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Abstract. This paper consists of two parts. In part I, existence and unique-
ness of solution for fractional stochastic differential equations driven by
G-Brownian motion with delays (G-FSDEs for short) is established. In part
II, the averaging principle for this type of equations is given. We prove un-
der some assumptions that the solution of G-FSDE can be approximated by
solution of its averaged stochastic system in the sense of mean square.

2020 Mathematics Subject Classification: Primary 60H05; Secondary
60H20, 34C29.

Key words and phrases: non-linear expectation, G-Brownian motion, frac-
tional calculus, averaging principle.

1. INTRODUCTION

Fractional stochastic differential equations (FSDEs for short) have been applied to
describe problems that arise in a variety of fields with memory effect, including
finance, physics and optimal control. Among the important theoretical results on
FSDEs, we cite the existence and uniqueness of solution, stability results, and the
averaging principle for fractional systems with perturbations [3} 2, 4} [12].

On the other hand, the theory of sublinear expectation has been of interest to
many researchers due to important potenial applications in uncertainty problems.
The concept of uncertainty in fluctations was studied by Peng [9, [10, [11]], who es-
tablished a new stochastic process called G-Brownian motion as a way to incorpo-
rate the unknown volatility into financial models. Denis and Martini [S]] suggested
a structure based on quasi-sure analysis from abstract potential theory to construct
a similar structure using a tight family of possibly mutually singular probability
measures. To date, problems with uncertainty based on G-Brownian motion have
been widely studied by several authors.

The solution properties of FSDEs have also been widely studied. Zhang et al.
[16] studied the existence and uniqueness of solution for SDEs of fractional order
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q > 1 with finite delays. Moghaddam and Zhang [8] studied sufficient conditions
for existence and uniqueness of solutions of fractional stochastic delay differential
equations. The averaging method is a powerful tool to strike a balance between
complex models that are more realistic and simpler models that are more amenable
to analysis and simulation. For the averaging principle for FSDEs we refer to [1,
7,13, 14]).

In this paper we study, under suitable assumptions, the existence and unique-
ness of solution, as well as the theory of averaging, for the following G-FSDE:
(1.1) D?X(t) = b(t?Xt)dt+h(tht)d<B>t +0'(ta Xt)dBt> te [OaT]a

' Xo=V:={¥(0): -7 <0<0},
where X; = {X(t+60) : —7 < 0 < 0}, 7 € [0,400], and Dy is the Caputo
fractional derivative with o« € (1/2,1). The coefficients b, h, o are in the space
MZ,([0,T); R) and {(B);,t > 0} is the quadratic variation process of G-Brownian
motion. We denote by BC'([—, 0]; R) the family of bounded continuous R-valued
mappings ¢ defined on [, 0] with norm [|¢|| = sup_, <y [0(0)].

This article is organized as follows. In the next section, we give some prelimi-
naries. In Section 3] we present the existence and uniqueness of solution for frac-

tional stochastic differential equation driven by G-Brownian motion. In the last
section, the averaging principle for this type of equation is given.

2. PRELIMINARIES ON SUBLINEAR EXPECTATION

In this section, we introduce notations and preliminary results in the G-framework
which we need. Further details can be found in 6,9, (10} [11]].

Let Ch 1ip (R™) be the space of all bounded and Lipschitz continuous functions
on R". Let T € RT be a fixed time. Consider the space € of all real valued
continuous functions on [0, 7] such that w(0) = 0 equipped with the following
distance:

oo
pwh,w?) =Y 2”<max] lwi — wZ| A 1), whw? € Q,
n=1

t=[0,n
and consider the canonical process B;(w) = w; for ¢t € [0,00) and w € Q. Let
Llp(Qt) = {¢(BtlaBt2 — Btn) ttl1,...,tp € [O,t], qb S Cbij(Rn)},

Lip(Q) = fjl Lip(,).

We have Lip(£2;) C Lip(Q2r) foreach ¢ € [0,T].

~

A functional E : ‘H := Lip(Q2) — R is a consistent sublinear expectation on
the lattice H of real functions if it satisfies:
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Monotonicity: forall X, Y e H, X > Y = IE[X] > E[Y].

Constant preserving: for all ¢ € R, E[c] = c.

Subadditivity: forall X,Y € H, E[X + Y] < E[X] + E[Y].

Positive homogeneity: forall A > 0,Y € H, E]AX] = AE[X].

The triplet (2, H, IE) is a sublinear expectation space.

DEFINITION 2.1. Let Y = (Y7,...,Y,,) be an n-dimensional random vector

n (€, H,IE). It is said to be independent of an m-dimensional random vector
X = (X1,..., Xy, if for each ¢ € CY, 3, (R™T™),

E[p(X,Y)] = E[E[p(z,Y)]s—x].

DEFINITION 2.2 (G-Brownian motion). The canonical process (Bi):>0 on
(Q,H,E) is called a G-Brownian motion if the following properties are satisfied:

(1) Bp=0.
(2) Forany t,s > 0 the increment By, — By is N(0, [sa?, s572])-distributed.
(3) (Byy,-..,By,) isindependent of B, foralln > 1 and ¢4, ...,t, € [0,¢].

We denote by L7,(27) (p > 1) the Banach space completion of Lip(Q27) un-
der the natural norm || X||, := E[|X[P]'/? and we consider the following simple
process M%O(O, T): for a given partition 7p = {to,t1,...,tn} of [0,T],

N-1
{Ut(w) = Z fj(w)ﬂ[tj,tj+1)<t)v § € L%(Qtj)}-
7=0

Let us denote by MZ,(0, T') the completion of M%O(O, T') under the norm

Vv

1/
a0 = [[Bnplas] o1

0

For each n) € MéO(O, T'), the related Ito integral of (B;):>0 is defined by
T N—1

I(n) = fn(s) dBg := Z:O nj(Bth - Btj)7

0 j=

where the mapping I : MéO(O,T) — L%(Qr) is continuously extended to
MZ,(0,T). The quadratic variation process (B); of (By)>o, defined by

t
(B); := Bf —2 [ By dB,.
0
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For each n) € MgO(O, T),let J : MgO(O, T) — LL(S2r) be given by

T N-1
J(n) = {77(75) d(B)y := ;0 §i((B)tyn — (Blt;)-

Then J can be extended continuously to MIG(O, T).

DEFINITION 2.3. We define the capacity C associated with E by putting

C(A) = SZEP(A), A e B(Q).

We will say that a set A € B(2) is polar if C(A) = 0. We say that a property holds
quasi-surely (q.s. for short) if it holds outside a polar set.
LEMMA 2.1 ([I1). Let X € L%, (). Then for each o > 0,
E[|X|"]
C(X|>a) < —o
The following two lemmas are the G-BDG type inequalities with respect to the
quadratic variation process (B); and B, respectively.

LEMMA 22, Letp>1,ne€ ML(0,T)and 0 < s <t < u < T. Then

IE{ sup }771, d(B),

s<t<u! g

" < Crfu— st [ Bllol?) do,

where C is a positive constant independent of 1.

LEMMA 2.3. Letp > 2,n € M{(0,T) and 0 < s <t <u <T. Then

. t
E{ sup fnv dB,

s<t<u!

p u
| < Colu— st [ Blln, 7] av,

where Cs is a positive constant independent of 1.
We will need the generalized Gronwall lemma:

THEOREM 2.1 ([15]). Let 8 > 0 and b > 0. Assume that a,u are nonnegative
and locally integrable functions defined on [0, T'] such that

a(t) + bj(t — 5)P 7 u(s) ds.
0

£
=
N

2 (t— )" ta(s)| ds  foreach0 <t < T.
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COROLLARY 2.1 ([15]). Under the hypotheses of Theorem 2.1, let a(t) be a
nondecreasing function on [0,T"). Then
u(t) < a(t) B (b1 (8)¢7),

k

where Ejg is the Mittag-Leffler function defined by Eg(z) = ZZO:O m

3. EXISTENCE AND UNIQUENESS

The objective of this section is to prove, under suitable conditions, existence and
uniqueness of the solution of equation (I.I), where the functions b(-, x), h(-, x)
and o (-, ) are in MZ%([0, T) for each = € R. To this end, we make the following
assumptions:

(H;) The functions J = b,h,o : [0,T] x BC(|—7,0];R) x Q@ — R satisfy
the Lipschitz condition with respect to x, uniformly in ¢, that is, for any
z,y € BC([-7,0}; R),

[J(t,2) = J(ty)? <Dz —yl* g,

(Hy) |J(t,0)2 < P,

uniformly with respect to ¢, where D and P are positive constants.

DEFINITION 3.1. We say that the process X € MZ%([—,T)) is a solution of
equation (I.I) with initial condition W if for all ¢ € [0, T,

3.1 X(t) = B(0) + F(la) g(t _ 5o lh(s, X.) ds
+ F(loz) I )7L h(s, X,) d(B),
+ F(la) ‘Of(t — S)O‘*la(s, X;) dBg

and X (t) = ¥(¢t) forall t € [—T,0].

THEOREM 3.1. Let assumptions (H1) and (Hz) be satisfied. Then the G-FSDE
(T1) has a unique solution in M%([—7,T)).

Proof. Uniqueness. Let X, Z € MZ%([—7,T]) be two solutions of (I.I) with
the same initial condition W. First, observe that forall 0 < s < T,

[Xs = Zs|| < sup [ X(u) = Z(u)] < sup [X(u) = Z(u)].
UE[—T,3] u€(0,s]
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It is clear that for 0 <t < T,
1

X(0) = 2(0) = 55 [ =97 s X) = b(s, Z))d
+ 1“(104) {(t — 5)* 7 [h(s, Xs) — h(s, Zs)] d(B)s
+F(1a)£(t 5)* Vo (s, Xs) — o(s, Z,)| dBs,
so that
su — 2 3 su t ) 1 b(s — b(s S 2
te[O%]|X(t) Z(t)| < F(a) te[o%]£ Xs) b( ,Zs)]d
. 2
+F(Z) 2 o) { (t=5)"""[h(s, Xs) = b(s, Zs)] d(B)s
) 2
R

Applying the Cauchy—Schwarz, Holder and G-BDG inequalities under hypoth-
esis (H;), we easily obtain the following estimate:

fE[ sup | X (t) —

3T2a 17T
(1)) <
te[0,7)

Ty JORIX, ~ ZiP) ds

20—1 -
e [(DEIX. ~ 2,17 s
2a—2 T
%f(DEwX 2|1 ds
(1, — 24| ds

T
r [E
0
T/\
f]E[sup X (u) — Z(u)ﬂ ds,
0 u€l0,s]

where ] = s 21~((T$2T r) Tt follows, by the classical Gronwall lemma, that

B sup |X(s) - Z(s)| =0,
$€[0,T

which implies that X (s) = Z(s) q.s. forany s € [0, 7] and then X (s) = Z(s) q.s.
forall s € [—7,T].
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Existence. Let X°(¢) = 0 for any t € [—7,T]. Define the following Picard
sequence: For each n > 1, we set X = ¥ and

62) X0) = W(0) + s [t 9 bl X7 ) s
0
1 ‘ — 3 a—1 S n—1
e (0= s X aB),
1 ‘ _ 3 ozflo, s n—1

The existence will be proved in three steps.

Step 1: We prove that
X"(t) € LE(Q)  forallt €]0,T).

We claim that X" € MZ%([—,T)). Indeed, we have

jt’(t _ o Lp(s, X7 dsf
0

+ gl = o s x|
+ F(i)2 M(t —5)* lo(s, X" 1) dB; 2.

Applying the Cauchy—Schwarz, Holder and G-BDG inequalities, we get

B( sup [X"(t)2) <4/w(0)?
te[0,7)
4T ~ t
+ —E( sup [(t—5)>*"2b(s, X" 1)|? ds
P (te[m{( )22 )2 ds)

4TClA ¢ 200—2 —1\12

+ ——E( sup [(t—s)**"*|h(s, X ds
() (te[O,T] {( )= lA( )| )
4Cy ! 2a—2 —1y2

+ ——=E( sup |(t—s5)"* “|o(s, X7 ds ).
I'(a) <te[o,T] {( ) ot ) )

From (H;) and (Hy), we derive

(s, @) < 2 (s,2) — J(,0)" + 20 (,0)* < 2D]ja]]* + 2P,
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It follows that

B sup [X"(0)] < 4w

te[0,T]
8T . 2a 2 n—1
o | (8= P (DEXT P+ P) ds
8T01 2a0—2 ™ n—12
ey 4 = O DEIXITP) + P ds
8Cy T D) S e
+ Ty J ¢ = DENXT + P ds

SPTQO‘_l(T +71TC + Cs)
(2a— DI'(«)?
8D(T +TC, +Cy) T
Far ¢

0

— 8)* B[ X{ T[] ds

Noting that

X< sup (X Hw)P < )2+ sup [XPTH(w)?,
uE[—T,3] u€(0,s]

it follows that

B( sup [X (1))

te[0,T]

SPT?*~ YT +TCy + Cy)
(2o — DI'(«a)?

8D(T +TCy + Cs)

t— 8)2 2R |||p|2 + sup | X" 1(u)?| ds
rap L R (IR swp X )

<42 +

r2+1"3f 5@ DR (sup (X7 (w)) d,

u€l0,s]

where

5 2DT?* YT + TCy + Co) SPT?* YT +TCy + Cy)
rg =4[ V[7{ 1+ _ 2 — 2 ’
(2a — DI («) (2a — 1IN («)
SD(T +TCq + CQ)
[(a)?

r3 =
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On the other hand, for any k£ > n, we have

max E( sup |X”(t)|2)
Isn<k - Mefo,T]

2a 2 n—1 2
+ E( X ) .
Srg+r3 f lglﬁ(k use‘fops]’ (u)|%)ds

Moreover,

max E( sup | X" (u )|2) < maX{EH‘Ile, max IE( sup ]X"(u)\z)}

1<n<gk u€l0,s] 1<n< u€el0,s]

<)+ max B( sup |X7(w)?).
<k u€(0,s]

\n\

Therefore,

max E( sup |X”(t)\2)

Isn<k o Mefo, 1]
7“2+r3f 5)20 2(H\IIH2—1— max E( sup | X" (u)] >> ds
Isn< u€[0,s]
2a 2 w n 2
<oty f lglgng(usel[lops] X" (w)) ds,

where 14 = 19 4+ 13 g: 11 | ¥]|2. Now by Corollary. we get

max IE( sup | X"(t)] > < 14F9q 1 (r30(20 — 1)T27h).

lsnsk Nelo, 7]
We deduce that
(3.3) E( sup \X”(t)]2) < raBEaa1 (s (20 — 1) T2,
t€[0,T]
so that

E(|X"(1)]?) < r4Baa_1(rsT(2a — 1)T?*~ 1) foreach t € [0,7],
which implies that X™(t) € L%(Q). We deduce that

2
||Xn||M2G([77-T

T
N = f E(|X§|2)d5
0 T
= [ 1¥]%ds + [E(X7?)ds
—T 0
< 7|V + TraEoq—1(rsl'(2ac — )T 1),
which means that X" € M%([-7,T)).
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Step 2: We prove that (X™)nen is a Cauchy sequence in MZ%([0,T]). Consider
the space

Hyp = {X e M%([0, 7)) ;fE[ sup |X(s)|2} < oo}
s€[0,7]
equipped with the norm
~ 51\ /2
N(X) = (E{ sup |X(s)] D .
s€[0,7
It follows from (3.2)) that

XHt) - X $)*71b(s,0) ds

)
£ w

‘H
O+ O—

+ (t — s)* 1h(s,0) d(B),

—

(a

+ (t —5)* Lo (s,0) dB,.

—

(«

~—

Similarly to the proof of uniqueness, we have

t 2
sup t—s)*"1b(s,0)ds
I'(a)? te[0,T] {( ) (5,0) ‘

IE[ sup |X1(¢t) —Xo(t)ﬂ <

te[0,7)
S| sun [t - (s 0 i)
+ ’ sup | (t—s)* "h(s, s
[(a)? t€[0,7] 0
3 y ]
+ sup |[(t—s)* "o(s,0)
['(a)? te[0,T) {( (
3r T
< (t — 5)2272|b(s,0)|? ds
o =
3TCy 202 2
+ T(a)? {(t —5) |h(s,0)|* ds
30 T
22 5)2°72|5(s,0)|? ds.
Then from (Hy) we get
B sup [X'(1) - X°()P?]
te[0,T]
3TP 22 3TC P T _— 30,P 1. S
< (t—s)**“ds+ t—s)“*"“ds + t—s)"* *ds
2 f F( ) 0( ) P(a)g 0( )

3(T + T01 + Cy)PT?~1
(2a — 1) ()2

X
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It follows that
(3.4) NX'- X% <K,

3(T+TC1+C3) PT? ! ) 1/2

where K = ( o D) . Now forany n > 1 and ¢ € [0, 7] we have

Xn+1( ) X” _ a Z‘ a 1 8 Xg) o b(S,Xg_l)] ds
L i — 3 a—1 s ny _ s n—1

Y bf(t ) HA(s, XT) — h(s, XP7H)]d(B)s
Lt —so‘_las "y _og(s n—1

T {“ )*Ho(s, X)) —o(s, X7 1)] dB,.

Similarly to the proof of uniqueness, we get

B[ sup [x"1(t) - X ()]
te[0,7

< 3 @[Sup j’(t_s)a1[b(s,Xg)—b(s,X£1)]d8)2}

['(a)? te[0,71"0
3 = i a—1 n n—1 2
+ TP, sup [[(6 = 9" (s, X7) = s, X ) d(B). }
e I’ 0
3 = f a— n n— 2
* F(@)QELES[%I)T} [t =9 (e, X2) — ot X1 B
3D(T +TCy + Cy)T?* 2 1. U
< sup | X"(t2) — X" (¢t dt
(o) JE( e 1X"(0) = X" ()F)
3D(T +TCy + Cy)T?2 1 12
< sup | X} — X[ dty.
[()? { <0<t22t1 b= X ) !
Then we can write, by setting y = 22 (T(J;Zi}c(z))?a_l ,

T
E[ sup | X"+ (s) —Xn(s)ﬂ < ny( sup | X" (t2) —Xn—l(t2)|2) dty
s€[0,T] 0 0<ta<t

( sup X”—l(tg)—Xn—Q(tg)F) dty dis

0<t3<t2
(yT)"
nl

T
<
0

<YK

o~ o%:*
o=

..fdtl...dtn<K
0
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It follows that

Ty 1/2
(3.5) N(X™! — x7) < <K(7 ,) ) .
n:
Form > n,
N(Xm—X”):N(Z (X - xi71) )< 3 ON(X— X
1=n-+1 i=n+1
. , T)i
<ZN(XZ_XZ_1)<Z K(fy‘) )
>n i>n e

This implies that (X™),cy is a Cauchy sequence in Hr and also in MZ([0, 7).
Let X be the limit of this sequence.

Step 3: We prove that for all t € [0, T], X, is the solution of the G-FSDE (L.
By using the continuity of the norm N, we deduce from (3.3)) that

(3.6) B( sup |X()?) < raBa (rsl(2a — )T,
s€[0,T]

which implies that

T 0 T
E s)2ds) =R s)|%ds E 2d5
(J X ds) =E( [ 1X(s)Pds) +B([1X(:) ds)
< TH\I/HZ +T4TE2a_1(7“3F(205 )T2a 1) < 0.

Therefore, X € MZ([—7,T)).

By the uniqueness of the limit, it suffices to prove that for each ¢ €&
[0,T7], the sequence of random variables (K (t))n (resp. (T (t))n, (Va(t))n)
converges in L%(Q) to the random variable fot (t — 5)* 'b(s, X;)ds (resp.
[5(t = 5)° " h(s, Xs) d(B)s, [t — 5)* (s, Xs) dBy), where

&
~—~
~~
N—
I

(t—s)*b(s, X" 1) ds,

(t — $)2Lh(s, Xg‘_l) d(B)s,

53
=
I
O\& o%u. o%ﬁ.

NS
~—~
~~
S~—
—~
~+

—5)*lo(s, X" 1) dB,.



FSDE:s driven by G-Brownian motion with delays 13

Indeed, by Holder’s inequality we have

t

E[](t — )" b(s, X ds — [(t—s)*'b(s, Xs) ds] ’
0 0
= B[[(t 9" bls, XT) — b(s, X.)] ds] ’
0
< T}(t — )2 2E|b(s, X7) — b(s, X,)| ds
0

t
< DTl fE( sup | X" — XT\Q) ds

0 rel0,T7]
Then
[ 1 1 i 1 ?
El—— |(t—29)""b(s,X])d (t—s)*" bsX)d]
@ Far ¢
DT2a 2
< N(X™ - X))?
F(a)2 ( ( )) )
which implies that
t t
lim [(t— 5)2 (s, X" ds = [(t— 8)*1b(s, Xs)ds in LE(9).

Similarly, by using G-BDG inequalities, we get

~ 2
E[ (t — 8)* L h(s, XM d(B)s — [(t — s)* h(s, X )d<B>S}

o%w
o%«*

< DOIT*2(N(X™ — X))?

and
t t 2
[f )° Lo (s, X7 dBs — [(t— s)o‘_la(s,Xs)st}
0 0
< DOYT* H(N(X™ — X)),
so that
t t
lim [(t—s)* 'h(s, X})d(B)s = [(t—s)* 'h(s,Xs)d(B)s inL&()
oy 0
and

t t
lim [(¢t— 5)* lo(s, X" dB, = [(t— $)* lo(s, Xs)dBs in LE(9Q).
0

n—oo 0

The proof is complete. =
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COROLLARY 3.1. Let X be the solution of (1.1|). Then

E[ sup |X(0] < |9 + raaas (D (20 — DT,
te[—7,T)

Proof. Follows from (3.6) and the fact that supyc[_,. ) [X (1) = |V[. =

4. THE AVERAGING PRINCIPLE

In this section, we study the averaging principle for (I.1)). Let us consider the stan-
dard form of (I.1):

“4.1)
DEXE(1) = eb(t, X )dt +E(t, XEA(BY + VEolt, X7) B, e [0,T],
XU = \Ilv

where e € (0, €o] is a small parameter with ¢ fixed. Before turning to the averaging
principle, we introduce some Lipschitz and linear growing coefficients b(-), h(-)
and & (-) : BC([—T,0];R)— R satisfying the following hypothesis:

(Hz) For any (T1,z) € [0,T] x BC([—T,0];R), there exist bounded positive
functions «;(17), i = 1,2, 3, such that

1h

T { [b(s, z) = b(z)|ds < en(T1)(L+ [lz]])  gs.,

1T —

T [ 1h(s,2) = h(@)|? ds < az(T1) (1 + [l2]?)  gs.,
0

1 h

T { lo(s,z) — 7 (x)]*ds < as(T)(1 + ||z]|?) g.s.

where limp, o0 o;(11) = 0,7 =1,2,3.

REMARK 4.1. Typical examples for b, h, o satisfying hypothesis (Hs) are as
follows:

(1) Let T = 7 and b(s, z) = h(s,z) = o(s,2) = cos® s 3, M . Then

sin(kz(0))

B(x) = ) = =

T k>1 k3
sin( k:x ))

f cos® sds

1
T2



FSDE:s driven by G-Brownian motion with delays 15

It is easy to check that for T3 € [0, 7],

114 1

- |sin(kx(0))
— [ |b(s,x) = b(z)|ds = —= > ————=—= [ |cos2s|ds
5 o) =B as = o 5 PRCSO fleoca
]l 1 m?
< — 2s|d 1
v g J leos2slds < 71+ )

and for g = h, o, we have

17 e, 1 sin(kz(0))\* T,
7 lta) — gt ds = g (£ PO otz

2 2
1
< Iz 2) fcos2 2sds
>1 k 0

which means that hypothesis (Hs) is satisfied.
() LetT = 7/2, b(s,x) = 2||z|| sin? s and h(s,z) = o(s,z) = 1. Then

wwz
f —cos2s)ds = ||z,

so that for all 77 € [0, 7/2],

1T ! ,
T1{|b(8’ x) —b(z)|ds = { |2sin” s — 1| ds
7r/ 1
< f |cos2s|ds < —(1 + [|z]])-
T T
On the other hand, if B
h(z)=5(x)=1,
then
1 h - 1 h
T { |h(s,z) — h(z)|*ds = T {|a s,z) — & (x)|*ds = 0,

which means that hypothesis (Hg3) is satisfied.
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Then we have the averaging form of (@.1)):
4.2)
{wa(vs) = eb(Y)dt + ER(YS)d(B): + ea(Ye) dBy, te[0,T],
Yo=1U.

Note that, following Corollary [3.1}

B[ sup V7P| <E[ sup Y¥(s)2] <02 +E] sup [¥¥(s)P] < .
n€l0,7] se[—7,T) s€[0,T

Now we come to the averaging principle result: we will prove that the solution to
will converge to the solution of (4.2)) in the mean square sense as € — 0.

THEOREM 4.1. Assume that (H1)-(Hg) are satisfied. Then for a given arbi-
trarily small number § > 0, there exist L > 0,e1 € (0,e0] and 6 € (0,1/2) such
that for all € € (0,¢1],

B( swp x50 - ve(1)P) <6
te|—7,Le—?)

Proof. Forany t € [0,u] C [0,T], we have

XA = YE() = oy = 9" s )~ RO ds
T+ Y 8 h(s, X) — B(Y)] d(B),s
F(O‘) 0
\/‘E ¢ — g a—1 ols € F(YE
+ ey = (s, X0) — 7 () B,

Firstly, we have

@3 B[ sup X0 -y (0)F]
[t =) 05, X2) B2 ] |

32 -~
< IE[ sup
]_"(a)2 te[0,u]

t

3 = “u o Lh(s XO) _T(YE 2

* I‘(a)QELE[OSL] {(t )¢ (h(s, X5) = h(YY)) d(B)s ]
i/\ su ‘ — s a—1 ols £ —E e 2
+ TaE L2 [ 9706, XD) o) dB|

:Il+12+137
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so that
6e 2 t 2
(44 I < B sup [ [(E— )77 b(s, X9) — (s, Y)) ds |
['(a)? te0,u]' 0
662 R t 1
+ IE[ sup | [(t — $)°L(b(s, YZ) — B(Y? ))ds} ]
I'(a)? Ligjo.u) ‘({ °
=D+
Thanks to the Cauchy—Schwarz inequality and assumption (H;), we get
6De%u ¥ =~
45 Iy < g [0 87| sup |1XE, - V5P
( ) 1.1 X ]._‘(06)2 {( ) 0<51p<8 H S1 H
6De%u v

S

u 20—27 £ € 2
— | (t — E|l sup |X -Y ds.
I(O‘)Z {( S) [0251<S| (81) (Sl)‘ ] §

Applying the Lipschitz condition and integration by parts, we obtain

(t— s)ald[Z(b(n,Y;) B(Y; ))dn] ds‘ ]

2 t
Iy < B[ sup |

F(Q)Q te[0,u]' 0
6e%(a — 1) t s ) N )
< Bl [ (Y -5y dn) e - o) as] |

Then together with the Cauchy—Schwarz inequality we get

662(a—1)2 200—3 u | s B ve 2
Lo < @ a—3)F(a) [f { n))dn‘ ds}.
Set Df(w) = {z(w) (w):m €[0,T]} forw € Q. Forallp € [0,7] C
[0, 7] and all w € ), we have
(00, ;) = B ) ] < [ 060, V5 ) = B )

S

<[ sup |b(n,z) —b(z)| dn.
0 z€D*(w)

On the other hand, for each § > 0, there exists 2° € D?(w) such that

sup [b(n, z) — b(x)| < [b(n, 2°) — b(a)| + 6,
z€D*= (w)

so that by using hypothesis (H3) and the last two inequalities, we get

J 005 ) = BO7) ) ] < ] o) = (e + 0

< son(n)(1+ |2°]) + s < s sup al(n)<1 + sup ]:z:|) +ds q.s.
nel0,T] z€D#(w)
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This implies that

f(b(n,Y;)— dn‘ s sup oq(n)(l—l— sup |Y5|> q.s.
0 nel0,T] n€(0,T]

and

&

682(Oé _ 1)2u2a 3 u )
(4.6) I < s sup ai(n)(1+ sup [Y;[)) ds
12 (2@ — 3)F(O[)2 |:‘£‘( nel0,T] ( nelo,T) ‘ )) j|

2e2(a — 1)%u? 9 A
< oy sup ar(n)(1+E| sup [[Y;
20 3T Sy 0 (L EL s )

It follows from (4.5) and (4.6) that

u o~
@7 L <riicu f(u—s)QaiQE( sup |X5(51)—Y5(31)|2) ds+11.982u?,
0

0<s1<s
where
6D 2(a —1)? 5 -~
= ey T = moge s sup an(n)?(1+ B[ sup 1ve)]).
['(a)? ['(a)?(2a0 = 3) yefo1y nel0,T]

For I, we get in the same way

t

62 ~ )
L< F(a)2EL:}(1)P] {(t — 8)* Y (h(s, XZ) — h(s,Y?)) d(B), }
682 E 0 1 - 2
 pagr | 2o (690 030) ~ R )
=1Is1 + I2o.

Thanks to the Cauchy—Schwarz inequality, assumption (H;) and G-BDG inequal-
ities we get

(4.8) 1 < ———— u(u — S)ZQ_QI/['i( sup |X(s1) — Ye(sl)\Q) ds.

0<s1<s

Applying the Lipschitz condition and integration by parts, we obtain
ST 5)202 2
Irs < E [ @ d[ d ] d ]

<y B 2“3(f| <>>|2dn)
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By assumption (H3) we obtain

6Cieu™ sup « (77)(
— 2
F(Oz) n€l0,7)

It follows from (4.8) and (4.9) that

49 ha< 1+B[ sup 7))

n€l0,T]

u
4.10) Is < roque f(u—s)2o‘_2E( sup |X€(81)—Y6(51)|2) ds+rgou’®e,
0 0<s1<s

where

6C =~
ro1 = Cir11, Too = ! sup 042(77)<1 + E{ sup HYUSHQD

['(a)?(2a = 1) yepo,r) nel0,7)

For the last term /3, we get in the same manner
u

4.11)  I3<r3 € f(u—5)2a—2E( sup ’XE(SI)_YE(81)|2> ds+13 9u2% e,
0 Ogslgs

where

6Co
sup a3 (1)

W%[O,T] (1 +IAE[ sup HYn€||2D

n€l0,T]

Now, inserting @.7), (¢.10) and @.11)) into (&3)), we get, for any u € [0, 7],

r31 = Cori1, 7T32=

B sup [X(t) = Y*(0)F
t€[0,u]

Satb[(u=s)* VTR sup |X(s1) = ¥ (s1)] ds,

0 0<s1<s
where
a = T1.262u2a + T2,2u2a6 + T3,2u2a_1€,
b=r116%uU 4 o ue + T31€.
By Corollary 2.1 we have

IE[ sup |X°(t) — Yf(t)\Q] < @B (b0(20 — 1)u21).
t€[0,u]

Let# € (0,1/2) and L > 0. Then

(4.12) IE[ sup | X5(1) —Yf(t)ﬂ < Qe),
te[0,Le=?]
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where

Q(E) — [,,41.26—2904—&-2[/2@ + T2.2L2a€_29a+1 + r3.2L2a—1€—29a+9+1]

X E2a_1((r1.1L1+B8279795 + g LIHP10-08 4 7’3.1L*85179/8)F(B)),

where 8 = 2a — 1. Since all the powers of &, which appear in Q(¢) are positive,
we have lim._,o @Q(¢) = 0. It follows that, for any given J, there exists €1 € (0, £¢]
such that for each € € (0, 1],

E[ sup | X5(1) —Ye(t)\z] <E[ sup | X°(t) —Y‘f(t)\Q] <6
te[—7,Le~ ") t€[0,Le—?]

The proof is complete. m

COROLLARY 4.1. Suppose that both the original G-FSDE @) and the aver-
aged G-FSDE (&.2)) satisfy hypotheses (Hy)—(Hs). Then for any £ > 0,

lim c( sup | XE(t) — YE()| > g) —0,

e—0 te[—1,Le~ )

where C is the capacity associated with E.
Proof. Follows from by Lemma[2.1|with p = 2 and formula (4.12)). =
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