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LIMIT THEOREMS FOR A HIGHER ORDER TIME DEPENDENT
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Abstract. The paper establishes a strong law of large numbers and a cen-
tral limit theorem for a sequence of dependent Bernoulli random variables
modeled as a higher order Markov chain. The model under consideration
is motivated by problems in quality control where acceptability of an item
depends on the past k acceptability scores. Moreover, the model introduces
dependence that may evolve over time and thus advances the theory for
models with time invariant dependence. We establish explicit assumptions
that incorporate this dynamic dependence and show how it enters into the
limits describing long-term behavior of the system.
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1. INTRODUCTION

A great many useful stochastic models have been developed using the Markov
assumption. Such models have applications in diverse fields including quality con-
trol, reliability theory, neural networks, etc.; see e.g. [14], with more references to
follow. In the present paper, we study a new higher order Markov chain model and
establish limit theorems for it.

Let {Xn, n ­ 1} be a sequence of Bernoulli random variables defined as fol-
lows:

(1.1)

P (X1 = 1) = p,

P (Xi = 1 |Fi−1) = (1− ωi)p+
ωi

i− 1
Si−1 for 2 ¬ i ¬ k + 1,

P (Xi = 1 |Fi−1) = (1− ωi)p+
ωi

k
Si,k for k + 2 ¬ i ¬ n,

where 0 < ωi < 1, 0 < p < 1, Fi denotes the σ-field generated by random
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variables X1, . . . , Xi and

(1.2) Sn =
n∑

i=1

Xi, Si,k = Si−1 − Si−k−1 =
i−1∑

j=i−k
Xj , i ­ k + 1.

An important feature of the above model is that the dependence on the previous
average changes at time k. For the initial period of time, up to time k + 1, all pre-
vious observations are used. Once k or more observations are available, only the
most recent k observations are used. This corresponds to a typical scenario in qual-
ity control processes: we need to compare the current outcome to the previous k
outcomes. If k outcomes are not available yet, we use those that are available; see
e.g. [2]. In forecasting, we often observe data over a long period. Only the most
recent k observations should be used for forecasting; see e.g. [5, Chapter 10].

With a suitable interpretation of the average, model (1.1) can be written as
P (Xi = 1 |Fi−1) = p+ ωi(X̄ − p). The size of the ωi quantifies the dependence
of the current observation on the previous observations. We refer to them as the
dependence parameters. If the ωi form a monotone sequence, then the conditional
probabilities either increase or decrease whenever X̄ > p. In this case, our model
preserves the monotone dependence in the sense of [11]. Time-varying dependence
has been used in many profound applications such as reliability of systems and
neural networks. In regression, time-varying models play a vital role. The simplest
model yi = xTi θi+ϵi with time-dependent coefficients θi is often more useful than
the standard model with a fixed θ; see e.g. [13] and references therein. [22] presents
a statistical method for estimating time-dependent trial to trial variation in spike
trains in animal brains.

First order Markov chain models have been successfully used to model com-
plex systems. However, in such models, the future state of a system depends only
on its current state and not on any previous observations. Higher order Markov
chain models do not suffer from this restriction and are of importance in various
applications such as quality control, neural networks, speech recognition, and con-
formity of production. For example, in a production process, over a long period,
the conformity of an item will depend on many previous observations. As noted
above, only a fixed number of previous observations are used. For more details and
applications, we refer to [16, 18] and references therein.

Asymptotic behavior of sums of dependent random variables has been a fo-
cus of probability theory for many decades. Strong laws of large numbers, laws
of the iterated logarithm, central limit theorems, and strong invariance principles
for dependent random variables have been studied by many authors. Many clas-
sical results are reviewed in [6]. A few recent papers are fairly closely related
to our research. [9] considered a conditional probability model and established a
weak law of large numbers and a central limit theorem. [21] proposed a condi-
tional model where Bernoulli random variables depend on several previous obser-
vations. [12] established strong limit theorems for a conditional model. [19] gave
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new limit theorems for dependent and non-identically-distributed Bernoulli ran-
dom variables.

We now explain how model (1.1) extends previously studied models. If the
memory parameter k is absent, model (1.1) reduces to the previous all-sum depen-
dent model considered in [12], where the strong law of large numbers, the central
limit theorem, and the law of the iterated logarithm were established. The model
of [12] extends a simpler model of [9] in which ωi = ω for all i ­ 2. If k = 1 and
ωi = ω, then, for all 2 ¬ i ¬ n, model (1.1) reduces to

P (Xi = 1 |Fi−1) = (1− ω)p+ ωXi−1.

The above model is a well known Markov chain dependent model; see [4, 1].
In [20] limit theorems are derived for sums of random variables when ωi = ω
in model (1.1).

In this paper, we consider model (1.1) with the novel feature of varying ωi.
We find conditions on the sequence {ωi} that guarantee the strong law of large
numbers and the central limit theorem, and show how these results look like in
the case of nonconstant ωi. In Section 2, we state the main results. The proofs are
given in Section 3.

2. MAIN RESULTS

We use the following notation: E denotes expectation, V variance and Cov co-
variance. We denote by I the indicator function, by Fn the σ-field generated by
random variables {X1, . . . , Xn}. We use the usual initialisms: CLT, WLLN and
SLLN.

We derive our asymptotic results under the following assumption.

ASSUMPTION 2.1.

(i) The limits of the following averages exist for all m = 1, . . . , k − 1:

1

n

n∑
i=1

ωi,
1

n

n∑
i=1

ω2
i ,

1

n

n∑
i=k+1

ω2
i

m−1∏
j=0

(
1 +

2ωi−j−1
k − j − 1

)
.

(ii) For all i ­ 1, δ < ωi < 1− δ for some δ satisfying

0 ¬ 1− 2
√

p(1− p) < δ < 1/2.

The formulation of Assumption 2.1 is a significant contribution of this work.
Condition (i) is trivially satisfied if ωi = ω does not depend on i, the case con-
sidered in previous work. It is also satisfied if ωi → ω∞ as i → ∞ for some
ω∞ ∈ (0, 1), in which case the three limits are ω∞, ω2

∞, ω2
∞
∏m−1

j=0

(
1 + 2ω∞

k−j−1
)
.

Condition (ii), in which the lower bound is informative, also extends an analogous
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condition formulated in the case of constant ω. Together, they say that the ωi must
be separated from 0 and 1, and limits of specific averages must exist. As we will
see, these limits show up in the asymptotic variance of the Xi.

We begin with a SLLN that is proven in Section 3.2.

THEOREM 2.1. Under model (1.1) and Assumption 2.1, the SLLN holds,
that is,

Sn/n
a.s.−−→ p.

The remaining results are proven in Section 3.3. Lemma 2.1 establishes the
existence and positivity of the asymptotic variance that appears in Theorem 2.2.

LEMMA 2.1. If Assumption 2.1 holds, then the limit

V∞ := lim
n→∞

1

n

n∑
i=k+1

ω2
iV(Si,k)

exists and
σ2
k := p(1− p)− V∞

k2
> 0.

The next result gives two forms of the CLT. The first one may provide a more
accurate approximation in finite samples.

THEOREM 2.2. Recall σ2
k defined in Lemma 2.1. Under model (1.1) and As-

sumption 2.1, (
1− 1

n

n∑
i=1

ωi

)
Sn − np√

n

d−→ N(0, σ2
k),(2.1)

Sn − np√
n

d−→ N

(
0,

σ2
k

(1− ω∞)2

)
,(2.2)

where ω∞ = limn→∞ n−1
∑n

i=1 ωi.

In the following corollary, we consider special cases of model (1.1).

COROLLARY 2.1. If ωi = ω, then

Sn − np√
n

d−→ N

(
0,

σ2
k

(1− ω)2

)
,

where

σ2
1 = p(1− p)(1− ω2),(2.3)

σ2
k = p(1− p)− p(1− p)ω2

k2
k −B(k, 2ω)−1

1− 2ω
for k > 1,(2.4)

where B(·, ·) is the beta function.
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A natural question is whether model (1.1), under our assumptions, has short-
range or long-range dependence. Maybe it can have either one, depending on the
sequence {ωi}? Lemma 2.1 is not precise enough to answer this question. Long-
range dependence (LRD), also referred to as long memory, is typically defined
for stationary time series; see e.g. [3]. However, a more general definition was
proposed and studied by [10, 9] where the LRD was defined as follows. Suppose
Yi are mean zero and set

(2.5) Un =
(
∑n

i=1 Yi)
2∑n

i=1 Y
2
i

.

If Un
P−→ ∞, we say that the model exhibits LRD, otherwise it is a short-range

dependent model. Corollary 2.2 shows that the model we consider is short-range
dependent.

COROLLARY 2.2. Under model (1.1) and Assumption 2.1, the sequence

(2.6) Un =
(Sn − np)2∑n
i=1(Xi − p)2

is bounded in probability.

3. PROOFS OF THE RESULTS OF SECTION 2

3.1. Preliminaries. For ease of reference, we state here a few known results, Recall
that Fn is the σ-field generated by the random variables X1, . . . , Xn.

DEFINITION 3.1. Suppose {Xn} is a sequence of random variables and set
Yn = Xn − E[Xn |Fn−1]. The sequence {Yn} is called a martingale difference
sequence if E|Yn| <∞ and EYn = 0 for each n.

The next two results can be found in [8, Theorem 2.17].

LEMMA 3.1. Let {Yn,Fn, n ­ 1} be a martingale difference sequence. If∑∞
i=1E[Y 2

i |Fi−1] <∞ almost surely, then
∑n

i=1 Yi converges almost surely.

LEMMA 3.2. Let {Yn,Fn, n ­ 1} be a bounded martingale difference se-
quence, i.e., |Yn| ¬ M a.s. for a constant M . Assume that there exist positive
constants σn such that σn →∞ as n→∞, and

(3.1)
1

σ2
n

n∑
i=1

E[Y 2
i |Fi−1]

P−→ 1,

and the conditional Lindeberg condition holds, i.e., for every ϵ > 0,

1

σ2
n

n∑
i=1

E[Y 2
i I(|Yi| > ϵσn) |Fi−1]

P−→ 0.

Then
1

σn

n∑
i=1

Yi
d−→ N(0, 1).
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The next result is the well-known Kronecker lemma that can be found e.g.
in [17].

LEMMA 3.3. If
∑∞

n=1 xn converges to a finite limit and {bn} is a sequence
that is nondecreasing and diverging to infinity, then b−1n

∑n
k=1 bkxk → 0.

Next, we state a version of the law of large numbers for bounded random vari-
ables. A proof of this result can be found, e.g., in [15].

LEMMA 3.4. Suppose that {Yi, i ­ 1} is a sequence of random variables that
are absolutely bounded by 1 and set Ȳn := n−1

∑n
i=1 Yi. If

∞∑
n=1

n−1E[Ȳ 2
n ] <∞,

then Ȳn
a.s.−−→ 0.

3.2. Proof of Theorem 2.1. We begin with a lemma that lists useful properties of
certain autocorrelations in model (1.1). They are used in the proofs, but are also
of independent interest because they show asymptotic decorrelation. To lighten the
notation, denote

Ei[·] := E[· | Fi].

LEMMA 3.5. Under model (1.1) and Assumption 2.1 there exists a constant
c > 0, only depending on δ, such that

(3.2) |Cov(Xm+j−1, Xj)| ¬ c(1− δ)m/k, j ­ k + 1, m ­ k + 1.

Proof. The proof uses induction on m. Recall that by Assumption 2.1, δ <
ωi < 1− δ for some 0 < δ < 1/2.

Using (1.1) and induction, it is easy to check that

(3.3) EXi = p, i ­ 1.

Now, for any m ­ 2 we observe that

Cov(Xm+j−1, Xj) = E[XjEm+j−2Xm+j−1]− EXm+j−1EXj .

According to (3.3), we have EXm+j−1EXj = p2. Furthermore, using model (1.1),
(3.3) and the condition j ­ k + 1, we get

E[XjEm+j−2Xm+j−1]

= (1− ωm+j−1)p
2 +

ωm+j−1
k

[
E[XjXm+j−1−k] + · · ·+ E[XjXm+j−2]

]
.
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Combining these two insights shows that

(3.4) |Cov(Xm+j−1, Xj)|

=

∣∣∣∣ωm+j−1
k

[
E[XjXm+j−1−k] + · · ·+ E[XjXm+j−2]

]
− ωm+j−1p

2

∣∣∣∣
=

∣∣∣∣ωm+j−1
k

[Cov(Xj , Xm+j−1−k) + · · ·+ Cov(Xj , Xm+j−2)]

∣∣∣∣
¬ 1− δ

k
[|Cov(Xj , Xm+j−1−k)|+ · · ·+ |Cov(Xj , Xm+j−2)|]

¬ (1− δ)max {|Cov(Xj , Xm+j−1−k)|, . . . , |Cov(Xj , Xm+j−2)|}.

Now, we can apply the same argument to any of the covariances on the right and
(since the minimum index of X decreases by k every time), we can apply it another
⌊(m− 1)/k⌋ times, yielding

|Cov(Xm+j−1, Xj)| ¬ (1− δ)1+⌊(m−1)/k⌋ ¬ c(1− δ)m/k

for a constant c ¬ (1− δ)−2. ■

Proof of Theorem 2.1. Consider the random variables Yi = Xi − p and their
average

Ȳn =
Sn − np

n
.

It is enough to show that

(3.5) Ȳn → 0 a.s.

To apply Lemma 3.4, observe that

E(Ȳn)
2 =

V(Sn)

n2
.

It is easy to show that

|V(Sn)| ¬ np(1− p) + 2
n−1∑
l=1

n−l∑
i=1

|Cov(Xi, Xi+l)|.

By Lemma 3.5,
∑n−l

i=1 |Cov(Xi, Xi+l)| ¬ A for some absolute constant A, so

|V(Sn)| ¬ np(1− p) + 2nA.

Thus
∞∑
n=1

n−1E(Ȳn)
2 =

∞∑
n=1

1

n3
V(Sn) <∞.

Lemma 3.4 then yields (3.5). ■
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3.3. Proof of Theorem 2.2

Proof of Lemma 2.1. We first show that for model (1.1), the variance of Si,k is
given by

(3.6) V(Si,k) = p(1− p)

{
1 +

k−1∑
m=1

m−1∏
j=0

(
1 +

2ωi−j−1
k − j − 1

)}
, i ­ k + 1.

Using model (1.1), it is easy to verify that Cov(Xi, Si,k) =
ωi
k V(Si,k). Hence

V(Si+1,k+1) = V(Xi + Si,k) = p(1− p) +

(
1 +

2ωi

k

)
V(Si,k).

Recursively, we obtain

V(Si+1,k+1)

= p(1− p)

{
1 +

(
1 +

2ωi

k

)}
+

(
1 +

2ωi

k

)(
1 +

2ωi−1
k − 1

)
V(Si−1,k−1).

This leads to

V(Si+1,k+1) = p(1− p)

{
1 +

k−1∑
m=1

m−1∏
j=0

(
1 +

2ωi−j
k − j

)}
+

{
k−1∏
j=0

(
1 +

2ωi−j
k − j

)}
V(Si−k+1,1).

We know that V(Si−k+1,1) = V(Xi−k) = p(1− p). This gives

V(Si+1,k+1) = p(1− p)

{
1 +

k∑
m=1

m−1∏
j=0

(
1 +

2ωi−j
k − j

)}
,

completing the proof of (3.6).
By Assumption 2.1 and (3.6), the limit V∞ in Lemma 2.1 exists. For k = 1, it

is easy to show that σ2
1 > 0. Since δ < ωi < 1− δ, it follows that

1

k2n

n∑
i=k+1

ω2
iV(Si,k) ¬

1

4n

n∑
i=k+1

ω2
i <

(1− δ)2

4
,

and Assumption 2.1 yields

1

k2n

n∑
i=k+1

ω2
iV(Si,k) <

(1− δ)2

4
< p(1− p),

showing that σ2
k > 0. ■

Lemmas 3.6–3.9 are needed to prove the CLT. The first one gives the SLLN for
weighted sums of random variables.
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LEMMA 3.6. Under model (1.1), we define Φn=
∑n

i=1 aiXi, where ai∈(0, 1).
Then

(3.7)
∣∣∣∣Φn

n
− p

n

n∑
i=1

ai

∣∣∣∣ a.s.−−→ 0 as n→∞.

Proof. Set

Tn =
Φn − E(Φn)

n
, where Φn =

n∑
i=1

aiXi.

This gives E(Tn) = 0 and

E(Tn)
2 =

V(Φn)

n2
.

To apply Lemma 3.4, it is enough to show that V(Φn) = O(n). We know that

|V(Φn)| ¬ p(1− p)
n∑

i=1

a2i +A2

n−1∑
l=1

n−l∑
m=1

|Cov(Xm, Xm+l)|,

where |alam| ¬ A2. Using Lemma 3.5, we get

|V(Φn)| ¬ p(1− p)
n∑

i=1

a2i +A3

n−1∑
l=1

(n− l)rl/k.

where A3 is constant and r = 1− δ. This gives V(Φn) = O(n) and
∞∑
n=1

n−1E(Tn)
2 =

∞∑
n=1

1

n3
V(Φn) <∞,

completing the proof. ■

Now we establish suitable SLLNs for weighted sums of the Si,k. Lemmas 3.7
and 3.8 follow from Lemma 3.6 and model formulation.

LEMMA 3.7. Under model (1.1) and Assumption 2.1,∣∣∣∣ 1n n∑
i=k+1

ωiSi,k −
kp

n

n∑
i=k+1

ωi

∣∣∣∣ a.s.−−→ 0.

Proof. We know that

1

n

n∑
i=k+1

ωiSi,k =
1

n

{ n∑
i=k+1

ωiXi−1 +
n∑

i=k+1

ωiXi−2 + · · ·+
n∑

i=k+1

ωiXi−k

}
.

Using Lemma 3.6, we get

1

n

n∑
i=k+1

ωiSi,k −
kp

n

n∑
i=k+1

ωi → 0

with probability 1. This completes the proof. ■
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LEMMA 3.8. Under model (1.1) and Assumption 2.1,∣∣∣∣ 1n n∑
i=k+1

ωi(1− ωi)Si,k −
kp

n

n∑
i=k+1

ωi(1− ωi)

∣∣∣∣ a.s.−−→ 0.

Proof. Use an argument analogous to the one used to prove Lemma 3.7. ■

The next result gives the WLLN for a suitably defined sequence of correlated
random variables.

LEMMA 3.9. Set Zi = ωiXiSi,k for i ­ k + 1. Under model (1.1) and As-
sumption 2.1, ∣∣∣∣ 1n n∑

i=k+1

Zi −
1

n

n∑
i=k+1

µi

∣∣∣∣ P−→ 0,

where µi = kp2ωi +
ω2
i
k V(Si,k).

Proof. Since Si,k is Fi−1-measurable, we can express the expectation of Zi as

E[Zi] = E[E(Zi |Fi−1)] = E[ωiSi,kE(Xi |Fi−1)].

Now, model (1.1) gives

E(Zi) = E

[
ωiSi,k

{
(1− ωi)p+

ωi

k
Si,k

}]
= ωi(1− ωi)pE(Si,k) +

ω2
i

k
E(Si,k)

2

= kp2ωi +
ω2
i

k
V(Si,k) = µi.

As a consequence, the difference 1
n

∑n
i=k+1 Zi − 1

n

∑n
i=k+1 µi is centered, and

we can use Chebyshev’s inequality to show convergence to 0. More precisely,

(3.8) P

(∣∣∣∣ 1n n∑
i=k+1

Zi −
1

n

n∑
i=k+1

µi

∣∣∣∣ ­ ϵ

)
¬

V(
∑n

i=k+1 Zi)

n2ϵ2
.

So, to obtain the lemma it suffices to show that

(3.9) V
[ n∑
i=k+1

Zi

]
= O(n).

To establish (3.9), we prove the stronger result

(3.10) SZ(n) :=
n∑

i,j=k+1

|Cov(Zi, Zj)| = O(n).
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The proof of (3.10) begins by grouping the terms on the left according to the dis-
tance of i, j (larger distances translate into weaker dependence). More precisely,
we rewrite the left-hand side of (3.10) as

(3.11) SZ(n) =
n/k∑
b=1

∑
(b−1)k¬|i−j|<bk

|Cov(Zi, Zj)|.

Here, without loss of generality, we assume that n is divisible by k (adapting the
argument for the case of nondivisibility is easy and therefore omitted). In the fol-
lowing, we establish that for a pair (i, j) with (b− 1)k ¬ |i− j| < bk we have

(3.12) |Cov(Zi, Zj)| ¬ Kb(1− δ)b

for some universal constant K and δ ∈ (0, 1/2) defined in Assumption 2.1. If
(3.12) is true, it follows directly that (3.11) is of order O(n) (due to summability
of the sequence (b(1− δ)b)b∈N over b), implying (3.10), thereby (3.9) and thus the
lemma according to (3.8).

In the remainder of this proof, we demonstrate (3.12) for b ­ 2 (the case b = 1
is easier and therefore omitted). Let us henceforth consider a fixed but arbitrary
pair (i, j) which satisfies for some b ­ 2 the inequality (b − 1)k ¬ |i − j| < bk
and without loss of generality suppose i < j. We can bound the absolute value of
the covariance between Zi, Zj as follows:

|Cov(Zi, Zj)| =
∣∣E[

(Zi − E{Zi})wjXjSj,k

]∣∣(3.13)

=
∣∣∣ k∑
l=1

wjE
[
(Zi − E{Zi})XjXj−l

]∣∣∣
¬ k(1− δ) max

l=1,...,k

∣∣E[
(Zi − E{Zi})XjXj−l

]∣∣.
Here, in the first equality, we have used the definition of Zj = ωjXjSj,k, together
with the fact that the covariance of a random variable with a constant is 0. In the
second equality, we have plugged in the definition of Sj,k (see (1.2)). In the final
step, we have used the triangle inequality and bounded the sum by the number of
terms times the maximum term. Moreover, we have used the fact that wj ¬ 1− δ
for all j (see Assumption 2.1(ii)). Let us now suppose that the maximum over l is
assumed for some l(1). Conditioning on Fj−1 then yields

(3.14) k(1− δ)
∣∣E[

E
[
(Zi − E{Zi})XjXj−l(1)

∣∣Fj−1
]]∣∣

= k(1− δ)
∣∣E[

(Zi − E{Zi})E(Xj |Fj−1)Xj−l(1)
]∣∣

= k(1− δ)
wj

k

∣∣∣∣E[
(Zi − E{Zi})

(
ωj

k
Sj,k + (1− ωj)p

)
Xj−l(1)

]∣∣∣∣
¬ k(1− δ)

wj

k

∣∣E[
(Zi − E{Zi})Sj,kXj−l(1)

]∣∣
+ k(1− δ)(1− wj)

∣∣E[
(Zi − E{Zi})Xj−l(1)

]∣∣ =: R1 +R2.
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Here, R1 and R2 on the right are defined in the obvious way. In the first equality
of (3.14), we have exploited that all variables except Xj are Fj−1-measurable. In
the second equality, we have used that by model (1.1) (and since j > k)

E[Xj = 1 |Fj−1] =
ωj

k
Sj,k + (1− ωj)p .

We now treat the two terms R1, R2 separately. Recalling that wj < 1− δ yields

(3.15) R1 ¬ (1− δ)2
∣∣E[

(Zi − E{Zi})Sj,kXj−l(1)
]∣∣.

For R2, we employ the (subsequently derived) upper bound (3.21) with parameters
b′ = b − 1 and j′ = j − l(1), together with the fact that 1 − wj < 1 − δ, which
yields

(3.16) R2 ¬ [k(1− δ)(1− wj)][k(1− δ)b−2] ¬ k2(1− δ)b.

Since

(3.17) |Cov(Zi, Zj)| ¬ R1 +R2,

(3.15) and (3.16) suffice to establish (3.12) for the case b = 2. Notice that the
constant K in (3.12) can be chosen as k2, since it follows by simple calculations
(bounding the expectation of a random variable by its maximum absolute value)
that for any i, j, l(1), ∣∣E[

(Zi − E{Zi})Sj,kXj−l(1)
]∣∣ ¬ k2.

In particular, (3.15) implies R1 ¬ k2(1 − δ)b. So, our previous considerations
imply

|Cov(Zi, Zj)| ¬ R1 +R2 ¬ 2k2(1− δ)2,

proving (3.12) for b = 2.
The case b ­ 3 can now be treated by backward induction, using very similar

calculations to those in (3.13) and (3.14). We sketch these arguments by consider-
ing the case b = 3.

We want to establish (3.12) for b = 3. In view of (3.17), we further bound R1

or, more precisely, the right side of (3.15). Proceeding as in (3.13), we have

(3.18) (1− δ)2
∣∣E[

(Zi − E{Zi})Sj,kXj−l(1)
]∣∣

¬ k(1− δ)2 max
l=1,...,k

∣∣E[
(Zi − E{Zi})Xj−lXj−l(1)

]∣∣
= k(1− δ)2

∣∣E[
(Zi − E{Zi})Xj−l(2)Xj−l(1)

]∣∣
Here, l(2) is the index for which the maximum in the second line is attained. We
distinguish two cases: l(2) ̸= l(1) and l(2) = l(1).
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We begin with the case l(2) ̸= l(1), where without loss of generality we assume
l(2) < l(1) (otherwise swap their roles). Notice that we then have j− l(2) > i since

j − l(2) ­ j − k > i

for b = 3. Hence, Xi, Si,k, Xj−l(1) are Fj−l(2)−1-measurable. This yields (in anal-
ogy to (3.14))

(3.19) k(1− δ)2
∣∣E[

E
[
(Zi − E{Zi})Xj−l(2)Xj−l(1)

∣∣ Fj−l(2)−1
]]∣∣

= k(1− δ)2
∣∣E[

(Zi − E{Zi})E(Xj−l(2) |Fj−l(2)−1)Xj−l(1)
]∣∣

¬ (1− δ)3
∣∣E[

(Zi − E{Zi})Sj−l(2),kXj−l(1)
]∣∣

+ k(1− δ)3
∣∣E[

(Zi − E{Zi})Xj−l(1)
]∣∣ =: R′1 +R′2.

Again, the terms R′1 and R′2 are defined in the obvious way. By simple calculations,
we can bound the expectations on the right of (3.19) by k2 and k respectively,
which entails

(3.20) R′1, R
′
2 ¬ k2(1− δ)3.

Now, using inequality (3.17) in the first step, the decomposition R1 ¬ R′1 +R′2 in
the second and the bounds (3.16), (3.20) in the third yields

|Cov(Zi, Zj)| ¬ R1 +R2 ¬ R′1 +R′2 +R2 ¬ 3k2(1− δ)3.

This proves (3.12) for b = 3 in the case l(2) ̸= l(1).
Next, let us turn to the case l(2) = l(1). Again, we want to bound R1. This time,

we have Xj−l(1)Xj−l(2) = X2
j−l(1) = Xj−l(1) , so that the right side of (3.18) can

be expressed as
k(1− δ)2

∣∣E[
(Zi − E{Zi})Xj−l(1)

]∣∣.
We can now further bound the expectation using the inductive formula (3.21) (be-
low) for j′ = j− l(1) and b′ = 2 (note again that j− l(1) ­ j−k > i since b = 3).
This gives ∣∣E[

(Zi − E{Zi})Xj−l(1)
]∣∣ ¬ k(1− δ),

entailing R1 ¬ k2(1− δ)3 and together with (3.16) that

|Cov(Zi, Zj)| ¬ R1 +R2 ¬ 2k2(1− δ)3.

This means that (3.12) holds for b = 3 in the case l(2) = l(1).
We complete the proof by showing that for any b′ ­ 2 and j′ > i satisfying

(b′ − 1)k ¬ |i− j′| < b′k we have

(3.21)
∣∣E[

(Zi − E{Zi})Xj′
]∣∣ ¬ (1− δ)b

′−1k.
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By similar arguments to those before, we upper bound the left side as follows:

(3.22)
∣∣E[

E
[
(Zi − E{Zi})Xj′

∣∣Fj′−1
]]∣∣

=
ωj′

k

∣∣E[
(Zi − E{Zi})Sj′,k

]∣∣
¬ (1− δ) max

l=1,...,k

∣∣E[
(Zi − E{Zi})Xj′−l

]∣∣
= (1− δ)

∣∣E[
(Zi − E{Zi})Xj′−l(3)

]∣∣.
Here, l(3) is the index where the maximum in the third line is attained. Notice that
j′− l(3) ­ j′−k. The proof now follows by backward induction on b′ (with a total
of b′ − 1 steps), while noticing that for any pair (i, j) we have∣∣E[

(Zi − E{Zi})Xj

]∣∣ ¬ k.

This last inequality follows since the random variable inside the expectation is
absolutely bounded by k. ■

LEMMA 3.10. Under model (1.1) and Assumption 2.1,∣∣∣∣ 1n n∑
i=k+1

(ωiSi,k)
2 − 1

n

n∑
i=k+1

ω2
i µi

∣∣∣∣ P−→ 0,

where µi = k2p2 + V(Si,k).

Proof. Define

(3.23) Wi = ωiSi,k

(
Xi − (1− ωi)p−

ωi

k
Si,k

)
, i ­ k + 1.

Since |Wi| ¬ 3k and E(Wi |Fi−1) = 0, {Wi} is a bounded martingale difference
sequence. Set Qn = Wn/n and observe that for a constant D,

n∑
i=k+1

E(Q2
i |Fi−1) ¬ D

n∑
i=k+1

1

i2
<∞.

By Lemma 3.1,
∑n

i=k+1Qn converges almost surely. Using the Kronecker lemma,
Lemma 3.3, it follows that

1

n

n∑
i=k+1

iQi =
1

n

n∑
i=k+1

Wi
a.s.−−→ 0.

From (3.23), we get

1

n

n∑
i=k+1

ωiXiSi,k −
p

n

n∑
i=k+1

ωi(1− ωi)Si,k −
1

kn

n∑
i=k+1

(ωiSi,k)
2 → 0
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with probability 1. Lemmas 3.8 and 3.9 yield

1

n

n∑
i=k+1

ω2
iV(Si,k) +

k2p2

n

n∑
i=k+1

ω2
i −

1

n

n∑
i=k+1

(ωiSi,k)
2 P−→ 0.

This completes the proof. ■

Let {Mn,Fn, n ­ 1} be a martingale difference sequence defined by M1 =
X1 − p and

(3.24) Mi =

Xi − (1− ωi)p−
ωi

i− 1
Si−1 for 2 ¬ i ¬ k + 1,

Xi − (1− ωi)p−
ωi

k
Si,k for k + 2 ¬ i ¬ n.

It is easy to verify that |Mn| ¬ 3. Hence {Mn,Fn, n ­ 1} is a bounded martin-
gale difference sequence.

Proof of Theorem 2.2. To establish the CLT using martingale theory, we must
verify conditions analogous to those required in Lemma 3.2. Consider the vari-
able ∆n =

∑n
i=1Mi, where the Mi are bounded martingale differences defined

in (3.24). We use the decomposition
n∑

i=1

E(M2
i |Fi−1) =

k+1∑
i=1

E(M2
i |Fi−1) +

n∑
i=k+2

E(M2
i |Fi−1).

Since
1

n

k+1∑
i=1

E(M2
i |Fi−1) =

O(k)

n
,

we focus on the second sum. Since

M2
i = X2

i + (1− ωi)
2p2 +

ω2
i

k2
S2
i,k

− 2Xi(1− ωi)p− 2Xi
ωi

k
Si,k + 2(1− ωi)p

ωi

k
Si,k,

according to (1.1), for i ­ k + 2,

E(M2
i |Fi−1) =

[
(1− ωi)p+

ωi

k
Si,k

]
+ (1− ωi)

2p2 +
ω2
i

k2
S2
i,k

− 2(1− ωi)p

[
(1− ωi)p+

ωi

k
Si,k

]
− 2

ωi

k
Si,k

[
(1− ωi)p+

ωi

k
Si,k

]
+ 2(1− ωi)p

ωi

k
Si,k

= (1− ωi)p− (1− ωi)
2p2

+
ωi

k
Si,k −

ω2
i

k2
S2
i,k − 2(1− ωi)p

ωi

k
Si,k.
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We therefore obtain

1

n

n∑
i=1

E(M2
i |Fi−1) =

mn

n
+

1

nk

n∑
i=k+2

ωiSi,k −
1

k2n

n∑
i=k+2

(ωiSi,k)
2(3.25)

− 2p

nk

n∑
i=k+2

ωi(1− ωi)Si,k +
O(k)

n
,

where

mn = p
n∑

i=k+2

(1− ωi)− p2
n∑

i=k+2

(1− ωi)
2.

Lemmas 3.7 and 3.8 and relations (3.10) and (3.25) give

1

n

n∑
i=1

E(M2
i |Fi−1)

P−→ p(1− p)− βk,

where

βk = lim
n→∞

1

k2n

n∑
i=k+1

ω2
iV(Si,k) =

V∞
k2

.

Since {Mn, n ­ 1} is bounded martingale difference sequence, the conditional
Lindeberg condition is also satisfied, i.e., for every ϵ > 0,

(3.26) lim
n→∞

1

n

n∑
i=1

E

[
M2

i I

(∣∣∣∣Mi√
n

∣∣∣∣ ­ ϵ

) ∣∣∣∣Fi−1

]
P−→ 0.

Using Lemma 3.2, we get

(3.27)
1√
n

n∑
i=1

Mi =
∆n√
n

d−→ N(0, σ2
k),

where σ2
k := p(1− p)− k−2V∞ is as in Lemma 2.1. Moreover,

(3.28)
1√
n

n∑
i=1

Mi

=
√
n

{
Sn − np

n
+

p

n

n∑
i=2

ωi −
1

n

k+1∑
i=2

ωi
Si−1
i− 1

− 1

kn

n∑
i=k+2

ωiSi,k

}
=
√
n

{
Sn − np

n
+

p

n

n∑
i=1

ωi −
1

kn

n∑
i=1

ωiSi,k +
O(k)

n

}
.

Using Theorem 2.1 and Lemma 3.7, we get∣∣∣∣ 1n n∑
i=1

ωiSi,k −
kSn

n2

n∑
i=1

ωi

∣∣∣∣ a.s.−−→ 0.
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Thus, (3.28) gives

1√
n

n∑
i=1

Mi
a.s.
=

Sn − np√
n

(
1− 1

n

n∑
i=1

ωi

)
as n→∞.

It follows that (
1− 1

n

n∑
i=1

ωi

)
Sn − np√

n

d−→ N(0, σ2
k),

with σ2
k defined in Lemma 2.1. This completes the proof of (2.1). Relation (2.2)

follows because by Assumption 2.1, n−1
∑n

i=1 ωi → ω∞ ∈ (0, 1). ■

Proof of Corollary 2.1. When ωi = ω and k = 1, then

σ2
1 = p(1− p)− lim

n→∞

ω2

n

n∑
i=2

V(Si,1),

where V(Si,1) = V(Xi−1) = p(1− p). This gives σ2
1 = p(1− p)(1− ω2). Using

Theorem 2.2, we get

(1− ω)
Sn − np√

n

d−→ N(0, σ2
1),

completing the proof of (2.3). If k > 1, then

σ2
k = p(1− p)− ω2

k2
H∞

and Theorem 2.2 yields

Sn − np√
n

d−→ N

(
0,

σ2
k

(1− ω)2

)
,

where H∞ (see [7]) is given by

H∞ = p(1− p)
k −B(k, 2ω)−1

1− 2ω
. ■

Proof of Corollary 2.2. Observe that

Un =
n∑n

i=1(Xi − p)2

(
Sn − np√

n

)2

.

By Theorem 2.1,
1

n

n∑
i=1

(Xi − p)2
a.s.−−→ p(1− p)
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and Theorem 2.2 gives (
Sn − np√

n

)2
d−→

σ2
k

(1− ω)2
χ2
(1).

Using Slutsky’s theorem, we thus get

Un
d−→

σ2
k

p(1− p)(1− ω)2
χ2
(1). ■
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