣ t∫
0

(t−s)α−1[h(s,Xs)−b(s, Zs)] d⟨B⟩s
∣∣∣∣2

+
3

Γ(α)2
sup

t∈[0,T ]

∣∣∣∣ t∫
0

(t−s)α−1[σ(s,Xs)−σ(s, Zs)] dBs

∣∣∣∣2.
Applying the Cauchy–Schwarz, Hölder and G-BDG inequalities under hypoth-

esis (H1), we easily obtain the following estimate:

Ê
[
sup

t∈[0,T ]
|X(t)− Z(t)|2

]
¬ 3T 2α−1

Γ(α)2

T∫
0

(DÊ[∥Xs − Zs∥2]) ds

+
3T 2α−1C1

Γ(α)2

T∫
0

(DÊ[∥Xs − Zs∥2]) ds

+
3C2T

2α−2

Γ(α)2

T∫
0

(DÊ[∥Xs − Zs∥2]) ds

¬ r1
T∫
0

Ê[∥Xs − Zs∥2] ds

¬ r1
T∫
0

Ê
[
sup

u∈[0,s]
|X(u)− Z(u)|2

]
ds,

where r1 =
3DT 2α−2(T+TC1+C2)

Γ(α)2
. It follows, by the classical Gronwall lemma, that

Ê
[
sup

s∈[0,T ]
|X(s)− Z(s)|2

]
= 0,

which implies that X(s) = Z(s) q.s. for any s ∈ [0, T ] and then X(s) = Z(s) q.s.
for all s ∈ [−τ, T ].
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Existence. Let X0(t) = 0 for any t ∈ [−τ, T ]. Define the following Picard
sequence: For each n  1, we set Xn

0 = Ψ and

Xn(t) = Ψ(0) +
1

Γ(α)

t∫
0

(t− s)α−1b(s,Xn−1
s ) ds(3.2)

+
1

Γ(α)

t∫
0

(t− s)α−1h(s,Xn−1
s ) d⟨B⟩s

+
1

Γ(α)

t∫
0

(t− s)α−1σ(s,Xn−1
s ) dBs.

The existence will be proved in three steps.

Step 1: We prove that

Xn(t) ∈ L2
G(Ω) for all t ∈ [0, T ].

We claim that Xn ∈M2
G([−τ, T ]). Indeed, we have

|Xn(t)|2 ¬ 4|Ψ(0)|2 + 4

Γ(α)2

∣∣∣ t∫
0

(t− s)α−1b(s,Xn−1
s ) ds

∣∣∣2
+

4

Γ(α)2

∣∣∣ t∫
0

(t− s)α−1h(s,Xn−1
s ) d⟨B⟩s

∣∣∣2
+

4

Γ(α)2

∣∣∣ t∫
0

(t− s)α−1σ(s,Xn−1
s ) dBs

∣∣∣2.
Applying the Cauchy–Schwarz, Hölder and G-BDG inequalities, we get

Ê
(

sup
t∈[0,T ]

|Xn(t)|2
)
¬ 4|Ψ(0)|2

+
4T

Γ(α)2
Ê
(

sup
t∈[0,T ]

t∫
0

(t− s)2α−2|b(s,Xn−1
s )|2 ds

)
+

4TC1

Γ(α)
Ê
(

sup
t∈[0,T ]

t∫
0

(t− s)2α−2|h(s,Xn−1
s )|2 ds

)
+

4C2

Γ(α)
Ê
(

sup
t∈[0,T ]

t∫
0

(t− s)2α−2|σ(s,Xn−1
s )|2 ds

)
.

From (H1) and (H2), we derive

|J(s, x)|2 ¬ 2|J(s, x)− J(s, 0)|2 + 2|J(s, 0)|2 ¬ 2D∥x∥2 + 2P.
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It follows that

Ê
[
sup

t∈[0,T ]
|Xn(t)|2

]
¬ 4∥Ψ∥2

+
8T

Γ(α)2

T∫
0

(t− s)2α−2(DÊ[∥Xn−1
s ∥2] + P ) ds

+
8TC1

Γ(α)

T∫
0

(t− s)2α−2(DÊ[∥Xn−1
s ∥2] + P ) ds

+
8C2

Γ(α)

T∫
0

(t− s)2α−2(DÊ[∥Xn−1
s ∥2] + P ) ds

¬ 4∥Ψ∥2 + 8PT 2α−1(T + TC1 + C2)

(2α− 1)Γ(α)2

+
8D(T + TC1 + C2)

Γ(α)2

T∫
0

(t− s)2α−2Ê[∥Xn−1
s ∥2] ds.

Noting that

∥Xn−1
s ∥2 ¬ sup

u∈[−τ,s]
|Xn−1(u)|2 ¬ ∥Ψ∥2 + sup

u∈[0,s]
|Xn−1(u)|2,

it follows that

Ê
(

sup
t∈[0,T ]

|Xn(t)|2
)

¬ 4∥Ψ∥2 + 8PT 2α−1(T + TC1 + C2)

(2α− 1)Γ(α)2

+
8D(T + TC1 + C2)

Γ(α)2

T∫
0

(t− s)2α−2Ê
[
∥Ψ∥2 + sup

u∈[0,s]
|Xn−1(u)|2

]
ds

¬ r2 + r3
T∫
0

(t− s)(2α−1)−1Ê
(

sup
u∈[0,s]

|Xn−1(u)|2
)
ds,

where

r2 = 4∥Ψ∥2
(
1 +

2DT 2α−1(T + TC1 + C2)

(2α− 1)Γ(α)2

)
+

8PT 2α−1(T + TC1 + C2)

(2α− 1)Γ(α)2
,

r3 =
8D(T + TC1 + C2)

Γ(α)2
.
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On the other hand, for any k  n, we have

max
1¬n¬k

Ê
(

sup
t∈[0,T ]

|Xn(t
)
|2)

¬ r2 + r3
T∫
0

(t− s)2α−2 max
1¬n¬k

Ê
(

sup
u∈[0,s]

|Xn−1(u
)
|2) ds.

Moreover,

max
1¬n¬k

Ê
(

sup
u∈[0,s]

|Xn−1(u)|2
)
¬ max

{
Ê∥Ψ∥2, max

1¬n¬k
Ê
(

sup
u∈[0,s]

|Xn(u)|2
)}

¬ ∥Ψ∥2 + max
1¬n¬k

Ê
(

sup
u∈[0,s]

|Xn(u)|2
)
.

Therefore,

max
1¬n¬k

Ê
(

sup
t∈[0,T ]

|Xn(t)|2
)

¬ r2 + r3
T∫
0

(t− s)2α−2
(
∥Ψ∥2 + max

1¬n¬k
Ê
(

sup
u∈[0,s]

|Xn(u)|2
))

ds

¬ r4 + r3
T∫
0

(t− s)2α−2 max
1¬n¬k

Ê
(

sup
u∈[0,s]

|Xn(u)|2
)
ds,

where r4 = r2 + r3
T 2α−1

(2α−1)∥Ψ∥
2. Now by Corollary 2.1, we get

max
1¬n¬k

Ê
(

sup
t∈[0,T ]

|Xn(t)|2
)
¬ r4E2α−1(r3Γ(2α− 1)T 2α−1).

We deduce that

(3.3) Ê
(

sup
t∈[0,T ]

|Xn(t)|2
)
¬ r4E2α−1(r3Γ(2α− 1)T 2α−1),

so that

Ê(|Xn(t)|2) ¬ r4E2α−1(r3Γ(2α− 1)T 2α−1) for each t ∈ [0, T ],

which implies that Xn(t) ∈ L2
G(Ω). We deduce that

∥Xn∥2M2
G([−τ,T ]) =

T∫
−τ

Ê(|Xn
s |2) ds

=
0∫
−τ
∥Ψ∥2ds+

T∫
0

Ê(|Xn
s |2) ds

¬ τ∥Ψ∥2 + Tr4E2α−1(r3Γ(2α− 1)T 2α−1),

which means that Xn ∈M2
G([−τ, T ]).
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Step 2: We prove that (Xn)n∈N is a Cauchy sequence inM2
G([0, T ]). Consider

the space

HT :=
{
X ∈M2

G([0, T ]) : Ê
[
sup

s∈[0,T ]
|X(s)|2

]
<∞

}
equipped with the norm

N(X) =
(
Ê
[
sup

s∈[0,T ]
|X(s)|2

])1/2
.

It follows from (3.2) that

X1(t)−X0(t) =
1

Γ(α)

t∫
0

(t− s)α−1b(s, 0) ds

+
1

Γ(α)

t∫
0

(t− s)α−1h(s, 0) d⟨B⟩s

+
1

Γ(α)

t∫
0

(t− s)α−1σ(s, 0) dBs.

Similarly to the proof of uniqueness, we have

Ê
[
sup

t∈[0,T ]
|X1(t)−X0(t)|2

]
¬ 3

Γ(α)2
sup

t∈[0,T ]

∣∣∣ t∫
0

(t− s)α−1b(s, 0) ds
∣∣∣2

+
3

Γ(α)2

∣∣∣ sup
t∈[0,T ]

t∫
0

(t− s)α−1h(s, 0) d⟨B⟩s
∣∣∣2

+
3

Γ(α)2
sup

t∈[0,T ]

∣∣∣ t∫
0

(t− s)α−1σ(s, 0) dBs

∣∣∣2
¬ 3T

Γ(α)2

T∫
0

(t− s)2α−2|b(s, 0)|2 ds

+
3TC1

Γ(α)2

T∫
0

(t− s)2α−2|h(s, 0)|2 ds

+
3C2

Γ(α)2

T∫
0

(t− s)2α−2|σ(s, 0)|2 ds.

Then from (H2) we get

Ê
[
sup

t∈[0,T ]
|X1(t)−X0(t)|2

]
¬ 3TP

Γ(α)2

T∫
0

(t− s)2α−2ds+
3TC1P

Γ(α)2

T∫
0

(t− s)2α−2ds+
3C2P

Γ(α)2

T∫
0

(t− s)2α−2 ds

¬ 3(T + TC1 + C2)PT 2α−1

(2α− 1)Γ(α)2
.
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It follows that

(3.4) N(X1 −X0) ¬ K,

where K =
(3(T+TC1+C2)PT 2α−1

(2α−1)Γ(α)2
)1/2. Now for any n  1 and t ∈ [0, T ] we have

Xn+1(t)−Xn(t) =
1

Γ(α)

t∫
0

(t− s)α−1[b(s,Xn
s )− b(s,Xn−1

s )] ds

+
1

Γ(α)

t∫
0

(t− s)α−1[h(s,Xn
s )− h(s,Xn−1

s )] d⟨B⟩s

+
1

Γ(α)

t∫
0

(t− s)α−1[σ(s,Xn
s )− σ(s,Xn−1

s )] dBs.

Similarly to the proof of uniqueness, we get

Ê
[
sup

t∈[0,T ]
|Xn+1(t)−Xn(t)|2

]
¬ 3

Γ(α)2
Ê
[
sup

t∈[0,T ]

∣∣∣ t∫
0

(t− s)α−1[b(s,Xn
s )− b(s,Xn−1

s )] ds
∣∣∣2]

+
3

Γ(α)2
Ê
[
sup

t∈[0,T ]

∣∣∣ t∫
0

(t− s)α−1[h(s,Xn
s )− h(s,Xn−1

s )] d⟨B⟩s
∣∣∣2]

+
3

Γ(α)2
Ê
[
sup

t∈[0,T ]

∣∣∣ t∫
0

(t− s)α−1[σ(s,Xn
s )− σ(s,Xn−1

s )] dBs

∣∣∣2]
¬ 3D(T + TC1 + C2)T

2α−2

Γ(α)2

T∫
0

Ê
(

sup
0¬t2¬t1

|Xn(t2)−Xn−1(t2)|2
)
dt1

¬ 3D(T + TC1 + C2)T
2α−2

Γ(α)2

T∫
0

Ê
(

sup
0¬t2¬t1

|Xn
t2 −Xn−1

t2
|2
)
dt1.

Then we can write, by setting γ = 3D(T+TC1+C2)T 2α−1

(2α−1)Γ(α)2 ,

Ê
[
sup

s∈[0,T ]
|Xn+1(s)−Xn(s)|2

]
¬ γ

T∫
0

Ê
(

sup
0¬t2¬t1

|Xn(t2)−Xn−1(t2)|2
)
dt1

¬ γ2
T∫
0

t1∫
0

Ê
(

sup
0¬t3¬t2

|Xn−1(t3)−Xn−2(t3)|2
)
dt1 dt2

¬ γnK
T∫
0

t1∫
0

. . .
tn∫
0

dt1 . . . dtn ¬ K
(γT )n

n!
.
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It follows that

(3.5) N(Xn+1 −Xn) ¬
(
K

(γT )n

n!

)1/2

.

For m > n,

N(Xm −Xn) = N
( m∑
i=n+1

(Xi −Xi−1)
)
¬

m∑
i=n+1

N(Xi −Xi−1)

¬
∑
i>n

N(Xi −Xi−1) ¬
∑
i>n

√
K

(γT )i

i!
.

This implies that (Xn)n∈N is a Cauchy sequence in HT and also inM2
G([0, T ]).

Let X be the limit of this sequence.

Step 3: We prove that for all t ∈ [0, T ], Xt is the solution of the G-FSDE (1.1).
By using the continuity of the norm N , we deduce from (3.3) that

(3.6) Ê
(

sup
s∈[0,T ]

|X(s)|2
)
¬ r4E2α−1(r3Γ(2α− 1)T 2α−1),

which implies that

Ê
( T∫
−τ
|X(s)|2 ds

)
= Ê

( 0∫
−τ
|X(s)|2 ds

)
+ Ê

(T∫
0

|X(s)|2 ds
)

¬ τ∥Ψ∥2 + r4TE2α−1(r3Γ(2α− 1)T 2α−1) <∞.

Therefore, X ∈M2
G([−τ, T ]).

By the uniqueness of the limit, it suffices to prove that for each t ∈
[0, T ], the sequence of random variables (Kn(t))n (resp. (Tn(t))n, (Vn(t))n)
converges in L2

G(Ω) to the random variable
∫ t

0
(t − s)α−1b(s,Xs) ds (resp.∫ t

0
(t− s)α−1h(s,Xs) d⟨B⟩s,

∫ t

0
(t− s)α−1σ(s,Xs) dBs), where

Kn(t) =
t∫
0

(t− s)α−1b(s,Xn−1
s ) ds,

Tn(t) =
t∫
0

(t− s)α−1h(s,Xn−1
s ) d⟨B⟩s,

Vn(t) =
t∫
0

(t− s)α−1σ(s,Xn−1
s ) dBs.
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Indeed, by Hölder’s inequality we have

Ê
[ t∫
0

(t− s)α−1b(s,Xn
s ) ds−

t∫
0

(t− s)α−1b(s,Xs) ds
]2

= Ê
[ t∫
0

(t− s)α−1[b(s,Xn
s )− b(s,Xs)] ds

]2
¬ T

T∫
0

(t− s)2α−2Ê|b(s,Xn
s )− b(s,Xs)|2 ds

¬ DT 2α−1
t∫
0

Ê
(

sup
r∈[0,T ]

|Xn
r −Xr|2

)
ds.

Then

Ê
[

1

Γ(α)

t∫
0

(t− s)α−1b(s,Xn
s ) ds−

1

Γ(α)

t∫
0

(t− s)α−1b(s,Xs) ds

]2
¬ DT 2α−2

Γ(α)2
(N(Xn −X))2,

which implies that

lim
n→∞

t∫
0

(t− s)α−1b(s,Xn
s ) ds =

t∫
0

(t− s)α−1b(s,Xs) ds in L2
G(Ω).

Similarly, by using G-BDG inequalities, we get

Ê
[ t∫
0

(t− s)α−1h(s,Xn
s ) d⟨B⟩s −

t∫
0

(t− s)α−1h(s,Xs) d⟨B⟩s
]2

¬ DC1T
2α−2(N(Xn −X))2

and

Ê
[ t∫
0

(t− s)α−1σ(s,Xn
s ) dBs −

t∫
0

(t− s)α−1σ(s,Xs) dBs

]2
¬ DC2T

2α−1(N(Xn −X))2,

so that

lim
n→∞

t∫
0

(t− s)α−1h(s,Xn
s ) d⟨B⟩s =

t∫
0

(t− s)α−1h(s,Xs) d⟨B⟩s in L2
G(Ω)

and

lim
n→∞

t∫
0

(t− s)α−1σ(s,Xn
s ) dBs =

t∫
0

(t− s)α−1σ(s,Xs) dBs in L2
G(Ω).

The proof is complete. ■
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COROLLARY 3.1. Let X be the solution of (1.1). Then

Ê
[

sup
t∈[−τ,T ]

|X(t)|2
]
¬ ∥Ψ∥2 + r4E2α−1(r3Γ(2α− 1)T 2α−1).

Proof. Follows from (3.6) and the fact that supt∈[−τ,0] |X(t)| = ∥Ψ∥. ■

4. THE AVERAGING PRINCIPLE

In this section, we study the averaging principle for (1.1). Let us consider the stan-
dard form of (1.1):

(4.1){
Dα

t X
ε(t) = εb(t,Xε

t )dt+
√
ε h(t,Xε

t )d⟨B⟩t +
√
ε σ(t,Xε

t ) dBt, t ∈ [0, T ],

X0 = Ψ,

where ε ∈ (0, ε0] is a small parameter with ε0 fixed. Before turning to the averaging
principle, we introduce some Lipschitz and linear growing coefficients b(·), h(·)
and σ(·) : BC([−τ, 0];R)→ R satisfying the following hypothesis:

(H3) For any (T1, x) ∈ [0, T ] × BC([−τ, 0];R), there exist bounded positive
functions αi(T1), i = 1, 2, 3, such that

1

T1

T1∫
0

|b(s, x)− b(x)| ds ¬ α1(T1)(1 + ∥x∥) q.s.,

1

T1

T1∫
0

|h(s, x)− h(x)|2 ds ¬ α2(T1)(1 + ∥x∥2) q.s.,

1

T1

T1∫
0

|σ(s, x)− σ(x)|2 ds ¬ α3(T1)(1 + ∥x∥2) q.s.

where limT1→∞ αi(T1) = 0, i = 1, 2, 3.

REMARK 4.1. Typical examples for b, h, σ satisfying hypothesis (H3) are as
follows:

(1) Let T = π and b(s, x) = h(s, x) = σ(s, x) = cos2 s
∑

k1
sin(kx(0))

k3
. Then

b(x) = h(x) = σ(x) =
1

π

∑
k1

sin(kx(0))

k3

π∫
0

cos2 s ds

=
1

2

∑
k1

sin(kx(0))

k3
.
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It is easy to check that for T1 ∈ [0, π],

1

T1

T1∫
0

|b(s, x)− b(x)| ds = 1

2T1

∑
k1

|sin(kx(0))|
k3

T1∫
0

|cos 2s| ds

¬ ∥x∥
2T1

∑
k1

1

k2

π∫
0

|cos 2s| ds ¬ π2

12T1
(1 + ∥x∥)

and for g = h, σ, we have

1

T1

T1∫
0

|g(s, x)− g(x)|2 ds = 1

4T1

(∑
k1

sin(kx(0))

k3

)2 T1∫
0

cos2 2s ds

¬ ∥x∥
2

4T1

(∑
k1

1

k2

)2 π∫
0

cos2 2s ds

¬ π

8T1

(∑
k1

1

k2

)2

(1 + ∥x∥2)

¬ π5

288T1
(1 + ∥x∥2),

which means that hypothesis (H3) is satisfied.

(2) Let T = π/2, b(s, x) = 2∥x∥ sin2 s and h(s, x) = σ(s, x) = 1. Then

b(x) = 2
∥x∥
π

π/2∫
0

(1− cos 2s) ds = ∥x∥,

so that for all T1 ∈ [0, π/2],

1

T1

T1∫
0

|b(s, x)− b(x)| ds = ∥x∥
T1

T1∫
0

|2 sin2 s− 1| ds

¬ ∥x∥
T1

π/2∫
0

|cos 2s| ds ¬ 1

T1
(1 + ∥x∥).

On the other hand, if
h(x) = σ(x) = 1,

then

1

T1

T1∫
0

|h(s, x)− h(x)|2ds = 1

T1

T1∫
0

|σ(s, x)− σ(x)|2ds = 0,

which means that hypothesis (H3) is satisfied.
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Then we have the averaging form of (4.1):

(4.2){
Dα

t Y
ε(t) = εb(Y ε

t )dt+
√
ε h(Y ε

t )d⟨B⟩t +
√
ε σ(Y ε

t ) dBt, t ∈ [0, T ],

Y0 = Ψ.

Note that, following Corollary 3.1,

Ê
[
sup

η∈[0,T ]
∥Y ε

η ∥2
]
¬ Ê

[
sup

s∈[−τ,T ]
|Y ε(s)|2

]
¬ ∥Ψ∥2 + Ê

[
sup

s∈[0,T ]
|Y ε(s)|2

]
<∞.

Now we come to the averaging principle result: we will prove that the solution to
(4.1) will converge to the solution of (4.2) in the mean square sense as ε→ 0.

THEOREM 4.1. Assume that (H1)–(H3) are satisfied. Then for a given arbi-
trarily small number δ > 0, there exist L > 0, ε1 ∈ (0, ε0] and θ ∈ (0, 1/2) such
that for all ε ∈ (0, ε1],

Ê
(

sup
t∈[−τ,Lε−θ]

|Xε(t)− Y ε(t)|2
)
¬ δ.

Proof. For any t ∈ [0, u] ⊂ [0, T ], we have

Xε(t)− Y ε(t) =
ε

Γ(α)

t∫
0

(t− s)α−1[b(s,Xε
s )− b(Y ε

s )] ds

+

√
ε

Γ(α)

t∫
0

(t− s)α−1[h(s,Xε
s )− h(Y ε

s )] d⟨B⟩s

+

√
ε

Γ(α)

t∫
0

(t− s)α−1[σ(s,Xε
s )− σ(Y ε

s )] dBs.

Firstly, we have

(4.3) Ê
[
sup

t∈[0,u]
|Xε(t)− Y ε(t)|2

]
¬ 3ε2

Γ(α)2
Ê
[
sup

t∈[0,u]

∣∣∣ t∫
0

(t− s)α−1(b(s,Xε
s )− b(Y ε

s )) ds
∣∣∣2]

+
3ε

Γ(α)2
Ê
[
sup

t∈[0,u]

∣∣∣ t∫
0

(t− s)α−1(h(s,Xε
s )− h(Y ε

s )) d⟨B⟩s
∣∣∣2]

+
3ε

Γ(α)2
Ê
[
sup

t∈[0,u]

∣∣∣ t∫
0

(t− s)α−1(σ(s,Xε
s )− σ(Y ε

s )) dBs

∣∣∣2]
= I1 + I2 + I3,
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so that

I1 ¬
6ε2

Γ(α)2
Ê
[
sup

t∈[0,u]

∣∣∣ t∫
0

(t− s)α−1(b(s,Xε
s )− b(s, Y ε

s )) ds
∣∣∣2](4.4)

+
6ε2

Γ(α)2
Ê
[
sup

t∈[0,u]

∣∣∣ t∫
0

(t− s)α−1(b(s, Y ε
s )− b(Y ε

s )) ds
∣∣∣2]

= I1.1 + I1.2.

Thanks to the Cauchy–Schwarz inequality and assumption (H1), we get

I1.1 ¬
6Dε2u

Γ(α)2

u∫
0

(t− s)2α−2Ê
[

sup
0¬s1¬s

∥Xε
s1 − Y ε

s1∥
2
]
ds(4.5)

¬ 6Dε2u

Γ(α)2

u∫
0

(t− s)2α−2Ê
[

sup
0¬s1¬s

|Xε(s1)− Y ε(s1)|2
]
ds.

Applying the Lipschitz condition and integration by parts, we obtain

I1.2 ¬
6ε2

Γ(α)2
Ê
[
sup

t∈[0,u]

∣∣∣ t∫
0

(t− s)α−1d
[ s∫
0

(b(η, Y ε
η )− b(Y ε

η )) dη
]
ds
∣∣∣2]

¬ 6ε2(α− 1)2

Γ(α)2
Ê
[
sup

t∈[0,u]

∣∣∣ t∫
0

( s∫
0

(b(η, Y ε
η )− b(Y ε

η )) dη
)
(t− s)α−2 ds

∣∣∣2].
Then together with the Cauchy–Schwarz inequality we get

I1.2 ¬
6ε2(α− 1)2u2α−3

(2α− 3)Γ(α)2
Ê
[ u∫
0

∣∣∣ s∫
0

(b(η, Y ε
η )− b(Y ε

η )) dη
∣∣∣2ds].

Set Dε(ω) :=
{
x(ω) := Y ε

η (ω) : η ∈ [0, T ]
}

for ω ∈ Ω. For all η ∈ [0, T ] ⊂
[0, T ] and all ω ∈ Ω, we have∣∣∣ s∫

0

(b(η, Y ε
η (ω))− b(Y ε

η )(ω)) dη
∣∣∣ ¬ s∫

0

|b(η, Y ε
η (ω))− b(Y ε

η (ω))| dη

¬
s∫
0

sup
x∈Dε(ω)

|b(η, x)− b(x)| dη.

On the other hand, for each δ > 0, there exists xδ ∈ Dε(ω) such that

sup
x∈Dε(ω)

|b(η, x)− b(x)| ¬ |b(η, xδ)− b(xδ)|+ δ,

so that by using hypothesis (H3) and the last two inequalities, we get∣∣∣ s∫
0

(b(η, Y ε
η (ω))− b(Y ε

η )(ω)) dη
∣∣∣ ¬ s∫

0

|b(η, xδ)− b(xδ)|dη + δs

¬ sα1(η)(1 + |xδ|) + δs ¬ s sup
η∈[0,T ]

α1(η)
(
1 + sup

x∈Dε(ω)
|x|

)
+ δs q.s.
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This implies that∣∣∣ s∫
0

(b(η, Y ε
η )− b(Y ε

η )) dη
∣∣∣ ¬ s sup

η∈[0,T ]
α1(η)

(
1 + sup

η∈[0,T ]
|Y ε

η |
)

q.s.

and

I1.2 ¬
6ε2(α− 1)2u2α−3

(2α− 3)Γ(α)2
Ê
[ u∫
0

(
s sup
η∈[0,T ]

α1(η)
(
1 + sup

η∈[0,T ]
|Y ε

η |
))2

ds
]

(4.6)

¬ 2ε2(α− 1)2u2α

(2α− 3)Γ(α)2
sup

η∈[0,T ]
α1(η)

2
(
1 + Ê

[
sup

η∈[0,T ]
∥Y ε

η ∥2
])

.

It follows from (4.5) and (4.6) that

(4.7) I1 ¬ r1.1ε
2u

u∫
0

(u−s)2α−2
Ê
(

sup
0¬s1¬s

|Xε(s1)−Y ε(s1)|2
)
ds+r1.2ε

2u2α,

where

r1.1 =
6D

Γ(α)2
, r1.2 =

2(α− 1)2

Γ(α)2(2α− 3)
sup

η∈[0,T ]
α1(η)

2
(
1 + Ê

[
sup

η∈[0,T ]
∥Y ε

η ∥2
])

.

For I2, we get in the same way

I2 ¬
6ε2

Γ(α)2
Ê
[
sup

t∈[0,u]

∣∣∣ t∫
0

(t− s)α−1(h(s,Xε
s )− h(s, Y ε

s )) d⟨B⟩s
∣∣∣2]

+
6ε2

Γ(α)2
Ê
[
sup

t∈[0,u]

∣∣∣ t∫
0

(t− s)α−1(h(s, Y ε
s )− h(Y ε

s )) d⟨B⟩s
∣∣∣2]

= I2.1 + I2.2.

Thanks to the Cauchy–Schwarz inequality, assumption (H1) and G-BDG inequal-
ities we get

(4.8) I2.1 ¬
6DC1εu

Γ(α)2

u∫
0

(u− s)2α−2Ê
(

sup
0¬s1¬s

|Xε(s1)− Y ε(s1)|2
)
ds.

Applying the Lipschitz condition and integration by parts, we obtain

I2.2 ¬
6C1uε

Γ(α)2
Ê
[ u∫
0

(u− s)2α−2d
[ s∫
0

|(h(η, Y ε
η )− h(Y ε

η ))|2 dη
]
ds
]

¬ 6C1uε(2α− 2)

Γ(α)2
Ê

u∫
0

(u− s)2α−3
( s∫

0

|(h(η, Y ε
η )− h(Y ε

η ))|2 dη
)
ds.
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By assumption (H3) we obtain

(4.9) I2.2 ¬
6C1εu

2α

Γ(α)2
sup

η∈[0,T ]
α2(η)

(
1 + Ê

[
sup

η∈[0,T ]
∥Y ε

η ∥2
])

.

It follows from (4.8) and (4.9) that

(4.10) I2 ¬ r2.1uε
u∫
0

(u−s)2α−2Ê
(

sup
0¬s1¬s

|Xε(s1)−Y ε(s1)|2
)
ds+r2.2u

2αε,

where

r2.1 = C1r1.1, r2.2 =
6C1

Γ(α)2(2α− 1)
sup

η∈[0,T ]
α2(η)

(
1 + Ê

[
sup

η∈[0,T ]
∥Y ε

η ∥2
])

.

For the last term I3, we get in the same manner

(4.11) I3¬r3.1ε
u∫
0

(u−s)2α−2Ê
(

sup
0¬s1¬s

|Xε(s1)−Y ε(s1)|2
)
ds+r3.2u

2α−1ε,

where

r3.1 = C2r1.1, r3.2 =
6C2

Γ(α)2(2α− 1)
sup

η∈[0,T ]
α3(η)

(
1 + Ê

[
sup

η∈[0,T ]
∥Y ε

η ∥2
])

Now, inserting (4.7), (4.10) and (4.11) into (4.3), we get, for any u ∈ [0, T ],

Ê
[
sup

t∈[0,u]
|Xε(t)− Y ε(t)|2

]
¬ a+ b

u∫
0

(u− s)(2α−1)−1Ê
[

sup
0¬s1¬s

|Xε(s1)− Y ε(s1)|2
]
ds,

where

a = r1.2ε
2u2α + r2.2u

2αε+ r3.2u
2α−1ε,

b = r1.1ε
2u+ r2.1uε+ r3.1ε.

By Corollary 2.1 we have

Ê
[
sup

t∈[0,u]
|Xε(t)− Y ε(t)|2

]
¬ aE2α−1(bΓ(2α− 1)u2α−1).

Let θ ∈ (0, 1/2) and L > 0. Then

(4.12) Ê
[

sup
t∈[0,Lϵ−θ]

|Xε(t)− Y ε(t)|2
]
¬ Q(ε),
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where

Q(ε) = [r1.2ε
−2θα+2L2α + r2.2L

2αε−2θα+1 + r3.2L
2α−1ε−2θα+θ+1]

× E2α−1
(
(r1.1L

1+βε2−θ−θβ + r2.1L
1+βε1−θ−θβ + r3.1L

βε1−θβ)Γ(β)
)
,

where β = 2α − 1. Since all the powers of ε, which appear in Q(ε) are positive,
we have limε→0 Q(ε) = 0. It follows that, for any given δ, there exists ε1 ∈ (0, ε0]
such that for each ε ∈ (0, ε1],

Ê
[

sup
t∈[−τ,Lε−θ]

|Xε(t)− Y ε(t)|2
]
¬ Ê

[
sup

t∈[0,Lε−θ]

|Xε(t)− Y ε(t)|2
]
¬ δ.

The proof is complete. ■

COROLLARY 4.1. Suppose that both the original G-FSDE (4.1) and the aver-
aged G-FSDE (4.2) satisfy hypotheses (H1)–(H3). Then for any ξ > 0,

lim
ε→0

C
(

sup
t∈[−τ,Lε−θ]

|Xε(t)− Y ε(t)| > ξ
)
= 0,

where C is the capacity associated with Ê.

Proof. Follows from by Lemma 2.1 with p = 2 and formula (4.12). ■
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