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Abstract. We give reciprocal versions of the Sclove et al. and Feller in-
equalities for moments of nonnegative random variables. Our results apply
to any nonnegative random variable. The strongest assumption is that the
moments involved must be finite. Thus, the results obtained also hold for
any empirical distribution with nonnegative data. These facts allow poten-
tial applications in numerical analysis, probability, and statistical inference,
among other disciplines. Moreover, the proposed methodology offers an al-
ternative approach to obtain new inequalities and even to improve some
known inequalities. For instance, we give new inequalities for the ratio of
gamma functions. In this context, we also improve an inequality by Bus-
toz and Ismail and some cases of inequalities due to Gurland and Dragomir
et al. Additionally, we present a new inequality for finite sums of nonneg-
ative or nonpositive numbers. For some cases, this relation improves even
the Cauchy–Bunyakovsky–Schwarz inequality.
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1. INTRODUCTION

The moments of a probability distribution determine many population properties.
Therefore, identities and inequalities for moments are a topic of scientific interest.
The purpose of this paper is to provide new moment inequalities for nonnegative
random variables. The potential applications span disciplines such as numerical
analysis, probability, statistical inference, longevity, survival, insurance, reliability,
and queuing theory.

For a nonnegative random variable X , the Sclove et al. inequality [38, (5)] is

EXr+1 EXs−1 ¬ EXr EXs, 0 ¬ r ¬ s− 1.
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A generalization of this inequality follows from Olkin and Shepp [32]:

(1.1) EXr+α EXs−α ¬ EXr EXs, r  0, 0 ¬ α ¬ s− r.

On the other hand, the inequality from Feller [11, (V.8.10)] states

(1.2) (EXs)2 ¬ EXs+α EXs−α, 0 ¬ α ¬ s.

For extensions of both inequalities, see Yeh et al. [41, Theorem 2.2(C3)]. We prove
in Proposition 2.1 that inequality (1.2) follows from (1.1). Both inequalities apply
to any nonnegative random variable such that the moments involved are finite.
In particular, these inequalities apply to absolutely continuous, discrete, or mixed
random variables. They also apply empirically:

xr+α xs−α ¬ xr xs,(1.3)

(xs)2 ¬ xs+α xs−α.(1.4)

Here nxr =
∑n

i=1 x
r
i , where x1, . . . , xn  0 is a random sample of size n  1 of

a certain target distribution.
Inequalities (1.3) and (1.4) are useful to obtain existence and uniqueness condi-

tions for parameter estimates based on numerical methods that optimize a utility or
loss function, such as maximum likelihood or least squares. For instance, in Rock-
ette et al. [36, Lemma 1], an inequality equivalent to (1.3) gives conditions for
existence and uniqueness of maximum likelihood estimates for a three-parameter
Weibull distribution.

There are other moment inequalities for specific families of absolutely contin-
uous distributions that, in contrast to (1.1)–(1.2), do not immediately extend to the
discrete case or even to the corresponding empirical case. For example, Ahmad
[2, Theorem 2.1] obtained inequalities with scaled moments EXr/r!; for r  0,
where the nonnegative random variable X belongs to the class of absolutely con-
tinuous distributions with increasing failure rate (IFR). This is a family of aging
distributions in which the target population suffers degradation or wear over time.
However, such moment inequalities do not immediately extend to the analogous
discrete case; see Hu et al. [16, Theorem 3.3]. In particular, the coefficient of vari-
ation of an IFR random variable X is less than or equal to 1: EX2 ¬ 2(EX)2.
However, this inequality is not necessarily satisfied for the analogous IFR discrete
family; see Kemp [20, Section 3.7]. Additionally, the corresponding empirical dis-
tribution presents challenges in the same sense. On the other hand, specific empiri-
cal moment inequalities are required to obtain existence and uniqueness parameter
estimates. See, for instance, Panjer [33, Theorem 2.2.2], who characterizes the so-
lution of the maximum likelihood estimator from the left-truncated extreme value
distribution. See also (5) and its explanation in Domı́nguez-Molina et al. [8], for
the moment method estimate for the generalized Gaussian distribution.
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In this work, inequalities for moments of nonnegative random variables are
obtained. Our methodology offers a wide family of moment inequalities for
nonnegative random variables, where the strongest assumption is that the moments
involved must be finite. As a consequence, the results obtained can be applied
to any empirical distribution with nonnegative data. Our main contributions are
the reciprocal versions of the inequalities of Sclove et al. (1.1) and of Feller
(1.2). As a corollary, new inequalities are obtained for the ratio of gamma
functions. Moreover, we improve the Bustoz and Ismail inequality [4, (4.4)].
For some cases, we also improve the inequalities of Gurland [14, (1)] and of
Dragomir et al. [9, (3.16)].

The second section presents the main results of this work. Before giving the
reciprocal versions of inequalities (1.1)–(1.2), we state a lemma with the Feller
alternative expectation formula [11, Lemma V.6.1], and the Hoeffding alternative
covariance formula [15, (5.6)] and [26, Section 4.]. Also, new extensions for the
discrete case are presented. Next, as a corollary, new inequalities for the ratio of
gamma functions are obtained. We additionally extend (1.1), together with the cor-
responding reciprocal inequality, to moments of power and analytic functions of
nonnegative random variables.

In the third section, a new inequality for finite sums of nonnegative or non-
positive numbers is shown. In some cases, this result improves the Cauchy–Bun-
yakovsky–Schwarz inequality.

2. POPULATION MOMENTS

In this section, we present our main contributions. In Proposition 2.1, we give the
reciprocal inequalities to those of Sclove et al. (1.1) and of Feller (1.2). The utility
of the proposed methodology for creating inequalities is represented by Corollaries
2.1–2.3; see also Remark 2.1. In particular, we give new inequalities for the ratio
of gamma functions and improve a Bustoz and Ismail inequality. The Gurland and
Dragomir et al. inequalities are also improved in some cases. In Corollary 2.3 we
conclude with a generalization of inequalities of Sclove et al.; the result involves
power and analytic functions of nonnegative random variables.

Let (X,Y ) be a vector of nonnegative random variables, with marginal survival
functions S(x) = P (X > x), S(y) = P (Y > y), and joint survival function
S(x, y) = P (X > x, Y > y), for x, y  0.

If X and Y are discrete random variables, with respective possible values
{xi}i0 and {yj}j0, define the auxiliary discrete survival functions

Ṡ(xi) = P (X ∈ {xi+1, xi+2, . . . }) =
∞∑

u=i+1

f(xu),(2.1)

Ṡ(yj) = P (Y ∈ {yj+1, yj+2, . . . }) =
∞∑

v=j+1

f(yv),
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Ṡ(xi, yj) = P (X ∈ {xi+1, xi+2, . . . }, Y ∈ {yj+1, yj+2, . . . })(2.2)

=
∞∑

u=i+1

∞∑
v=j+1

f(xu, yv) for i, j = 0, 1, 2, . . . ,

where f(xi), f(yj), and f(xi, yj) denote the respective probability functions for
X , Y , and (X,Y ). By convention, x0 = y0 = 0. If zero is not a possible value (has
zero probability), consider it as a dummy value; see [31]. The decreasing sequence
(2.1) determines the distribution of the random variable X , since f(xi) = P (X =
xi) = Ṡ(xi−1)−Ṡ(xi). Similarly, (2.2) determines the joint distribution of (X,Y ).
In particular, if the possible values for X and Y are increasing, then Ṡ(xi), Ṡ(yj),
and Ṡ(xi, yj) are the classical discrete survival functions.

LEMMA 2.1. Let (X,Y ) be a vector of nonnegative random variables and
r, s > 0, such that EXr,EY s,E[XrY s] <∞. Then:

(1) The following identities hold:

EXr = r
∞∫
0

xr−1S(x) dx,(2.3)

C(Xr, Y s) = rs
∞∫
0

∞∫
0

xr−1ys−1[S(x, y)− S(x)S(y)] dy dx.(2.4)

(2) Moreover, if X and Y are discrete random variables, with possible values
eventually monotonic, then

EXr =
∞∑
i=0

[xri+1 − xri ]Ṡ(xi),(2.5)

C(Xr, Y s) =
∞∑
i=0

∞∑
j=0

[xri+1 − xri ][y
s
j+1 − ysj ][Ṡ(xi, yj)− Ṡ(xi)Ṡ(yj)].(2.6)

(3) In particular, if the possible values for X and Y are increasing: 0 = x0 <
x1 < x2 < · · · and 0 = y0 < y1 < y2 < · · · respectively, then

EXr =
∞∑
i=0

[xri+1 − xri ]S(xi),(2.7)

C(Xr, Y s) =
∞∑
i=0

∞∑
j=0

[xri+1 − xri ][y
s
j+1 − ysj ][S(xi, yj)− S(xi)S(yj)].(2.8)

The Feller alternative expectation formula (2.3) is deduced in [11, Lemma
V.6.1]. The alternative covariance formula (2.4) is obtained in [26, Section 4], and
it is a generalization of the Hoeffding covariance formula [15, (5.6)]:

C(X,Y ) =
∞∫
0

∞∫
0

[S(x, y)− S(x)S(y)] dy dx.
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See also [39, (2.4)], [7, Theorem 1], and [25, Corollary 2.7(e) and Theorem 3.1].
Both (2.3)–(2.4) apply to general nonnegative random variables whenever the mo-
ments involved are finite.

Formulas (2.5)–(2.6) are innovations for the discrete case. In turn, these formu-
las imply (2.7)–(2.8). Formula (2.5) generalizes (2.7), since, unlike [6, (3)], [31,
Theorem 2 and Corollary 1], and [12, proof of Theorem 1], we do not assume or-
dered possible values for the random variable X . For the deduction of (2.7) via
(2.3), follow [12, proof of Theorem 1] with g(x) = xr. Similarly, the covariance
formula for the discrete case (2.6) extends (2.8); see [23, Theorem 1] and [31,
(3.17)].

Proof of Lemma 2.1. (1) Formula (2.3) is deduced in [11, Lemma V.6.1] by in-
tegration by parts and the Fubini theorem. With similar technique, (2.4) is obtained
in [26, Section 4]; it is also a consequence of [25, Theorem 3.1] with f(x) = xr

and g(y) = ys.
(2) As in the proof of (1), the underlying idea is the careful use of the Fubini

theorem. For i = 1, 2, . . . , note that

(2.9) xri =
i−1∑
j=0

(xrj+1 − xrj) =
i−1∑
j=0

(xrj+1 − xrj)
+ −

i−1∑
j=0

(xrj+1 − xrj)
−.

The terms of the two sums on the right-hand side are nonnegative. By the eventual
monotonicity of {xi}i0, one of these sums has at most n positive terms, for some
n  0 and all i  1. Then the Fubini theorem can be applied:

EXr =
∞∑
i=0

xri f(xi) =
∞∑
i=1

[i−1∑
j=0

(xrj+1 − xrj)
+ −

i−1∑
j=0

(xrj+1 − xrj)
−
]
f(xi)

=
∞∑
j=0

(xrj+1 − xrj)
+
∞∑

i=j+1

f(xi)−
∞∑
j=0

(xrj+1 − xrj)
−
∞∑

i=j+1

f(xi)

=
∞∑
j=0

(xrj+1 − xrj)
+Ṡ(xj)−

∞∑
j=0

(xrj+1 − xrj)
−Ṡ(xj)

=
∞∑
j=0

(xrj+1 − xrj)Ṡ(xj).

Similar to (2.9), for i, j = 1, 2, . . . , we have

xri y
s
j =

i−1∑
u=0

(xru+1 − xru)
j−1∑
v=0

(ysv+1 − ysv)

=
[ i−1∑
u=0

(xru+1 − xru)
+ −

i−1∑
u=0

(xru+1 − xru)
−
]

×
[j−1∑
v=0

(ysv+1 − ysv)
+ −

j−1∑
v=0

(ysv+1 − ysv)
−
]
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=
i−1∑
u=0

j−1∑
v=0

(xru+1 − xru)
+(ysv+1 − ysv)

+ −
i−1∑
u=0

j−1∑
v=0

(xru+1 − xru)
+(ysv+1 − ysv)

−

−
i−1∑
u=0

j−1∑
v=0

(xru+1 − xru)
−(ysv+1 − ysv)

+ +
i−1∑
u=0

j−1∑
v=0

(xru+1 − xru)
−(ysv+1 − ysv)

−.

The terms of the four double sums on the right-hand side are nonnegative. By the
eventual monotonicity of {xi}i0 and {yj}j0, three of these four sums have at
most n positive terms, for some n  0 and all i, j  1. Then the Fubini theorem
can be applied:

E[XrY s] =
∞∑
i=0

∞∑
j=0

xri y
s
jf(xi, yj)

=
∞∑
i=1

∞∑
j=1

i−1∑
u=0

j−1∑
v=0

[xru+1 − xru][y
s
v+1 − ysv]f(xi, yj)

=
∞∑
u=0

∞∑
v=0

∞∑
i=u+1

∞∑
j=v+1

[xru+1 − xru][y
s
v+1 − ysv]f(xi, yj)

=
∞∑
u=0

∞∑
v=0

[xru+1 − xru][y
s
v+1 − ysv]Ṡ(xu, yv).

Thus

C(Xr, Y s) = E[XrY s]− EXr EY s

=
∞∑
i=0

∞∑
j=0

(xri+1 − xri )(y
s
j+1 − ysj )Ṡ(xi, yj)

−
∞∑
i=0

(xri+1 − xri )Ṡ(xi)
∞∑
j=0

(ysj+1 − ysj )Ṡ(yj)

=
∞∑
i=0

∞∑
j=0

(xri+1 − xri )(y
s
j+1 − ysj )[Ṡ(xi, yj)− Ṡ(xi)Ṡ(yj)].

(3) This part is a particular case of (2), where the survival functions are the
respective auxiliary ones: S(xi) = Ṡ(xi), S(yj) = Ṡ(yj), and S(xi, yj) =
Ṡ(xi, yj). ■

Now, we describe two examples that illustrate the potential of Lemma 2.1(2).

• Contrary to (2.7), formula (2.5) applies for possible values that eventually de-
crease. The following example is due to the anonymous reviewer. Consider x0 = 0,
x1 = 8, x2 = 2, x3 = 4 with probability 1/8, whereas f(xi) = f(1/2i−3) =
1/2i−2 for i  4. Then

EX =
∞∑
i=0

xif(xi) =
0 + 8 + 2 + 4

8
+
∞∑
i=4

1

2i−3
1

2i−2
=

7

4
+

1

6
=

23

12
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and
∞∑
i=0

(xi+1 − xi)Ṡ(xi) = 8
7

8
− 6

6

8
+ 2

5

8
− 7

2

4

8
+
∞∑
i=4

(
1

2i+1−3 −
1

2i−3

)
1

2i−2

= 2− 1

42

∞∑
u=0

1

4u
=

23

12
= EX.

Here Ṡ(x0) = Ṡ(0) = 7/8, Ṡ(x1) = Ṡ(8) = 6/8, Ṡ(x2) = Ṡ(2) = 5/8, and

Ṡ(xi) =
∞∑

u=i+1

1

2u−2
=

1

2i−2
for i  3.

• The eventual monotonicity of the possible values is a sufficient condition for
the convergence of the series involved in (2.5)–(2.6). These results can be extended
by a careful application of the Fubini theorem. For instance, consider a random
variable without eventual monotonic possible values:

X = 0,
1

2
, 2,

1

3
, 3,

1

4
, 4, . . . .

Note that
∞∑
i=0

(xi+1 − xi)
+Ṡ(xi)−

∞∑
i=0

(xi+1 − xi)
−Ṡ(xi)

=
1

2
Ṡ(0) +

∞∑
i=1

(
i+ 1− 1

i+ 1

)
Ṡ(x2i−1)−

∞∑
i=1

(
i+ 1− 1

i+ 2

)
Ṡ(x2i).

The last two series are finite if eventually Ṡ(xi) ¬ 1/i2+ε with ε > 0. In this case,
(2.5) holds for r = 1. In contrast, the series in (2.7) does not converge, since the
sequence {(xi+1 − xi)S(xi)}i0 has a divergent subsequence: when i→∞,

(x2(i+1) − x2i+1)S(x2i+1) =

(
i+ 1− 1

i+ 1

)
S

(
1

i+ 1

)
→∞S(0) =∞.

PROPOSITION 2.1. (1) Let X be a nonnegative random variable such that

(2.10) EXr+s <∞ with r < s and rs > 0.

If

(2.11) 0 ¬ α ¬ s− r and β ¬ rs

(r + α)(s− α)
(¬ 1),

then

(2.12) EXr+α EXs−α ¬ EXr EXs ¬ β EXr+α EXs−α+(1−β) EXr+s,

or equivalently

(2.13) β C(Xr+α, Xs−α) ¬ C(Xr, Xs) ¬ C(Xr+α, Xs−α).
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(2) Let X be a nonnegative random variable such that EX2s <∞ with s ̸= 0.
If

(2.14) 0 ¬ α ¬ |s| and β ¬ s2 − α2

s2
(¬ 1),

then

(2.15) (EXs)2 ¬ EXs+α EXs−α ¬ β(EXs)2 + (1− β) EX2s,

or equivalently

(2.16) βVXs ¬ C(Xs+α, Xs−α) ¬ VXs.

Proof. (1) Let X be a nonnegative random variable that satisfies (2.10). Con-
sider α and β as in (2.11). Note that, from (2.10) and the Lyapunov inequality, all
moments of the random variable X in (2.12) are finite. In fact, for the case 0 <
r < s, r+ s is the greatest positive power involved: 0 < r, s, r+α, s−α < r+ s.
On the other hand, if r < s < 0, hypothesis (2.10) implies P (X = 0) = 0. Thus,
we can define

(2.17) Y =
1

X
> 0, u = −s, and v = −r.

Then 0 < u < v and EY u+v = EXr+s < ∞. From the Lyapunov inequality,
the following random variables also have finite moments: Y u = Xs, Y v = Xr,
Y u+α = Xs−α, and Y v−α = Xr+α. Here, all powers of Y are positive, where u+
v is the greatest. Note now that, by the definition of covariance, the first and second
inequalities of (2.12) are equivalent to the second and first of (2.13), respectively.
Hence, it is sufficient to prove the first inequality of (2.12) and the first of (2.13).

CASE 0 < r < s. The first inequality in (2.12) follows from the method of
cloning [32], which assumes 0 ¬ 2α ¬ s − r. As the first condition in (2.11)
shows, we have improved this constraint. In fact, considering Y as an independent
replica of the random variable X , we have

2(EXr EXs − EXr+α EXs−α)

= EXr EY s + EXs EY r − EXr+α EY s−α − EXs−α EY r+α

= E[XrY s +XsY r −Xr+αY s−α −Xs−αY r+α]

= E[XrY r(Y α −Xα)(Y s−r−α −Xs−r−α)]

 0 for 0 ¬ α ¬ s− r.

Therefore, the first inequality in (2.12) holds. On the other hand, Lemma 2.1(1)
applies even for the case X = Y , where S(x) is the marginal survival function
of X and Y while the joint survival function is

S(x, y) = min(S(x), S(y)), x, y  0.
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Then the arguments x and y of (2.4) are interchangeable:

C(Xr, Xs) = rs
∞∫
0

∞∫
0

xr−1ys−1[S(x, y)− S(x)S(y)] dy dx

= rs
∞∫
0

∞∫
0

xs−1yr−1[S(x, y)− S(x)S(y)] dy dx for r, s > 0.

Thus, considering (2.11), we have the first inequality in (2.13):

C(Xr, Xs)− β C(Xr+α, Xs−α)

= rs
∞∫
0

∞∫
0

xr−1ys−1[S(x, y)− S(x)S(y)] dy dx

− β(r + α)(s− α)
∞∫
0

∞∫
0

xr+α−1ys−α−1[S(x, y)− S(x)S(y)] dy dx

 rs
∞∫
0

∞∫
0

[xr−1ys−1 − xr+α−1ys−α−1][S(x, y)− S(x)S(y)] dy dx

=
rs

2

∞∫
0

∞∫
0

[xr−1ys−1 + xs−1yr−1 − xr+α−1ys−α−1 − xs−α−1yr+α−1]

× [S(x, y)− S(x)S(y)] dy dx

=
rs

2

∞∫
0

∞∫
0

xr−1yr−1(yα − xα)(ys−r−α − xs−r−α)[S(x, y)− S(x)S(y)] dy dx

 0.

CASE r < s < 0. Define Y , u, and v as in (2.17). Then

0 ¬ α ¬ s− r = v − u, β ¬ rs

(r + α)(s− α)
=

uv

(u+ α)(v − α)
.

With r and s replaced by u and v, the random variable Y satisfies (2.12):

(2.18) EY u+α EY v−α ¬ EY u EY v ¬ β EY u+α EY v−α + (1− β) EY u+v.

Remember that, from (2.10), it follows that all the moments involved of the random
variable Y are finite. Finally, notice that (2.18) is just (2.12).

(2) Consider α and β as in (2.14).

CASE 0 ¬ α < s. By the definition of variance and covariance, the first and
second inequalities of (2.15) are equivalent to the second and first of (2.16), re-
spectively:

(EXs)2 ¬ EXs+α EXs−α ¬ β(EXs)2 + (1− β) EX2s,
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(EXs)2 − EX2s ¬ EXs+α EXs−α − EX2s ¬ β[(EXs)2 − EX2s],

βVXs ¬ C(Xs+α, Xs−α) ¬ VXs.

Define u = s−α and v = s+α. Then s = u+α = v−α and β ¬ (s2−α2)/s2 =
uv/[(u + α)(v − α)]. Therefore, the last two inequalities are a particular case of
(2.13), with

VXs = C(Xu+α, Xv−α) and C(Xs+α, Xs−α) = C(Xu, Xv).

CASE 0 ¬ α < −s. Since EX2s < ∞, we have P (X = 0) = 0 and all
moments involved for the random variable X in (2.15) are finite. Therefore, the
conclusions of the above case also hold here.

Finally, the case 0 < α = |s| is trivial. ■

Inequalities (2.12) also hold for r = 0 < s, which is the Chebyshev inequality
for sums and integrals; see [22, p. 601], [28, Theorems 2.5.1 and 2.5.10], and [19,
(3)].

The potential application of Proposition 2.1 is illustrated in the following three
corollaries and a remark. In particular, we give new or improve some known in-
equalities for the ratio of gamma functions.

COROLLARY 2.1. (1) Let 0 < x ¬ y, x+ r + s, rs > 0, 0 ¬ α ¬ s− r, and
0 ¬ ρ ¬ 1. Then

1 ¬ Γ(x+ r) Γ(x+ s)

Γ(x+ r + α) Γ(x+ s− α)
(2.19)

¬ rs

(r + α)(s− α)
+

α(s− r − α) Γ(x) Γ(x+ r + s)

(r + α)(s− α) Γ(x+ r + α) Γ(x+ s− α)
,

1 ¬ Γ(x+ r) Γ(x+ s) Γ(y + r + α) Γ(y + s− α)

Γ(y + r) Γ(y + s) Γ(x+ r + α) Γ(x+ s− α)
(2.20)

¬ rs

(r + α)(s− α)

+
α(s− r − α) Γ(x) Γ(x+ r + s) Γ(y + r + α) Γ(y + s− α)

(r + α)(s− α) Γ(y) Γ(y + r + s) Γ(x+ r + α) Γ(x+ s− α)
.

Moreover, if r + s+ 1 > 0, then

1 ¬ Γ(r + 1)Γ(s+ 1)Γ(ρ(r + α) + 1) Γ(ρ(s− α) + 1)

Γ(ρr + 1)Γ(ρs+ 1)Γ(r + α+ 1)Γ(s− α+ 1)
(2.21)

¬ rs

(r + α)(s− α)

+
α(s− r − α) Γ(r + s+ 1)Γ(ρ(r + α) + 1) Γ(ρ(s− α) + 1)

(r + α)(s− α) Γ(ρ(r + s) + 1) Γ(r + α+ 1)Γ(s− α+ 1)
.
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(2) Let 0 < x ¬ y, x+ 2s > 0, 0 ¬ α ¬ |s|, and 0 ¬ ρ ¬ 1. Then

1 ¬ Γ(x+ s+ α) Γ(x+ s− α)

Γ2(x+ s)
¬ s2 − α2

s2
+

α2 Γ(x) Γ(x+ 2s)

s2 Γ2(x+ s)
,(2.22)

1 ¬ Γ(x+ s+ α) Γ(x+ s− α) Γ2(y + s)

Γ(y + s+ α) Γ(y + s− α) Γ2(x+ s)
(2.23)

¬ s2 − α2

s2
+

α2 Γ(x) Γ(x+ 2s) Γ2(y + s)

s2 Γ(y) Γ(y + 2s) Γ2(x+ s)
.

Moreover, if 2s+ 1 > 0, then

1 ¬ Γ(s+ α+ 1)Γ(s− α+ 1)Γ2(ρs+ 1)

Γ(ρ(s+ α) + 1) Γ(ρ(s− α) + 1) Γ2(s+ 1)
(2.24)

¬ s2 − α2

s2
+

α2 Γ(2s+ 1)Γ2(ρs+ 1)

s2 Γ(2ρs+ 1)Γ2(s+ 1)
.

Proof. Let X be a positive random variable, 0 < x ¬ y, and 0 ¬ ρ ¬ 1.
(1) For rs > 0 and 0 ¬ α ¬ s− r, (2.12) is equivalent to

1 ¬ EXr EXs

EXr+α EXs−α(2.25)

¬ rs

(r + α)(s− α)
+

α(s− r − α)

(r + α)(s− α)

EXr+s

EXr+α EXs−α

whenever all these moments are finite. In particular, if the distribution for X is
gamma with parameters of shape x > 0 and of scale 1, then

(2.26) EXt =
Γ(x+ t)

Γ(x)
, x+ t > 0.

Therefore, (2.19) holds. Similarly, (2.20) is given by (2.25) for the particular case
of a beta distribution, with shape parameters x, y − x > 0. Here

(2.27) EXt =
Γ(y) Γ(x+ t)

Γ(x) Γ(y + t)
, x+ t > 0.

Now, for a random variable X with a stable distribution, with characteristic expo-
nent 0 < ρ < 1, its moments are

(2.28) EXt =
Γ(1− t/ρ)

Γ(1− t)
, t < ρ.
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See [24, Lemma 5] and [30, (3.50)]. From (2.25) and (2.28), we have

1 ¬ Γ(1− r/ρ) Γ(1− s/ρ) Γ(1− r − α) Γ(1− s+ α)

Γ(1− r) Γ(1− s) Γ(1− (r + α)/ρ) Γ(1− (s− α)/ρ)
¬ rs

(r + α)(s− α)

+
α(s− r − α) Γ(1− (r + s)/ρ) Γ(1− r − α) Γ(1− s+ α)

(r + α)(s− α) Γ(1− r − s) Γ(1− (r + α)/ρ) Γ(1− (s− α)/ρ)

for r + s < ρ < 1. Let us consider the next reparameterization for r, s, and α:

u = −s

ρ
, v = −r

ρ
, and γ =

α

ρ
.

Then uv, u+ v + 1 > 0, 0 ¬ γ ¬ v − u, and

1 ¬ Γ(1 + v) Γ(1 + u) Γ(1 + ρ(v − γ)) Γ(1 + ρ(u+ γ))

Γ(1 + ρv) Γ(1 + ρu) Γ(1 + v − γ) Γ(1 + u+ γ)

¬ uv

(v − γ)(u+ γ)

+
γ(v − u− γ) Γ(1 + u+ v) Γ(1 + ρ(v − γ)) Γ(1 + ρ(u+ γ))

(v − γ)(u+ γ) Γ(1 + ρ(u+ v)) Γ(1 + v − γ) Γ(1 + u+ γ)
.

Thus, (2.21) is obtained by letting r = u, s = v, and α = γ. Here rs, r+s+1 > 0,
0 ¬ α ¬ s− r, together with 0 ¬ ρ ¬ 1.

(2) The inequalities in (2.15) are equivalent to

1 ¬ EXs+αXs−α

(EXs)2
¬ s2 − α2

s2
+

α2 EX2s

s2(EXs)2
, 0 ¬ α ¬ |s|.

Therefore, (2.22), (2.23), and (2.24) follow from (2.26), (2.27), and (2.28), respec-
tively. ■

COROLLARY 2.2. (1) Let x, y, x+ r + s > 0 and rs  0. Then

1 +
rs

x+ r + s
¬ Γ(x) Γ(x+ r + s)

Γ(x+ r) Γ(x+ s)
,(2.29)

1 +
rs

x+ s− 1
¬ Γ(x) Γ(x+ r + s)

Γ(x+ r) Γ(x+ s)
for s− r  1,(2.30)

1 +
rs

x(x+ r + s)
¬ Γ(x) Γ(x+ r + s)

Γ(x+ r) Γ(x+ s)
(2.31)

¬ 1 +
rs(2x+ r + s) Γ(2x+ r + s)

x(x+ r)(x+ s)(x+ r + s) Γ(x+ r) Γ(x+ s)

for r, s  0,

1 +
s2

x+ 2s
¬ Γ(x) Γ(x+ 2s)

Γ2(x+ s)
for x+ 2s > 0,(2.32)
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1 +
s2

x(x+ 2s)
¬ Γ(x) Γ(x+ 2s)

Γ2(x+ s)
¬ 1 +

2s2 Γ(2(x+ s))

x(x+ s)(x+ 2s) Γ2(x+ s)
(2.33)

for s  0,
(x+ y)(x+ y + 1)(1− xy)

xy(x+ 1)(y + 1)
¬ Γ(x) Γ(y)

Γ(x+ y)
¬ (x+ y)(x+ y + 1)

xy(x+ 1)(y + 1)
,(2.34)

x(x+ 1)2

2(2x+ 1)
¬ Γ(2x)

Γ2(x)
¬ x(x+ 1)

2(2x+ 1)(1− x)
(2.35)

(0 < x < 1 for the last inequality),

x+ 1/2√
x+ 1

¬ Γ(x+ 1)

Γ(x+ 1/2)
¬

√
x+

xΓ(2x)

(x+ 1)(x+ 1/2) Γ2(x+ 1/2)
,(2.36)

1 +
(y − x)2

4xy
¬ Γ(x) Γ(y)

Γ2((x+ y)/2)
¬ 1 +

(y − x)2 Γ(x+ y)

xy(x+ y) Γ2((x+ y)/2)
,(2.37)

1 +
(y − x)2

4min(x, y)
¬ Γ(x) Γ(y)

Γ2((x+ y)/2)
¬ x+ y

2min(x, y)
(2.38)

(|y − x| ¬ 2 for the last inequality).

(2) Let 0 < x ¬ y, x+ r + s > 0, rs  0, and 0 ¬ ρ ¬ 1. Then

1 +
rs(y − x)

(x+ s− 1)(y + r)
¬ Γ(x) Γ(y + r) Γ(y + s) Γ(x+ r + s)

Γ(y) Γ(x+ r) Γ(x+ s) Γ(y + r + s)
(2.39)

for s− r  1,

1 +
s2(y − x)

(x+ s− 1)(y + s)
¬ Γ(x) Γ(x+ 2s) Γ2(y + s)

Γ(y) Γ(y + 2s) Γ2(x+ s)
(2.40)

for x+ 2s > 0, |s|  1,

1 ¬ Γ(r + s+ 1)Γ(ρr + 1)Γ(ρs+ 1)

Γ(ρ(r + s) + 1) Γ(r + 1)Γ(s+ 1)
for r + s+ 1 > 0,(2.41)

Γ(ρx) Γ(ρy)

Γ2(ρ(x+ y)/2)
¬ Γ(x) Γ(y)

Γ2((x+ y)/2)
¬ 4xy Γ(ρx) Γ(ρy)

(x+ y)2 Γ2(ρ(x+ y)/2)
(2.42)

+
ρ(y − x)2 Γ(x+ y) Γ(ρx) Γ(ρy)

(x+ y)2 Γ2((x+ y)/2) Γ(ρ(x+ y))
for 0 < ρ ¬ 1.

Proof. (1) Inequalities (2.29)–(2.31) follow from the second inequality in
(2.19). With α = 1 < s− r, we have

x+ s− 1

x+ r
¬ rs

(r + 1)(s− 1)
+

(s− r − 1)(x+ s− 1) Γ(x) Γ(x+ r + s)

(r + 1)(s− 1)(x+ r) Γ(x+ r) Γ(x+ s)
,

Γ(x) Γ(x+ r + s)

Γ(x+ r) Γ(x+ s)


(
x+ s− 1

x+ r
− rs

(r + 1)(s− 1)

)
(r + 1)(s− 1)(x+ r)

(s− r − 1)(x+ s− 1)

= 1 +
rs

x+ s− 1
.
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Thus, (2.30) holds. Moreover, (2.29) is given by (2.30) with the reparameterization
v = s− 1  r, together with symmetry arguments between r and v. Similarly, for
x = 1, r > 0, and 0 ¬ α ¬ s− r, (2.19) gives

1 ¬ rsΓ(r) Γ(s)

(r + α)(s− α) Γ(r + α) Γ(s− α)

¬ rs

(r + α)(s− α)
+

α(s− r − α)(r + s) Γ(r + s)

(r + α)2(s− α)2 Γ(r + α) Γ(s− α)
,

1 +
α(s− r − α)

rs
¬ Γ(r) Γ(s)

Γ(r + α) Γ(s− α)

¬ 1 +
α(r + s)(s− r − α) Γ(r + s)

rs(r + α)(s− α) Γ(r + α) Γ(s− α)
.

Then (2.31) is obtained by a reparameterization such that x > 0 and r, s  0.
On the other hand, with r = s, inequalities (2.32) and (2.33) are particular

cases of (2.29) and (2.31), respectively.
For x = 1 in (2.31), we have

(r + 1)(s+ 1)

r + s+ 1
¬ Γ(r + s+ 1)

Γ(r + 1)Γ(s+ 1)

¬ 1 +
rs(r + s+ 2)Γ(r + s+ 2)

(r + 1)(s+ 1)(r + s+ 1)Γ(r + 1)Γ(s+ 1)
,

rs(r + 1)(s+ 1)

(r + s)(r + s+ 1)
¬ Γ(r + s)

Γ(r) Γ(s)
¬ rs(r + 1)(s+ 1)

(r + s)(r + s+ 1)(1− rs)
.

The last inequality applies only for 0 < rs < 1. Therefore, we obtain (2.34). The
particular case x = y gives (2.35).

On the other hand, (2.36) is implied by the particular case s = 1/2 of (2.33).
Inequalities (2.37) are a symmetrical form of (2.33).

The denominator in the lower bound of inequality (2.32) can be replaced by
min(x, x + 2s); look at the case 0 < x + 2s < x. Thus, the first inequality of
(2.38) holds. On the other hand, the second inequality follows from the first one of
(2.24). In fact, for α = 1 < s, we get

Γ(ρ(s+ 1)) Γ(ρ(s− 1))

Γ2(ρs)
¬ s

s− 1
for 0 < ρ ¬ 1 < s.

With a reparameterization, this gives

Γ(x) Γ(y)

Γ2((x+ y)/2)
¬ x+ y

2x
for 0 < x < y ¬ x+ 2,

from which the second inequality of (2.38) follows by arguments of symmetry
between x and y, for x, y > 0 and |y − x| ¬ 2.
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(2) For the particular case α = 1, the second inequalities in (2.20) and (2.23)
represent (2.39) and (2.40), respectively.

On the other hand, the first inequality of (2.21), with r = 0 ¬ α ¬ s, implies

1 ¬ Γ(s+ 1)Γ(ρα+ 1)Γ(ρ(s− α) + 1)

Γ(ρs+ 1)Γ(α+ 1)Γ(s− α+ 1)
.

Similarly, for s = 0 ¬ α ¬ −r < 1, (2.21) gives

1 ¬ Γ(r + 1)Γ(ρ(r + α) + 1) Γ(1− ρα)

Γ(ρr + 1)Γ(r + α+ 1)Γ(1− α)
.

Through a reparameterization, both of these inequalities are written as (2.41). An-
other implication from (2.21) is (2.42), with α = (s− r)/2 and 0 < r ¬ s. ■

REMARK 2.1. (1) In (2.20) we give a double inequality, where the first gen-
eralizes the inequality in [3, Theorem 2.5]. Indeed, for x = 1 and through the
reparameterization u = s, v = y− 1+ s, a = α, and b = s− r−α, (2.20) can be
written as

1 ¬ Γ(u+ 1)Γ(u− a− b+ 1)Γ(v − a+ 1)Γ(v − b+ 1)

Γ(u− a+ 1)Γ(u− b+ 1)Γ(v + 1)Γ(v − a− b+ 1)

¬ u(u− a− b)

(u− a)(u− b)

+
abΓ(2u− a− b+ 1)Γ(v − a+ 1)Γ(v − b+ 1)

(u−a)(u−b) Γ(v−u+1)Γ(v+u−a−b+1)Γ(u−a+1)Γ(u−b+1)
,

where a, b, v − u  0 and 2u− a− b+ 1, u(u− a− b) > 0.
(2) The Bustoz and Ismail inequality [4, (4.4)] is

(2.43) 1 ¬ Γ(x) Γ(x+ r + s)

Γ(x+ r) Γ(x+ s)
, x > 0, r, s  0.

See also [9, Theorem 4]. Inequalities (2.29), (2.30), and the first in (2.31) im-
prove (2.43). The improvements additionally include an extended range for the
parameters together with the new double inequality (2.31). On the other hand, with
the additional constraint s − r  1, (2.30) is better than (2.29). Additionally, the
first inequality in (2.31) is better than (2.29) for 0 < x < 1, and than (2.30) for
0 < r ¬ s− 1 and small x:

0 < x < ([(r + s− 1)2 + 4(s− 1)]1/2 − (r + s− 1))/2.

(3) The Gurland inequality [14, (1)] states

1 +
s2

x
¬ Γ(x) Γ(x+ 2s)

Γ2(x+ s)
, x, x+ 2s > 0.
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This inequality is improved by (2.32) and the first inequality of (2.33), for the
cases 0 < x + 2s < x and x + 2s < 1 respectively. Moreover, (2.33) is a double
inequality. The Gurland ratio has been widely studied; see, for instance, [13, 37, 5,
35, 10, 21, 27, 34, 40].

(4) From [17, (3.2)], it follows that

(2.44)
x+ y − xy

xy
¬ Γ(x) Γ(y)

Γ(x+ y)
¬ x+ y

xy(xy + 1)
, 0 < x, y ¬ 1.

The second inequality also holds for x, y > 1; see [18, (3.1)]. For x and y near
zero, the first inequality in (2.34) improves the one of (2.44). In fact,

x+ y − xy

xy
¬ (x+ y)(x+ y + 1)(1− xy)

xy(x+ 1)(y + 1)
⇐⇒ (x+ y)2 ¬ (1− x)(1− y).

Our contribution in the second inequality of (2.34) is a range without constraints
of arguments. Moreover, this inequality improves [29, (13)] or [3, (3.3)] and [9,
(3.16)] for x, y near zero: x2 + xy + y2 < 1.

(5) From [3, (3.11)] and [17, (2.8)], it follows that

(2.45)
x

2
¬ Γ(2x)

Γ2(x)
¬ x

2− x
, x > 0 (0 < x ¬ 1 for the last inequality).

Our first inequality in (2.35) improves the one of (2.45), whereas the second one is
also better than the respective inequality for 0 < x < 1/3.

(6) For s = 1/2, [34, (2.8)] states

(2.46)
√
x ¬ Γ(x+ 1)

Γ(x+ 1/2)
¬

√
x+ 1/2, x > 0.

The first inequality in (2.36) improves the lower bound of (2.46). Moreover, from
the second inequality in (2.45), the second inequality in (2.36) is also better than
the respective upper bound of (2.46), for at least 0 < x ¬ 1/2.

(7) From [17, (1.7) and (3.1)], it follows that

(2.47) 1 +
(y − x)2

4xy
¬ Γ(x) Γ(y)

Γ2((x+ y)/2)
¬ x2 + y2

2xy
, x, y > 0

(0 < x, y ¬ 1 for the last inequality). In (2.37), we give an alternative method to
obtain the first inequality in (2.47). Moreover, the first inequality in (2.38) improves
the one of (2.47) for max(x, y) > 1. Also the range of values for the second
inequality is improved and widened. In fact,

1 +
(y − x)2 Γ(x+ y)

xy(x+ y) Γ2((x+ y)/2)
¬ x2 + y2

2xy
,
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Γ(x+ y)

Γ2((x+ y)/2)
¬ x+ y

2
.

The last relationship is deduced from (2.45):

Γ(x+ y)

Γ2((x+ y)/2)
¬ (x+ y)/2

2− (x+ y)/2
¬ x+ y

2
, x, y > 0, x+ y < 2.

For |y − x| > 1, the lower bound of (2.38) improves the one of [10, (6)]:

1 +
(y − x)2

4

∞∑
k=0

1

(x+ k)(y + k)
¬ Γ(x) Γ(y)

Γ2((x+ y)/2)
, x, y > 0.

See also [27, (6) and (40)]. In fact, for 0 < x < y − 1,

1 +
∞∑
k=0

(y − x)2/4

(x+ k)(y + k)
< 1 +

∞∑
k=0

(y − x)2/4

(x+ k)(x+ k + 1)

= 1 +
(y − x)2

4
lim
n→∞

n+ 1

x(x+ n+ 1)
= 1 +

(y − x)2

4x
.

(8) Finally, we have not found a reference for inequalities (2.39)–(2.42).

COROLLARY 2.3. Let X be a nonnegative random variable such that
EXr+s+k < ∞ for 0 < r < s and all k  0. Let h(x) be an analytic func-
tion with h(k)(0)  0 for k  0. If 0 ¬ α ¬ s− r and β ¬ r/(r + α), then

(2.48) EXr+α E[Xs−αh(X)] ¬ EXr E[Xsh(X)]

¬ β EXr+α E[Xs−αh(X)] + (1− β) E[Xr+sh(X)].

In particular, if h(x) = exp(x) for x  0, then

EXr+α E[Xs−αeX ] ¬ EXr E[XseX ]

¬ β EXr+α E[Xs−αeX ] + (1− β) E[Xr+seX ].

Proof. Inequalities (2.48) follow immediately by applying (2.12) to each of the
terms of the Taylor expansion around x = 0 of h(x). In addition to the conditions
in (2.11), we need β ¬ r/(r + α). ■

Other known inequalities involving the quotients of functions can be recovered
from Proposition 2.1. For instance, the inequality

1 ¬ (ey − 1)/y

(ex − 1)/x
for x ¬ y

follows from (2.12) or (2.15), where the underlying distribution of the random
variable X is log normal, with parameters µ = 0 and σ = 1.
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3. FINITE SUMS

This section gives a new inequality for finite sums of nonnegative or nonpositive
numbers involving the exponential function. For some cases, this inequality even
improves the Cauchy–Bunyakovsky–Schwarz inequality. Its extension to the case
of nonnegative or nonpositive random variables is an open problem. This section
is self-contained.

PROPOSITION 3.1. For x1, . . . , xn  0 or x1, . . . , xn ¬ 0,

(3.1)
( n∑
i=1

xie
xi

)2
¬

n∑
i=1

x2i e
xi

n∑
i=1

(exi − 1) +
( n∑
i=1

(exi − 1)
)2

.

Proof. For n = 1, we have

(ex− 1)2+x2ex(ex− 1)− (xex)2 = (ex+xex/2− 1)(ex−xex/2− 1), x ∈ R.

The first factor of the right-hand side is positive [negative] if x > 0 [x < 0]. The
sign of the second factor is the same, since the auxiliary function

g(x) = ex − xex/2 − 1 for x ∈ R

is increasing, with g(0) = 0:

g′(x) = ex −
(
1 +

x

2

)
ex/2 = ex/2

(
ex/2 − 1− x

2

)
> 0, x ̸= 0.

For n  2, we have

(3.2)
( n∑
i=1

(exi − 1)
)2

+
n∑

i=1

x2i e
xi

n∑
i=1

(exi − 1)−
( n∑
i=1

xie
xi

)2

=
n∑

i=1

(exi − 1)2 + 2
∑
i<j

(exi − 1)(exj − 1) +
n∑

i=1

x2i e
xi(exi − 1)

+
∑
i ̸=j

x2i e
xi(exj − 1)−

( n∑
i=1

x2i e
2xi + 2

∑
i<j

xixje
xi+xj

)
=

n∑
i=1

[(exi − 1)2 + x2i e
xi(exi − 1)− x2i e

2xi ] +
∑
i<j

[2(exi − 1)(exj − 1)

+ x2i e
xi(exj − 1) + x2je

xj (exi − 1)− 2xixje
xi+xj ]

=
n∑

i=1

[(exi − 1)2 + x2i e
xi(exi − 1)− x2i e

2xi ] +
∑
i<j

g(xi, xj),

where g(x, y) is the auxiliary function

g(x, y) = 2(ex − 1)(ey − 1) + x2ex(ey − 1) + y2ey(ex − 1)− 2xyex+y
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for xy  0. From the case n = 1, it follows that the terms of the first sum on the
right-hand side in (3.2) are nonnegative. It remains to verify that g(x, y)  0. We
note that g(0, y) = 0. We prove

g(0, y) < g(x, y) for xy > 0.

It is enough to show that gx(x, y) > [<] 0 for x, y > [<] 0. First, we consider the
case x, y > 0:

g(x, y) = (2 + (x− y)2)ex+y − (2 + x2)ex − (2 + y2)ey + 2,

gx(x, y) = (2 + (x− y)2 + 2(x− y))ex+y − (2 + x2 + 2x)ex

= [(1 + (1 + x− y)2)ey − (1 + (1 + x)2)]ex > 0,

because the function

h(x, y) = (1 + (1 + x− y)2)ey, x, y  0,

is increasing with respect to y:

hy(x, y) = (1 + (1 + x− y)2 − 2(1 + x− y))ey = (x− y)2ey  0.

Otherwise, for x, y < 0, the function h(x, y) also increases with respect to y. In
this case, gx(x, y) < 0 and g(x, y) > g(0, y) = 0. ■

Inequality (3.1) improves the Cauchy–Bunyakovsky–Schwarz inequality when
the values xi are close to zero. To see this, we verify the second inequality of

(3.3) a2xy2 ¬ a2x2y(ȳ − 1) + (ȳ − 1)2 ¬ a2x2 y2 for 0 ¬ a ≈ 0,

with yi = yi(a) = eaxi , i = 1, . . . , n, and nȳ =
∑n

i=1 yi. Similarly, we define x2,
y2, xy, and x2y. We consider the auxiliary function

h(a) = a2(x2 y2 − x2y(ȳ − 1))− (ȳ − 1)2, a  0.

Then
h′′(0) = 2(x2 − x̄2) > 0 = h′(0) = h(0),

with

h′(a) = a2(2x2 xy2 − xy x2y − x3y(ȳ − 1))

+ 2a(x2 y2 − x2y(ȳ − 1))− 2xy(ȳ − 1),

h′′(a) = a2(4x2 x2y2 − x2y
2 − 2xy x3y − x4y(ȳ − 1))

+ 4a(2x2 xy2 − xy x2y − x3y(ȳ − 1))
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+ 2(x2 y2 − 2x2y(ȳ − 1)− xy2).

Here, we have assumed a positive sample variance. Therefore, there exists a0 >
0 such that the second inequality in (3.3) holds for 0 ¬ a ¬ a0. However, the
inequality is reversed when a→∞. This is clear for the case of nonpositive data,
since lima→∞ h(a) = −1. For the case of nonnegative data, the dominant term of
the auxiliary function h(a) is not bounded below:−[a2(x2(n)−x2)+1]e2ax(n) < 0,
where x(n) > 0 denotes the sample maximum.
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[28] D. S. Mitrinović, Analytic Inequalities, Springer, Berlin, 1970.
[29] K. Nantomah, Inequalities concerning the (p, k)-gamma and (p, k)-polygamma functions,

Note Mat. 38 (2019), 93–104.
[30] J. P. Nolan, Univariate Stable Distributions, Springer, Cham, 2020.
[31] H. Ogasawara, Alternative expectation formulas for real-valued random vectors, Comm.

Statist. Theory Methods 49 (2020), 454–470.
[32] I. Olkin and L. Shepp, Several colorful inequalities, Amer. Math. Monthly 113 (2006), 817–

822.
[33] H. H. Panjer, Maximum likelihood estimation from distributions useful in actuarial applica-

tions, PhD thesis, Univ. of Western Ontario, 1975.
[34] F. Qi, Bounds for the ratio of two gamma functions, J. Inequal. Appl. 2010, art. 493058, 84 pp.
[35] B. R. Rao, An improved inequality satisfied by the gamma function, Scand. Actuar. J. 1969,

78–83.
[36] H. Rockette, C. Antle and L. A. Klimko, Maximum likelihood estimation with the Weibull

model, J. Amer. Statist. Assoc. 69 (1974), 246–249.
[37] H. Ruben, Variance bounds and orthogonal expansions in Hilbert space with an application to

inequalities for gamma functions and π, J. Reine Angew. Math. 225 (1967), 147–153.
[38] S. L. Sclove, G. Simons and J. V. Ryzin, Further remarks on the expectation of the reciprocal

of a positive random variable, Amer. Statist. 21 (1967), 33–34.
[39] P. K. Sen, The impact of Wassily Hoeffding’s research on nonparametrics, in: N. I. Fisher

and P. K. Sen (eds.), The Collected Works of Wassily Hoeffding, Springer, New York, 1994,
29–55.

[40] J. F. Tian and Z. Yang, Asymptotic expansions of Gurland’s ratio and sharp bounds for their
remainders, J. Math. Anal. Appl. 493 (2021), no. 2, art. 124545, 19 pp.

[41] C. C. Yeh, H. W. Yeh, and W. Chan, Some equivalent forms of the arithmetic-geometric mean
inequality in probability: A survey, J. Inequal. Appl. 2008, art. 386715, 9 pp.

Netzahualcóyotl Castañeda-Leyva,
Silvia Rodríguez-Narciso,
Angélica Hernández-Quintero
Departamento de Estadística
Universidad Autónoma de Aguascalientes
Aguascalientes, Ags., México
E-mail: netza.castaneda@edu.uaa.mx

silvia.rodriguezn@edu.uaa.mx
angelica.hernandezq@edu.uaa.mx

Aroldo Pérez
División Académica de Ciencias Básicas

Universidad Juárez Autónoma de Tabasco
Cunduacán, Tab., México

E-mail: aroldopz2@gmail.com

Received 6.12.2022;
accepted 14.5.2023




	1 Introduction
	2 Population moments
	3 Finite sums
	References

