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Abstract. Let Mn = max(X1, . . . , Xn) denote the partial maximum of an
independent and identically distributed skew-normal random sequence. In
this paper, the rate of uniform convergence of skew-normal extremes is de-
rived. It is shown that with optimal normalizing constants the convergence
rate of a−1

n (Mn − bn) to its ultimate extreme value distribution is propor-
tional to 1

logn .
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1. INTRODUCTION

Skew-normal distribution introduced by Azzalini (1985) is an effective tool to
model skewed data compared to the normal distribution. Applications of the skew-
normal distribution include areas such as climatology, biomedical sciences, eco-
nomics and finance. Kim and Mallick (2004) presented a model based on the skew-
normal distribution for the prediction of weekly rainfall in Korea. Counsell et al.
(2011) applied the skew-normal distribution to deal with data from a clinical psy-
chiatry research environment. Considering the effect of skewness and coskewness
on asset valuation, Carmichael and Coën (2013) derived restrictions imposed by the
Euler equation of optimal portfolio diversification. Zeller et al. (2016) established
a mixture regression model by assuming that the random errors follow a scale
mixture of skew-normal distributions. With a skew-normal prior distribution for
the spatial latent variables, Hosseini et al. (2011) proposed approximate Bayesian
methods for inference and spatial prediction in a spatial generalized linear mixed
model. For more applications and case studies involving the skew-normal distribu-
tion, see Genton (2004).

Recently, probability properties such as tail behavior and asymptotics of skew-
normal extremes have been studied. Chang and Genton (2007) showed that Fλ be-
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longs to the domain of attraction of the Gumbel extreme value distribution Λ(x) =
exp(− exp(−x)), x ∈ R, where Fλ is the cumulative distribution function (cdf)
of the standard skew-normal random variable with parameter λ ∈ R (written as
SN(λ)). The probability density function (pdf) of SN(λ), fλ, is

(1.1) fλ(x) = 2ϕ(x)Φ(λx), x ∈ R,

where ϕ(·) and Φ(·) denote, respectively, the pdf and the cdf of a standard normal
random variable. For SN(0), the standard normal random variable, Mills’ ratio and
extreme value distribution are known; see Leadbetter et al. (1983). Higher-order
expansions of the distribution and moments of the extremes of SN(0), were stud-
ied by Nair (1981). For λ ̸= 0, Mills’ ratios, the distributional tail representation
and the higher-order expansions of the extremes of SN(λ) were studied by Liao et
al. (2014b). The higher-order expansions of moments of the extremes of SN(λ),
λ ̸= 0, were studied by Liao et al. (2013a). Liao et al. (2013b, 2014a) also consid-
ered the tail behaviors and higher-order expansions of the distribution of extremes
for the log-skew-normal distribution.

The aim of this paper is to derive the uniform convergence rates of skew-normal
extremes for λ ̸= 0. For SN(0), the standard normal random variable, Hall (1979)
derived the optimal uniform convergence rate of Φn(ãnx+ b̃n) to Λ(x), i.e.,

(1.2)
C1

log n
< sup

x∈R
|Φn(ãnx+ b̃n)− Λ(x)| < C2

log n

for some positive constants C1 and C2, where the normalizing constant b̃n is the
solution of

2πb̃2n exp(̃b
2
n) = n2

and ãn = b̃−1n . For SN(0), Gasull et al. (2015a) gave more effective normalizing
constants an and bn through the Lambert W function. Gasull et al. (2015b) illus-
trated another application of the Lambert W function to decide on normalizing
constants for gamma and other Weibull-like distributions. For other work related
to convergence rates of distributions of normalized order statistics, see Liao and
Peng (2012) for the log-normal distribution, and Peng et al. (2010) and Vasudeva
et al. (2014) for the general error distribution.

In order to derive the uniform convergence rates of skew-normal extremes, we
choose the optimal normalizing constants according to the sign of λ with λ ̸= 0.
For λ > 0, let bn be the solution of

(1.3)
√
π/2 bn exp(b

2
n/2) = n,

and set

(1.4) an = b−1n .
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For λ < 0, let bn > 0 be the solution of

(1.5) π|λ|(1 + λ2)b2n exp((1 + λ2)b2n/2) = n,

and set

(1.6) an = (1 + λ2)−1b−1n .

The rest of this paper is organized as follows. Section 2 gives the main results.
Some auxiliary lemmas and all proofs are presented in Section 3.

2. MAIN RESULTS

In this section, we provide the main results. Theorem 2.1 shows that the limit dis-
tribution of normalized maxima for the skew-normal distribution is the Gumbel
extreme value distribution Λ(x). Theorems 2.2 and 2.3 determine the rates of uni-
form convergence of skew-normal extremes. Note that the choice of normalizing
constants are determined according to the sign of λ.

THEOREM 2.1. Let Mn denote the partial maximum of independent and iden-
tical SN(λ) random variables with the pdf fλ given by (1.1). Then

(2.1) P(Mn ¬ anx+ bn)→ Λ(x), x ∈ R

as n→∞, where the normalizing constants bn and an are given by (1.3) and (1.4)
for λ > 0, and by (1.5) and (1.6) for λ < 0.

THEOREM 2.2. For λ > 0, there exist positive constants C and Cλ, indepen-
dent of n, such that

(2.2)
C

log n
< sup

x∈R
|Fn

λ (anx+ bn)− Λ(x)| < Cλ

log n

for all n  9, where bn and an are given by (1.3) and (1.4), respectively.

THEOREM 2.3. For λ < 0, there exist positive constants C′λ and C′′λ, indepen-
dent of n, such that

(2.3)
C′λ
log n

< sup
x∈R
|Fn

λ (anx+ bn)− Λ(x)| < C′′λ
log n

for all n  n0(λ), where bn and an are given by (1.5) and (1.6), respectively, and
n0(λ) is a constant.

REMARK 2.1. As noted on pages 39–40 in Leadbetter et al. (1983) for the
normal case, the convergence rate of the distribution of the normalized maximum to
its ultimate extreme value distribution Λ(x) may be different for different choices
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of the normalizing constants. For the skew-normal distribution, Proposition 3 and
Theorem 1 in Liao et al. (2014b) showed that Theorem 2.1 holds with normalizing
constants αn and βn given by Proposition 3 of Liao et al. (2014b), and its pointwise
convergence rate is proportional to (log logn)2

logn . Theorem 2 of Liao et al. (2014b)
showed that the pointwise convergence rate can be improved by using another pair
of normalizing constants. Proposition 1 of Liao et al. (2014b) inspired us to choose
the normalizing constants an and bn given by (1.3)–(1.4) or (1.5)–(1.6) according
to the sign of λ. Theorems 2.2 and 2.3 provide the uniform convergence rate of
Fn
λ (anx+ bn) to Λ(x), which is proportional to 1

logn .

3. PROOFS

In order to prove the main results, we first give some auxiliary lemmas. The first
one is about the distributional tail representation of the skew-normal distribution,
due to Lemma 3.1 in Xiong and Peng (2020). The remaining lemmas provide in-
equalities on distributional tails of the normal and skew-normal distributions.

LEMMA 3.1. Let Fλ and fλ denote, respectively, the cdf and the pdf of the
SN(λ) distribution. For large x, we have

(i) for λ > 0,

(3.1) 1− Fλ(x) =
2ϕ(x)

x
[1− x−2 +O(x−4)];

(ii) for λ < 0,

(3.2) 1− Fλ(x) =
e−(1+λ2)x2/2

−πλ(1 + λ2)x2

[
1− 1 + 3λ2

λ2(1 + λ2)
x−2 +O(x−4)

]
.

LEMMA 3.2. Let ϕ(x) and Φ(x) denote, respectively, the pdf and the cdf of a
standard normal random variable. For all x > 0, we have

(3.3)
ϕ(x)

x
(1− x−2) < 1− Φ(x) <

ϕ(x)

x
.

Proof. The proof is straightforward by integration by parts: see (6)–(9) in Hall
(1979).

LEMMA 3.3. Let Fλ denote the cdf of SN(λ) and let ϕ(x) denote the pdf of a
standard normal random variable. For all x > 0, we have

(i) for λ > 0,

(3.4)
2ϕ(x)

x

[
1−

(
1 +

1

λ2
√
2πe

)
x−2

]
< 1− Fλ(x) <

2ϕ(x)

x
;
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(ii) for λ < 0,

(3.5)
2ϕ(x)ϕ(λx)

|λ|(1 + λ2)x2

[
1− (1 + λ2)2

λ2
x−2

]
< 1− Fλ(x) <

2ϕ(x)ϕ(λx)

|λ|(1 + λ2)x2
.

Proof. In the case of λ > 0, for any x > 0 we have

1− Fλ(x) =
∞∫
x

2ϕ(t)Φ(λt) dt(3.6)

<
∞∫
x

2ϕ(t) dt = 2[1− Φ(x)]

<
2ϕ(x)

x
.

By integration by parts and Lemma 3.2, we have

1− Fλ(x) =
fλ(x)

x
−
∞∫
x

2ϕ(t)Φ(λt)t−2 dt+
λ

π

∞∫
x

t−1e−(1+λ2)t2/2 dt(3.7)

>
fλ(x)

x
−
∞∫
x

2ϕ(t)Φ(λt)t−2 dt >
fλ(x)

x
−
∞∫
x

2ϕ(t)t−2 dt

>
fλ(x)

x
− x−2

∞∫
x

2ϕ(t) dt =
2ϕ(x)Φ(λx)

x
− 2x−2[1− Φ(x)]

>
2ϕ(x)

x

[
1− ϕ(λx)

λx

]
− 2x−2 · ϕ(x)

x

=
2ϕ(x)

x

{
1−

[
1 +

xϕ(λx)

λ

]
x−2

}
>

2ϕ(x)

x

[
1−

(
1 +

1

λ2
√
2πe

)
x−2

]
.

The last inequality was obtained by bounding the function x exp(−λ2x2/2). Com-
bining (3.6) with (3.7), we can derive (3.4).

In the case of λ < 0, for any x > 0, by Lemma 3.2, we have

1− Fλ(x) =
∞∫
x

2ϕ(t)Φ(λt) dt =
∞∫
x

2ϕ(t)[1− Φ(|λ|t)] dt(3.8)

<
∞∫
x

2ϕ(t) · ϕ(|λ|t)
|λ|t

dt =
1

π|λ|

∞∫
x

t−1e−(1+λ2)t2/2 dt

=
2ϕ(x)ϕ(λx)

|λ|(1 + λ2)x2
− 2

π|λ|(1 + λ2)

∞∫
x

t−3e−(1+λ2)t2/2 dt

<
2ϕ(x)ϕ(λx)

|λ|(1 + λ2)x2
.
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By integration by parts and Lemma 3.2, we have

(3.9) 1− Fλ(x)

=
fλ(x)

x
− fλ(x)

x3
+ 6

∞∫
x

ϕ(t)Φ(λt)t−4 dt+
|λ|
π

∞∫
x

t−3e−(1+λ2)t2/2 dt

− fλ(x)

x
· |λ|
1 + λ2

· ϕ(λx)
Φ(λx)

x−1 +
2|λ|

(1 + λ2)π

∞∫
x

t−3e−(1+λ2)t2/2 dt

>
fλ(x)

x
− fλ(x)

x3
− fλ(x)

x
· |λ|
1 + λ2

· ϕ(λx)
Φ(λx)

x−1

=
2ϕ(x)

x

[
Φ(λx)(1− x−2)− |λ|

1 + λ2
· ϕ(λx)

x

]
>

2ϕ(x)

x

[
ϕ(λx)

|λ|x
(1− λ−2x−2)(1− x−2)− |λ|

1 + λ2
· ϕ(λx)

x

]
>

2ϕ(x)ϕ(λx)

|λ|x2

[
(1− λ−2x−2)(1− x−2)− λ2

1 + λ2

]
>

2ϕ(x)ϕ(λx)

|λ|(1 + λ2)x2

[
1− (1 + λ2)2

λ2
x−2

]
.

Combining (3.8) with (3.9), we can derive (3.5). ■

Proof of Theorem 2.1. We first consider the case of λ > 0. If n is sufficiently
large then anx+ bn > 0 with bn and an satisfying (1.3) and (1.4). So, by Lemma
3.1, we have

n[1− Fλ(anx+ bn)] ∼ n · 2ϕ(anx+ bn)

anx+ bn

= (1 + a2nx)
−1e−a

2
nx

2/2 · e−x

→ e−x as n→∞.

Then the result follows from Theorem 1.5.1 of Leadbetter et al. (1983).
Similarly, for λ < 0, if n is sufficiently large then anx + bn > 0 with bn and

an satisfying (1.5) and (1.6). So, by Lemma 3.1 we have

n[1− Fλ(anx+ bn)] ∼ n · e−(1+λ2)(anx+bn)2/2

π|λ|(1 + λ2)(anx+ bn)2

= [1 + (1 + λ2)a2nx]
−2e−(1+λ2)a2nx

2/2 · e−x

→ e−x as n→∞.

Then the result follows from Theorem 1.5.1 of Leadbetter et al. (1983). ■
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Proof of Theorem 2.2. First note that for λ > 0, sufficiently large n implies
anx + bn > 0 with bn and an satisfying (1.3) and (1.4). Writing zn = anx + bn,
for large n and k ∈ R, we have

(3.10) zkn = bkn(1 + a2nx)
k = bkn[1 + ka2nx+O(a4n)].

Applying (3.10) for k = −1, k = 2 and k = −2, we obtain

(3.11)
2ϕ(zn)

zn
= n−1e−x

[
1− a2n

(
x+ 1

2x
2
)
+O(a4n)

]
and

1− z−2n = 1− b−2n [1− 2a2nx+O(a4n)](3.12)

= 1− a2n +O(a4n).

Combining (3.11) with (3.12), we have

(3.13)
2ϕ(zn)

zn
[1− z−2n ] = n−1e−x

[
1− a2n

(
1 + x+ 1

2x
2
)
+O(a4n)

]
.

Therefore, by Lemma 3.1 and the fact that log(1− x) = −x[1 +O(x)] as x→ 0,
we have

Fn
λ (zn)− Λ(x)

=

{
1− 2ϕ(zn)

zn
[1− z−2n +O(z−4n )]

}n

− Λ(x)

=
{
1− n−1e−x

[
1− a2n

(
1 + x+ 1

2x
2
)
+O(a4n)

]}n − Λ(x)

= exp
{
n log

{
1− n−1e−x

[
1− a2n

(
1 + x+ 1

2x
2
)
+O(a4n)

]}}
− Λ(x)

= Λ(x) exp
{
e−x

[
a2n

(
1 + x+ 1

2x
2
)
+O(a4n)

]}
− Λ(x)

= Λ(x)
{
1 + e−x

[
a2n

(
1 + x+ 1

2x
2
)
+O(a4n)

]}
− Λ(x)

= Λ(x)e−x
[
a2n

(
1 + x+ 1

2x
2
)
+O(a4n)

]
.

Further, by (1.3), we have

(3.14) log
π

2
+ 2 log bn + b2n = 2 log n.

It follows at once that b2n ∼ 2 log n. Noting that an = b−1n , we can obtain the
left hand inequality in (2.2). So, it remains to show that there exists a positive
constant Cλ such that

sup
x∈R
|Fn

λ (zn)− Λ(x)| < Cλ

log n
for all n  9.
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For n  2, (3.14) implies that

(3.15) b2n < 2 log n,

so that

(3.16) 2 log bn < log 2 + log log n.

Combining (3.16) with (3.14), we obtain

b2n > 2 log n− log π − log logn,

and hence, for n  9,

b2n
log n

> 2− log π

log n
− log logn

log n
(3.17)

> 2− log π

log 9
− 1

e
> 1.1,

where the second inequality is obtained by bounding (log x)−1(log log x). Since
an = b−1n , inequality (3.17) implies that a2n < 1

1.1 logn for n  9, and so it suffices
to prove that

(3.18) sup
x∈R
|Fn

λ (zn)− Λ(x)| < Cλa
2
n for n  9.

We will prove this by showing

sup
0¬x<∞

|Fn
λ (zn)− Λ(x)| < C1,λa

2
n,(3.19)

sup
−cn<x<0

|Fn
λ (zn)− Λ(x)| < C2,λa

2
n,(3.20)

sup
−∞<x¬−cn

|Fn
λ (zn)− Λ(x)| < C3,λa

2
n,(3.21)

where cn = log log b2n > 0 for n  9.
The following bounds are needed for the rest of the proof:

1.69 < b9 < 1.70,(3.22)

sup
n9

(1− a2ncn)
−1 < 1.11,(3.23)

sup
n9

a2n log b
2
n < 0.37,(3.24)

sup
n9

a2n(log b
2
n)

2 < 0.55,(3.25)

sup
n9

n−1 log b2n < 0.17,(3.26)

sup
n9

b3ne
−b2n/2 < 1.16.(3.27)
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Inequality (3.22) follows from (1.3), and (3.26) follows from (3.15). Inequalities
(3.23)–(3.25) and (3.27) are obtained by bounding the functions x−1 log log x,
x−1 log x, x−1(log x)2 and x3e−x

2/2, respectively.
Let Ψn,λ(x) = 1− Fλ(zn). Then

n logFλ(zn) = n log[1−Ψn,λ(x)] = −nΨn,λ(x)−Rn,λ(x),(3.28)

where

(3.29) 0 < Rn,λ(x) <
nΨ2

n,λ(x)

2[1−Ψn,λ(x)]
.

If x > −cn, by (1.3), (3.23), (3.26) and Lemma 3.3, we have

Ψn,λ(x) < Ψn,λ(−cn)(3.30)

= 1− Fλ(bn − ancn) <
2ϕ(bn − ancn)

bn − ancn

=
√

2/π b−1n (1− a2ncn)
−1e−b

2
n(1−a2ncn)2/2

= n−1(1− a2ncn)
−1(log b2n)e

−a2nc2n/2

< (1− a2ncn)
−1(n−1 log b2n) < 0.1887.

From (3.29), (3.30) (1.3) and (1.4), we can see that

Rn,λ(x) <
n[(1− a2ncn)

−1(n−1 log b2n)]
2

2(1− 0.1887)
(3.31)

=
n−1(1− a2ncn)

−2(log b2n)
2

1.6226

=

√
2/π b−1n e−1/2b

2
n(1− a2ncn)

−2(log b2n)
2

1.6226

=
[
√
2/π (1− a2ncn)

−2](b3ne
−b2n/2)[a2n(log b

2
n)

2]a2n
1.6226

< 0.39a2n,

where the last inequality follows from (3.23), (3.25), and (3.27). Hence for n  9,
we have

(3.32) |e−Rn,λ(x) − 1| = 1− e−Rn,λ(x) < Rn,λ(x) < 0.39a2n.

Let An,λ(x) = e−nΨn,λ(x)+e−x
and Bn,λ(x) = e−Rn,λ(x). Inequality (3.32)

implies that

|Fn
λ (zn)− Λ(x)| < Λ(x)|An,λ(x)− 1|+ |Bn,λ(x)− 1|(3.33)

< Λ(x)|An,λ(x)− 1|+ 0.39a2n

if x > −cn.
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We first show that (3.19) holds. Note that 0 < An,λ(x)→ 1 as x→∞ and

A′n,λ(x) = An,λ(x)e
−x[e−1/2a

2
nx

2
Φ(λ(zn))− 1] ¬ 0

for x  0. Hence, it follows from (3.22), (1.4) and Lemma 3.3 that

(3.34) sup
x0
|An,λ(x)− 1| = An,λ(0)− 1

< exp

{
−n2ϕ(bn)

bn

[
1−

(
1 +

1

λ2
√
2πe

)
b−2n

]
+ 1

}
− 1

<

(
1 +

1

λ2
√
2πe

)
b−2n exp

{(
1 +

1

λ2
√
2πe

)
b−2n

}
<

(
1 +

1

λ2
√
2πe

)
exp

{
1.69−2

(
1 +

1

λ2
√
2πe

)}
a2n.

The second inequality is obtained by observing that ex < 1 + xex for x > 0. The
last inequality is obtained by the monotonicity of bn (i.e. bn  b9 for n  9).
Combining (3.33) with (3.34), we complete the proof of (3.19).

Next we prove that (3.20) holds as −cn < x < 0. By (1.4), (3.23) and the fact
that ex > 1 + x for x ∈ R, we have

(3.35) − e−a
2
nx

2/2

[
1−

(
1 +

1

λ2
√
2πe

)
z−2n

]
+ 1 + a2nx

< −
(
1− 1

2a
2
nx

2
)[
1−

(
1 +

1

λ2
√
2πe

)
z−2n

]
+ 1 + a2nx

= a2n(1 + a2nx)
−2

(
1 +

1

λ2
√
2πe

)
+ 1

2a
2
nx

2

− 1
2a

4
nx

2(1 + a2nx)
−2

(
1 +

1

λ2
√
2πe

)
+ a2nx

< a2n(1 + a2nx)
−2

(
1 +

1

λ2
√
2πe

)
+ 1

2a
2
nx

2

< a2n

[
(1− a2ncn)

−2
(
1 +

1

λ2
√
2πe

)
+ 1

2x
2

]
< a2n

[
1.112

(
1 +

1

λ2
√
2πe

)
+ 1

2x
2

]
.

Let
hn,λ(x) = −nΨn,λ(x) + e−x.

From Lemma 3.3, (1.3), (1.4) and (3.35), we have
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(3.36) hn,λ(x) < −n
2ϕ(zn)

zn

[
1−

(
1 +

1

λ2
√
2πe

)
z−2n

]
+ e−x

= −n
√
2/π b−1n (1 + a2nx)

−1e−z
2
n/2

[
1−

(
1 +

1

λ2
√
2πe

)
z−2n

]
+ e−x

= (1 + a2nx)
−1e−x

{
−e−a2nx2/2

[
1−

(
1 +

1

λ2
√
2πe

)
z−2n

]
+ 1 + a2nx

}
< (1 + a2nx)

−1e−xa2n

[
1.112

(
1 +

1

λ2
√
2πe

)
+ 1

2x
2

]
.

Further, by Lemma 3.3, (1.3) and (1.4), we have

(3.37) hn,λ(x) > −n
2ϕ(zn)

zn
+e−x = −n

√
2/π b−1n (1+a2nx)

−1e−z
2
n/2+e−x

= (1 + a2nx)
−1e−x(−e−a2nx2/2 + 1 + a2nx) > (1 + a2nx)

−1e−xa2n|x|.

Hence, for −cn < x < 0, it follows from (3.36) and (3.37) that

(3.38) |hn,λ(x)| < (1 + a2nx)
−1e−xa2n

[
1.112

(
1 +

1

λ2
√
2πe

)
+ 1

2x
2 + |x|

]
< (1− a2ncn)

−1ecna2n

[
1.112

(
1 +

1

λ2
√
2πe

)
+ 1

2c
2
n + cn

]
< (1− a2ncn)

−1
[
1.112

(
1 +

1

λ2
√
2πe

)
(a2n log b

2
n

)
+ 3

2a
2
n(log b

2
n)

2] < C′2,λ.

The third inequality holds because log x > (log log x)2 for x > e and log x >
log log x for x > 1. The last inequality holds by (3.23)–(3.25). Noting that |ex−1|
< |x|e|x| for x ∈ R and ex > 1 + x+ 1

2x
2 for x > 0, we have

(3.39) Λ(x)|An,λ(x) − 1| = Λ(x)|ehn,λ(x) − 1| < Λ(x)|hn,λ(x)|e|hn,λ(x)|

< Λ(x)(1 + a2nx)
−1e−xa2n

[
1.112

(
1 +

1

λ2
√
2πe

)
+ 1

2x
2 + |x|

]
eC
′
2,λ

< Λ(x)(1− a2ncn)
−1e−xa2n

[
1.112

(
1 +

1

λ2
√
2πe

)
+ 1

2x
2 + |x|

]
eC
′
2,λ

= a2n(1− a2ncn)
−1

[
1.112

(
1 +

1

λ2
√
2πe

)
+ 1

2x
2 + |x|

]
e−e

−x−x+C′2,λ

< a2n(1− a2ncn)
−1

[
1.112

(
1 +

1

λ2
√
2πe

)
+ 1

2x
2 + |x|

]
e−x

2/2+C′2,λ−1

= a2n(1− a2ncn)
−1

·
[
1.112

(
1 +

1

λ2
√
2πe

)
e−x

2/2 + 1
2x

2e−x
2/2 + |x|e−x2/2

]
eC
′
2,λ−1

< 1.11a2n

[
1.112

(
1 +

1

λ2
√
2πe

)
+ 1 + 1

]
eC
′
2,λ−1.

Inserting (3.39) into (3.33), we can establish (3.20).
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The last step is to show that (3.21) holds. For −∞ < x ¬ −cn, (1.4) implies

(3.40) 0 ¬ Λ(x) ¬ Λ(−cn) = a2n.

Since ex > 1 + x for x ∈ R, we have

(3.41) (1− a2ncn)
−1e−a

2
nc

2
n/2

[
1− a2n(1− a2ncn)

−2
(
1 +

1

λ2
√
2πe

)]
> e−a

2
nc

2
n/2

[
1− a2n(1− a2ncn)

−2
(
1 +

1

λ2
√
2πe

)]
>

(
1− 1

2a
2
nc

2
n

)[
1− a2n(1− a2ncn)

−2
(
1 +

1

λ2
√
2πe

)]
> 1− a2n

[
1
2c

2
n + (1− a2ncn)

−2
(
1 +

1

λ2
√
2πe

)]
.

Thus, by (1.3), (1.4), (3.23)–(3.25), (3.41) and Lemma 3.3, we have

(3.42) Fn
λ (zn) ¬ Fn

λ (bn − ancn)

= {1− [1− Fλ(bn − ancn)]}n

<

{
1− 2ϕ(bn − ancn)

bn − ancn

[
1−

(
1 +

1

λ2
√
2πe

)
(bn − ancn)

−2
]}n

=

{
1−

√
2/π b−1n (1− a2ncn)

−1e−(bn−ancn)
2/2

·
[
1− a2n(1− a2ncn)

−2
(
1 +

1

λ2
√
2πe

)]}n

=

{
1−n−1ecn(1− a2ncn)

−1e−a
2
nc

2
n/2

[
1− a2n(1− a2ncn)

−2
(
1+

1

λ2
√
2πe

)]}n

< exp

{
−ecn(1− a2ncn)

−1e−a
2
nc

2
n/2

[
1− a2n(1− a2ncn)

−2
(
1+

1

λ2
√
2πe

)]}
< exp

{
−ecn

[
1− a2n

(
1
2c

2
n +(1− a2ncn)

−2
(
1+

1

λ2
√
2πe

))]}
< a2n exp

{
1
2a

2
n(log b

2
n)

2 + [a2n(log b
2
n)](1− a2ncn)

−2
(
1+

1

λ2
√
2πe

)}
< C′3,λa2n

due to (1− x
n)

n < e−x for x ¬ n and log x > (log log x)2 for x > e. Combining
(3.40) with (3.42), we see that (3.21) holds. The proof is complete. ■

Proof of Theorem 2.3. For λ < 0, if n is sufficiently large then anx + bn > 0
with bn and an satisfying (1.5) and (1.6). Noting that zn = anx + bn, for large n
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and k ∈ R we have

zkn = bkn[1 + (1 + λ2)a2nx]
k(3.43)

= bkn

[
1 + k(1 + λ2)a2nx+

k(k − 1)

2
(1 + λ2)2a4nx

2 +O(a6n)

]
.

Applying (3.43) with k = 2 and with k = −2, we have

e−(1+λ2)z2n/2

−πλ(1 + λ2)z2n
= n−1e−x

[
1− (1 + λ2)a2n

(
2x+ 1

2x
2
)
+O(a4n)

]
(3.44)

and

(3.45) 1− 1 + 3λ2

λ2(1 + λ2)
z−2n = 1− (1 + 3λ2)(1 + λ2)

λ2
a2n +O(a4n).

Combining (3.44) with (3.45), we have

(3.46)
e−(1+λ2)z2n/2

−πλ(1 + λ2)z2n

[
1− 1 + 3λ2

λ2(1 + λ2)
z−2n

]
= n−1e−x

[
1− (1 + λ2)a2n

(
1 + 3λ2

λ2
+ 2x+ 1

2x
2

)
+O(a4n)

]
.

Therefore, by Lemma 3.1,

Fn
λ (zn)− Λ(x)

=

{
1− e−(1+λ2)z2n/2

−πλ(1 + λ2)z2n

[
1− 1 + 3λ2

λ2(1 + λ2)
z−2n +O(z−4n )

]}n

− Λ(x)

=

{
1− n−1e−x

[
1− (1 + λ2)a2n

(
1 + 3λ2

λ2
+ 2x+ 1

2x
2

)
+O(a4n)

]}n

− Λ(x)

= Λ(x)e−x
[
(1 + λ2)a2n

(
1 + 3λ2

λ2
+ 2x+ 1

2x
2

)
+O(a4n)

]
.

Further, by (1.5),

(3.47) log[π|λ|(1 + λ2)] + 2 log bn +
(1 + λ2)b2n

2
= log n,

implying that (1 + λ2)b2n ∼ 2 log n. Noting that an = (1 + λ2)−1b−1n , we can
obtain the left-hand inequality in (2.3).

It remains to show that there exists a positive constant C′′λ such that

sup
x∈R
|Fλ(zn)

n − Λ(x)| <
C′′λ
log n

for all n > n0(λ).
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For n > n0(λ), (3.47) implies

(3.48) b2n <
2

1 + λ2
log n,

so that

(3.49) 2 log bn < log
2

1 + λ2
+ log log n.

Combining (3.49) with (3.47), we get

(1 + λ2)b2n > 2 log n− 2 log(2π|λ|)− 2 log log n

and

(1 + λ2)b2n
log n

> 2− 2 log(2π|λ|)
log n

− 2 log log n

log n
(3.50)

> 2− 2 log(2π|λ|)
log n0(λ)

− 2

e
= c0,

where c0 is a positive constant and the last inequality is obtained by bounding
the function (log x)−1(log log x). Since an = (1 + λ2)−1b−1n , (3.50) implies that
a2n < 1

c0(1+λ2) logn
for n  n0(λ), and so it suffices to prove that

(3.51) sup
x∈R
|Fn

λ (zn)− Λ(x)| < C′′λa2n

for n  n0(λ).
We will now prove the following inequalities:

sup
0¬x<∞

|Fn
λ (zn)− Λ(x)| < C′′1,λa2n,(3.52)

sup
−dn<x<0

|Fn
λ (zn)− Λ(x)| < C′′2,λa2n(3.53)

sup
−∞<x¬−dn

|Fn
λ (zn)− Λ(x)| < C′′3,λa2n,(3.54)

where dn = log log[(1 + λ2)b2n] and dn > 0 for n  n0(λ).
The following bounds are needed:

c1 < bn0(λ),(3.55)

sup
n2

[1− (1 + λ2)a2ndn]
−1 < 1.11,(3.56)

sup
n2

(1 + λ2)a2n log[(1 + λ2)b2n] < 0.37,(3.57)
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sup
nn0(λ)

(1 + λ2)a2n
{
log[(1 + λ2)b2n]

}2
< 0.55,(3.58)

sup
n2

n−1 log[(1 + λ2)b2n] < 0.27,(3.59)

sup
n2

(1 + λ2)b2ne
−(1+λ2)b2n/2 < 0.74,(3.60)

where c1 is a positive constant and inequality (3.59) follows from (3.48), and
(3.56)–(3.58) and (3.60) are obtained by bounding the functions x−1 log log x,
x−1 log x, x−1(log x)2 and xe−x/2, respectively.

If x > −dn, by (1.5), (3.29), (3.56), (3.59) and Lemma 3.3 we have

(3.61) Ψn,λ(x) < Ψn,λ(−dn)

<
2ϕ(bn − andn)ϕ(λ(bn − andn))

|λ|(1 + λ2)(bn − andn)2

= n−1[1− (1 + λ2)a2ndn]
−2{log[(1 + λ2)b2n]}e−(1+λ2)a2nd

2
n/2

< [1− (1 + λ2)a2ndn]
−2{n−1 log[(1 + λ2)b2n]} < 0.332667

and

(3.62) Rn,λ(x) <
n{[1− (1 + λ2)a2ndn]

−2{n−1 log[(1 + λ2)b2n]}}2

2(1− 0.332667)

<
1

π|λ|
{[1− (1 + λ2)a2ndn]

−4}
[
(1 + λ2)a2n{log[(1 + λ2)b2n]}2

]
· [(1 + λ2)b2ne

−(1+λ2)b2n/2](1 + λ2)a2n

< C′′4a2n,

where Ψn,λ(x) and Rn,λ(x) are given by (3.28), i.e., Ψn,λ(x) = 1 − Fλ(zn) and
Rn,λ(x) = −n logFλ(zn) − nΨn,λ(x) with bn and an given by (1.5) and (1.6),
respectively. Hence, for n  n0(λ), we obtain

(3.63) |e−Rn,λ(x) − 1| = 1− e−Rn,λ(x) < Rn,λ(x) < C′′4a2n

by using the inequality ex > 1 + x for x ∈ R.
Let An,λ(x) = e−nΨn,λ(x)+e−x

and Bn,λ(x) = e−Rn,λ(x). Then (3.63) implies
that

|Fn
λ (zn)− Λ(x)| < Λ(x)|An,λ(x)− 1|+ |Bn,λ(x)− 1|(3.64)

< Λ(x)|An,λ(x)− 1|+ C′′4a2n

for x > −dn.
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Now we prove (3.52)–(3.54) in turn. To prove (3.52), noting that 0 < An,λ(x)
→ 1 as x→∞ and by Lemma 3.2, we have

A′n,λ(x) = An,λ(x)[−e−x + nanfλ(zn)]

< An,λ(x)

[
−e−x + nan2ϕ(zn)

ϕ(|λ|(zn))
|λ|(zn)

]
= An,λ(x)e

−x{e−(1+λ2)a2nx
2/2[1 + (1 + λ2)a2nx]

−1 − 1} ¬ 0

for x  0. Hence, by (3.55), (1.4) and Lemma 3.3,

(3.65) sup
x0
|An,λ(x)− 1| = An,λ(0)− 1

< exp

{
−n2ϕ(bn)ϕ(λbn)
|λ|(1 + λ2)bn

[
1− (1 + λ2)2

λ2
b−2n

]
+ 1

}
− 1

= exp

{
(1 + λ2)2

λ2
b−2n

}
− 1

<
(1 + λ2)2

λ2
b−2n exp

{
(1 + λ2)2

λ2
b−2n

}
<

(1 + λ2)4

λ2
exp

{
(1 + λ2)2

λ2
c−21

}
a2n

due to ex < 1 + xex for x > 0 and the monotonicity of bn (i.e. bn  bn0(λ) for
n  n0(λ)). Combining (3.64) with (3.65), we see (3.52) holds.

Before proving (3.53), we need the following inequalities. By (1.5) and the fact
that ex > 1 + x for x ∈ R, we have

(3.66) − e−(1+λ2)a2nx
2/2

[
1− (1 + λ2)2

λ2
z−2n

]
+ [1 + (1 + λ2)a2nx]

2

< −
[
1− 1

2(1 + λ2)a2nx
2
][
1− (1 + λ2)2

λ2
z−2n

]
+ [1 + (1 + λ2)a2nx]

2

< (1 + λ2)a2n

{
(1 + λ2)3

λ2
[1 + (1 + λ2)a2nx]

−2 + 1
2x

2 + (1 + λ2)a2nx
2

}
.

Let hn,λ(x) = −nΨn,λ(x) + e−x. By (1.5), (1.6), (3.66) and Lemma 3.3,

(3.67) hn,λ(x) < −n
2ϕ(zn)ϕ(λ(zn))

|λ|(1 + λ2)z2n

[
1− (1 + λ2)2

λ2
z−2n

]
+ e−x

< [1 + (1 + λ2)a2nx]
−2e−x(1 + λ2)a2n

{
(1 + λ2)3

λ2
[1 + (1 + λ2)a2nx]

−2

+ 1
2x

2 + (1 + λ2)a2nx
2

}



Uniform convergence rates 17

and

(3.68) hn,λ(x) > −n
2ϕ(zn)ϕ(λ(zn))

|λ|(1 + λ2)z2n
+ e−x

> [1 + (1 + λ2)a2nx]
−2e−x(1 + λ2)a2n[2x+ (1 + λ2)a2nx

2].

Hence, for −dn < x < 0, we note from (3.67) and (3.68) that

(3.69) |hn,λ(x)|

< [1 + (1 + λ2)a2nx]
−2e−x(1 + λ2)a2n

{
(1 + λ2)3

λ2
[1 + (1 + λ2)a2nx]

−2

+ 1
2x

2 + 2(1 + λ2)a2nx
2 + 2|x|

}
< [1− (1 + λ2)a2ndn]

−2edn(1 + λ2)a2n

{
(1 + λ2)3

λ2
[1− (1 + λ2)a2ndn]

−2

+ 1
2d

2
n + 2(1 + λ2)a2nd

2
n + 2dn

}
= [1− (1 + λ2)a2ndn]

−2

·
[
(1 + λ2)3

λ2
[1− (1 + λ2)a2ndn]

−2{(1 + λ2)a2n log[(1 + λ2)b2n]}

+ 1
2{(1 + λ2)a2n log[(1 + λ2)b2n]}{log log[(1 + λ2)b2n]}2

+ 2{(1 + λ2)2a4n log[(1 + λ2)b2n]}{log log[(1 + λ2)b2n]}2

+ 2{(1 + λ2)a2n log[(1 + λ2)b2n]}{log log[(1 + λ2)b2n]}
]
< C′′5,λ.

The last inequality holds because log x > (log log x)2 for x > e, log x > log log x
for x > 1 and (3.56)–(3.58). Noting that |ex − 1| < |x|e|x| for x ∈ R and ex >
1 + x+ 1

2x
2 for x > 0, for −dn < x < 0 we have

(3.70) Λ(x)|An,λ(x) − 1| < Λ(x)|hn,λ(x)|e|hn,λ(x)|

< Λ(x)[1+ (1+λ2)a2nx]
−2e−x(1+λ2)a2n

·
{
(1+λ2)3

λ2
[1+ (1+λ2)a2nx]

−2+ 1
2x

2+2(1+λ2)a2nx
2+2|x|

}
eC
′′
5,λ

= a2n[1+ (1+λ2)a2nx]
−2(1+λ2) exp{−e−x−x+C′′5,λ}

·
{
(1+λ2)3

λ2
[1+ (1+λ2)a2nx]

−2+ 1
2x

2+2(1+λ2)a2nx
2+2|x|

}
< a2n[1− (1+λ2)a2ndn]

−2(1+λ2) exp{−1
2x

2+C′′5,λ− 1}

·
{
(1+λ2)3

λ2
[1− (1+λ2)a2ndn]

−2+ 1
2x

2+2(1+λ2)a2nd
2
n+2|x|

}
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= a2n[1− (1+λ2)a2ndn]
−2(1+λ2)eC

′′
5,λ−1

·
{
(1+λ2)3

λ2
[1− (1+λ2)a2ndn]

−2e−x
2/2+ 1

2x
2e−x

2/2

+2(1+λ2)a2nd
2
ne
−x2/2+2|x|e−x2/2

}
< a2n[1− (1+λ2)a2ndn]

−2(1+λ2)eC
′′
5,λ−1

·
{
(1+λ2)3

λ2
[1− (1+λ2)a2ndn]

−2+1+2(1+λ2)a2n[log((1+λ2)b2n)]
2+1

}
< C′′6,λa2n.

Thus, inserting (3.70) into (3.64), we can see that (3.53) holds.
Now it remains to show that (3.54) holds. For −∞ < x ¬ −dn, noting that

ex > 1 + x for x ∈ R and the values of an and dn, we have

(3.71) 0 ¬ Λ(x) ¬ Λ(−dn) = (1 + λ2)a2n

and

(3.72) e−(1+λ2)a2nd
2
n/2[1− (1 + λ2)a2ndn]

−2

·
{
1− (1 + λ2)4

λ2
a2n[1− (1 + λ2)a2ndn]

−2
}

> e−(1+λ2)a2nd
2
n/2

{
1− (1 + λ2)4

λ2
a2n[1− (1 + λ2)a2ndn]

−2
}

>
[
1− 1

2(1 + λ2)a2nd
2
n

]{
1− (1 + λ2)4

λ2
a2n[1− (1 + λ2)a2ndn]

−2
}

= 1− (1 + λ2)4

λ2
a2n[1− (1 + λ2)a2ndn]

−2 − 1
2(1 + λ2)a2nd

2
n

+
(1 + λ2)5

2λ2
a4nd

2
n[1− (1 + λ2)a2ndn]

−2

> 1− (1 + λ2)4

λ2
a2n[1− (1 + λ2)a2ndn]

−2 − 1
2(1 + λ2)a2nd

2
n.

Thus, by (1.5), (1.6), (3.56)–(3.58), (3.72) and Lemma 3.3, for −∞ < x ¬ −dn
we have

(3.73) Fn
λ (zn) ¬ Fn

λ (bn − andn)

<

{
1− 2ϕ(bn − andn)ϕ(λ(bn − andn))

|λ|(1 + λ2)(bn − andn)2

[
1− (1 + λ2)2

λ2
(bn − andn)

−2
]}n

=

{
1− n−1edne−(1+λ2)a2nd

2
n/2

1− (1+λ2)4

λ2 a2n[1− (1 + λ2)a2ndn]
−2

[1− (1 + λ2)a2ndn]
2

}n
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< exp

{
−edne−(1+λ2)a2nd

2
n/2

1− (1+λ2)4

λ2 a2n[1− (1+λ2)a2ndn]
−2

[1− (1+λ2)a2ndn]
2

}
< exp

{
−edn

[
1− (1+λ2)4

λ2
a2n[1− (1+λ2)a2ndn]

−2− 1
2(1+λ2)a2nd

2
n

]}
= exp

{
− log[(1+λ2)b2n]

+
(1+λ2)3

λ2
[1− (1+λ2)a2ndn]

−2(1+λ2)a2n log[(1+λ2)b2n]

+ 1
2(1+λ2)a2n log[(1+λ2)b2n][log log((1+λ2)b2n)]

2

}
< exp

{
− log[(1+λ2)b2n]

+
(1+λ2)3

λ2
[1− (1+λ2)a2ndn]

−2(1+λ2)a2n log[(1+λ2)b2n]

+ 1
2(1+λ2)a2n[log((1+λ2)b2n)]

2

}
= a2n(1+λ2) exp

{
(1+λ2)3

λ2
[1− (1+λ2)a2ndn]

−2(1+λ2)a2n log[(1+λ2)b2n]

+ 1
2(1+λ2)a2n[log((1+λ2)b2n)]

2

}
< C′′7,λa2n.

Combining (3.71) with (3.73), we see that (3.54) holds. The proof is complete. ■
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