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Abstract. Let ξ be an integrable random variable defined on (Ω,F ,P). Fix
k ∈ Z+ and let {Gji }1¬i¬n,1¬j¬k be a reference family of sub-σ-fields
of F such that {Gji }1¬i¬n is a filtration for each j ∈ {1, . . . , k}. In this
article we explain the underlying connection between the analysis of the
maximal functions of the corresponding coherent vector and basic combi-
natorial properties of the uncentered Hardy–Littlewood maximal operator.
Following a classical approach of Grafakos, Kinnunen and Montgomery-
Smith, we establish an appropriate version of Doob’s celebrated maximal
estimate.
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1. INTRODUCTION

The inspiration for the results obtained in this paper comes from the recent devel-
opments in the theory of coherent distributions. To introduce the necessary notions,
suppose that (Ω,F ,P) is an arbitrary nonatomic probability space. Following [3],
we say that a random vector X = (X1, . . . , Xn) is coherent if there exist a ran-
dom variable ξ taking values in {0, 1} and a sequence G = (G1, . . . ,Gn) of sub-
σ-algebras of F such that Xk = E(ξ|Gk) for all k = 1, . . . , n. The motivation
for this definition comes from economics, where coherent distributions are used
to model the behavior of agents with partially overlapping information sources
[1, 10]. From the mathematical point of view, such random vectors enjoy many in-
teresting structural properties; for some latest theoretical advances on this subject,
see e.g. [2, 6, 7].

In this article, we will be interested in the universal sharp norm comparison of ξ
and the maximal function of X . We will drop the assumption P(ξ ∈ {0, 1}) = 1
and work with arbitrary integrable random variables. For such a ξ and a sequence G,
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the associated maximal function is given by MGξ = supj |E(ξ|Gj)|. The starting
point is the classical result of Doob, which asserts that

(1.1) ∥MGξ∥p ¬
p

p− 1
∥ξ∥p, 1 < p ¬ ∞,

when G is a filtration, i.e., we have the nesting condition G1 ⊆ · · · ⊆ Gn. Fur-
thermore, for each p the number p/(p − 1) is the best universal constant (i.e., not
depending on the length of G) allowed in the estimate. The main goal of this paper
is to consider (1.1) for more general families of σ-algebras: we will assume that G
can be decomposed into a union of filtrations. Specifically, we let G be of the form

G := {Gji }1¬i¬n,
1¬j¬k

,

and require the inclusions Gj1 ⊆ · · · ⊆ G
j
n for each j. No relation between the

σ-algebras Gji with different j is imposed. Thus, our investigation can be seen as
lying halfway between the study of general coherent distributions and of classi-
cal martingales. Furthermore, this subject enters into the still vague framework of
martingales indexed by partially ordered sets. For a general introduction to this
theory see [12]; for related Doob’s type inequalities see [4, 5, 11, 13]. Our reason-
ing will reveal an unexpected connection between the analysis of maxi,j |E(ξ|Gji )|
and basic combinatorial properties of the uncentered Hardy–Littlewood maximal
operator on tree-shaped domains. Due to this interdependence, we will be able to
extend the classical approach introduced in [8, 9] and derive an appropriate sharp
version of (1.1).

THEOREM 1.1. Let 1 < p < ∞ be a given parameter and assume that G =
{Gji }1¬i¬n, 1¬j¬k is the union of filtrations as above. Then for any random variable
ξ ∈ Lp we have the estimate

(1.2) ∥MGξ∥p ¬ Cp,k∥ξ∥p,

where Cp,k is the unique root of the equation

(1.3) (p− 1)Cp
p,k − pCp−1

p,k − (k − 1) = 0.

For fixed 1 < p < ∞ and k ­ 1, the constant Cp,k is the best possible: given
ε > 0, there is an integer n, a family G as above and a positive random variable
ξ ∈ Lp for which

(1.4) ∥MGξ∥p > (Cp,k − ε)∥ξ∥p.

That is, the constant Cp,k is the best universal constant allowed in (1.2), where
the universality means independence of n, the length of the filtrations building G.
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We point out that the constant Cp,k is still optimal if we restrict ourselves to ran-
dom variables ξ taking values in [0, 1]. This follows by a simple approximation
argument: given a positive almost extremal variable ξ (i.e., satisfying (1.4)), we
replace it with min {ξ, L}, where L is a positive constant. If L is sufficiently large,
then this new variable still satisfies (1.4), and hence so does min {ξ, L}/L, by
homogeneity. It remains to note that the latter variable takes values in [0, 1].

Interestingly, in the case ξ ∈ {0, 1}, which originates in the coherent context,
the optimal constant is smaller: here is the precise formulation.

THEOREM 1.2. Let G = {Gji }1¬i¬n, 1¬j¬k be a union of filtrations as above
and let 1 < p <∞. Then for any random variable ξ with values in {0, 1} we have

(1.5) ∥MGξ∥p ¬
(
1 +

k

p− 1

)1/p

∥ξ∥p.

The constant is the best possible for each k and each p.

We turn our attention to the analytic contents of the paper. Let k be a fixed
positive integer. Consider the set Rk =

⋃k
j=1Hj , where Hj is the line segment

on the complex plane with endpoints 0 and e2πij/k, j = 1, . . . , k. That is, Rk

is a tree-shaped domain being the union of k rays H1, . . . ,Hk, each of length 1.
We equip Rk with the standard British railway metric and the normalized one-
dimensional Lebesgue measure λk. Then we can introduce the concept of the
decreasing rearrangement on Rk. Namely, for an arbitrary random variable ξ on
(Ω,F ,P), we define first its distribution function dξ : [0,∞) → [0, 1] by dξ(s) =
P(|ξ| > s). Then the associated k-decreasing rearrangement ξ∗(k) : Rk → [0,∞)

is given by

ξ∗(k)(e
2πij/kt) = inf {s > 0 : dξ(s) ¬ t}, j = 1, . . . , k.

Equivalently, ξ∗(k) can be defined by taking the standard decreasing rearrangement
ξ∗ on [0, 1] and copying it on each ray Hj , in accordance with the natural order
induced by the distance from 0. Thus, we immediately see that |ξ| and ξ∗(k) have the
same distributions (as random variables on Ω and Rk, respectively). Furthermore,
ξ∗(k) is radially decreasing, i.e., ξ∗(k)(x) = ξ∗(k)(|x|) decreases as |x| grows.

Finally, we introduce the uncentered Hardy–Littlewood maximal function
M(k) in the above setup. This operator acts on integrable functions f on Rk by
the usual formula

M(k)f(x) = sup
1

λk(B)

∫
B

|f | dλk, x ∈ Rk,

where the supremum is taken over all open balls B ⊆ Rk which contain x. We
will identify the Lp norm of this object.
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THEOREM 1.3. For any 1 < p <∞ and any k ­ 2 we have ∥M(k)∥Lp→Lp =
Cp,k, where Cp,k is given in (1.3).

The case k = 2 was established by Grafakos and Montgomery-Smith [9]. Our
contribution is the analysis for k ­ 3. Furthermore, we will link the context of
coherent distributions with the analytic setup above, intertwining the contents of
Theorems 1.1 and 1.3.

THEOREM 1.4. Let k, n ­ 1 be fixed integers. Suppose further that ξ is an
integrable random variable and assume that G =

{
Gji

}
1¬i¬n, 1¬j¬k is a union of

filtrations as above. Then the maximal function MGξ satisfies the majorization

(1.6) (MGξ)
∗
(k) ¬M(k)(ξ

∗
(k)) λk-almost everywhere onRk.

The remaining part of the paper is split into two sections. In Section 2 we
establish Theorem 1.4. In the last part of the paper, we establish the Lp bound
∥M(k)∥Lp→Lp ¬ Cp,k, which allows us to deduce (1.2) immediately. Furthermore,
we show there the sharpness of the latter inequality, thus completing the proofs of
all aforementioned results.

From now on, the parameter k will be kept fixed; to simplify the notation, we
will skip the index and write ξ∗,M instead of ξ∗(k) andM(k), respectively.

2. PROOF OF THEOREM 1.4

We will need the following property of the Hardy–Littlewood maximal operator.

LEMMA 2.1. Suppose that ξ is an integrable random variable. Then for any
s > 0 such that λk(Mξ∗ > s) < 1 we have

s
(
(k−1)λk(ξ

∗ > s)+λk(Mξ∗ > s)
)
= (k−1)

∫
{ξ∗>s}

ξ∗ dλk+
∫

{Mξ∗>s}
ξ∗ dλk.

Proof. If s ­ ∥ξ∥∞, then the assertion is evident (both sides are zero), so
from now on we assume that s < ∥ξ∥∞. The functionMξ∗ is radially decreasing
along the rays of Rk. Furthermore, it is continuous, which follows directly from
Lebesgue’s dominated convergence theorem. Thus there exists u ∈ Rk, lying on
the ray H1, for which s = Mξ∗(u). It is easy to identify the ball B for which
the supremum definingMξ∗(u) is attained: u must be one of its boundary points,
and the intersection B ∩Hj for j ̸= 1 must be the part of Hj on which f > s. It
remains to note that the equality

s =Mξ∗(u) =
1

λk(B)

∫
B

ξ∗ dλk

is equivalent to the claim. Indeed, λk(B) = k−1
k λk(ξ

∗ > s) + 1
kλk(Mξ∗ > s),

with a similar identity for
∫
B
ξ∗ dλk. ■
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Proof of Theorem 1.4. It is enough to show the tail inequality

(2.1) P(MGξ > s) ¬ λk(Mξ∗ > s)

for all s. Now we consider two separate steps.

Step 1. Reductions. Let us first exclude the trivial cases: from now on, we will
assume that λk(Mξ∗ > s) < 1 and s < ∥ξ∥∞. Indeed, if λk(Mξ∗ > s) = 1, then
there is nothing to prove, while for s ­ ∥ξ∥∞ both sides of (2.1) are zero. Adding
the full σ-algebras Gjn+1 = F , j = 1, . . . , k, to the collection G if necessary, we
may and do assume that

(2.2) max
i
|E(ξ|Gji )| ­ |ξ| almost surely for all j.

In particular, this gives MGξ ­ |ξ| with probability 1.

Step 2. Proof of theorem. Fix an arbitrary s > 0 and write

P(MGξ > s) = P(A1 ∪ · · · ∪Ak),

where Aj = {maxi |E(ξ|Gji )| > s}, j = 1, . . . , k. Let us distinguish the additional
event A0 = {|ξ| > s} and observe that A0 ⊆ Aj for each j, in view of (2.2). Note
that if Ãj is an arbitrary event satisfying A0 ⊆ Ãj ⊆ Aj , then

(2.3) sP(Ãj)−
∫̃
Aj

|ξ| dP =
∫̃
Aj

(s− |ξ|) dP ¬
∫
Aj

(s− |ξ|) dP ¬ 0,

where the latter bound follows from Doob’s weak-type bound for the martingale
maximal function. Next, we write

P(A1 ∪ · · · ∪Ak) = P(A0 ∪A1 ∪ · · · ∪Ak)

= P(A0) + P(A1 \A0) + P(A2 \ (A1 ∪A0))

+ · · ·+ P(An \ (An−1 ∪An−2 ∪ · · · ∪A0)).

Set Ãj = A0∪ (Aj \ (Aj−1∪Aj−2∪ · · · ∪A0)), apply (2.3) and add the estimates
over j. Combining the result with the above formula for P(A1 ∪ · · · ∪ Ak), we
obtain

s[P(A1 ∪ · · · ∪Ak) + (k − 1)P(A0)] = s
k∑

j=1

P(Ãj) ¬
k∑

j=1

∫̃
Aj

|ξ| dP,

or equivalently,

s[P(MGξ > s) + (k − 1)P(A0)] ¬
∫

{MGξ>s}
|ξ| dP+ (k − 1)

∫
A0

|ξ| dP.
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Since |ξ| and ξ∗ are equidistributed, we have P(A0) = λk(ξ
∗ > s) and

∫
A0
|ξ| dP

=
∫
{ξ∗>s} ξ

∗ dλk. Plugging this into the above and applying Lemma 2.1, we get∫
{MGξ>s}

(s− |ξ|) dP ¬
∫

{Mξ∗>s}
(s− ξ∗) dλk,

or, subtracting the equality
∫
{|ξ|>s}(s− |ξ|) dP =

∫
{ξ∗>s}(s− ξ∗) dλk,∫

{MGξ>s}
(s− |ξ|)+ dP ¬

∫
{Mξ∗>s}

(s− ξ∗)+ dλk =
∫
Rk

χ{Mξ∗>s}(s− ξ∗)+ dλk.

However, the nonnegative functions χ{Mξ∗>s} and (s − ξ∗)+ have the reversed
monotonicity along the rays: the first of them is non-increasing, while the second
is non-decreasing. Since (s−|ξ|)+ and (s− ξ∗)+ have the same distribution, (2.1)
follows. ■

3. Lp ESTIMATES

We turn our attention to Theorems 1.1 and 1.3. Let us start with the Lp bound for
the uncentered maximal operator; the key ingredient of the proof is the following
weak-type estimate.

PROPOSITION 3.1. For an arbitrary integrable function f on Rk and any
s > 0 we have

(3.1) sλk(Mf > s) + s(k − 1)λk(|f | > s)

¬
∫

{Mf>s}
|f | dλk + (k − 1)

∫
{|f |>s}

|f | dλk.

Proof. It is convenient to split the reasoning into two steps.

Step 1. Special balls in Rk. Let us consider the level set E = {x ∈ Rk :
Mf > s}. Then for each x ∈ E there is an open ball Bx ⊆ Rk which contains x
and satisfies λk(Bx)

−1 ∫
Bx
|f | dλk > s. This inequality implies that Bx ⊆ E

and hence
⋃

x∈E Bx = E. By the Lindelöf theorem, we may pick a countable
subcollection (Bxn)

∞
n=1 such that

⋃∞
n=1Bxn = E. With no loss of generality,

we may assume that Bxi is not a subset of Bxj for i ̸= j. We fix an integer N
and restrict ourselves to the finite family B = (Bxn)

N
n=1. The idea is to pick a

subcollection B′ of B which does not overlap too much. To this end, we will choose
appropriate balls from each separate ray ofRk, exploiting the natural order induced
by the distance from 0. For simplicity, we will only describe the procedure for the
kth ray (i.e., for the interval [0, 1]); the argument for other rays is the same, up to
rotation.
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First, we pick a ball from B which contains zero and call it J0 (if no ball in B
contains zero, we let J0 = ∅; if there are several balls with this property, we take
the ball whose intersection with [0, 1] has the greatest measure). Next we apply the
following inductive procedure.

1◦ Suppose that we have successfully defined Jn. Consider the family of all
intervals J ∈ B which intersect Jn and satisfy sup J > sup Jn. If this family
is non-empty, choose the interval with largest left endpoint (if this object is not
unique, pick the one with the greatest measure) and denote it by Jn+1.

2◦ If the family in 1◦ is empty, then consider all intervals J ∈ B with inf J ­
sup Jn. If this family is non-empty, choose an element with the smallest left end-
point (again, if this object is not unique, pick the one with the greatest measure)
and denote it by Jn+1.

3◦ Go to 1◦.

Since the family B is finite, the procedure stops after a finite number of steps
(in 1◦ and 2◦, there are no balls to choose from) and returns a family J j

0 , J j
1 , . . . ,

J j
mj of balls. Observe that by the very construction, J j

0 , J j
2 , J j

4 , . . . are pairwise
disjoint and the same is true for J j

1 , J j
3 , J j

5 , . . . . Letting

B′ = {J j
ℓ : 1 ¬ ℓ ¬ mj , j = 1, . . . , k},

we easily check that

(3.2)
⋃

B∈B
B =

⋃
B∈B′

B.

Next, by the disjointness properties of the sequences J j
i , the family B′ has the

following property: each point x ∈ Rk belongs to at most k + 1 elements of B′.
Moreover, we can actually improve this last bound by 1. Now, say there is a point
x0 ∈ Rk which belongs to exactly k+1 elements of B′ and assume that x0 belongs
to the the kth ray Hk. By the extremality of Jk

0 we must have J i
0∩[0, 1] ⊂ Jk

0∩[0, 1]
for all i = 1, . . . , k − 1, and hence

x0 ∈
k⋂

j=1

J j
0 ∩ J

k
1 .

Thus, we simply remove Jk
0 from the family B′. Such a modification does not

affect the validity of (3.2) and proves our assertion.

Step 2. Calculation. Since B′ ⊆ B, each element B of B′ satisfies

sλk(B) ¬
∫
B

|f | dλk.
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Summing over all B ∈ B′, we thus obtain

s
[
λ
( ⋃
B∈B′

B
)
+

k∑
j=2

λk(Aj)
]
¬

∫⋃
B∈B′ B

|f | dλk +
k∑

j=2

∫
Aj

|f | dλk,

where Aj is the collection of all x ∈ Rk which belong to exactly j elements of B′.
This is equivalent to

sλ
( ⋃
B∈B

B
)
¬

∫⋃
B∈B B

|f | dλk +
k∑

j=2

∫
Aj

(|f | − s) dλk

¬
∫⋃

B∈B B

|f | dλk +
k∑

j=2

∫
Aj

(|f | − s)+ dλk

¬
∫⋃

B∈B B

|f | dλk + (k − 1)
∫

⋃k
j=2 Aj

(|f | − s)+ dλk

¬
∫⋃

B∈B B

|f | dλk + (k − 1)
∫
Rk

(|f | − s)+ dλk.

Now recall that the family B depends on N . Letting this parameter go to infinity
and using Lebesgue’s monotone convergence theorem, we obtain

sλ(E) ¬
∫
E

|f | dλk + (k − 1)
∫
Rk

(|f | − s)+ dλk.

This is precisely the claim. ■

Now, using the standard integration argument, we obtain the Lp estimate for
the uncentered maximal operator onRk.

Proof of (1.2). By Fubini’s theorem, we have∫
Rk

(Mf)p dλk + (k − 1)
∫
Rk

|f |p dλk

= p
∞∫
0

sp−1 [λk(Mf > s) + (k − 1)λk(|f | > s)] ds,

which by (3.1) does not exceed

p
∞∫
0

sp−2
[ ∫
{Mf>s}

|f | dλk + (k − 1)
∫

{|f |>s}
|f | dλk

]
ds

=
p

p− 1

∫
Rk

(
(Mf)p−1|f |+ (k − 1)|f |p

)
dλk.
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Here in the last passage we have used Fubini’s theorem again. This gives the bound∫
Rk

(Mf)p dλk ¬
p

p− 1

∫
Rk

(Mf)p−1|f | dλk +
k − 1

p− 1

∫
Rk

|f |p dλk.

However, by Hölder’s inequality, we have∫
Rk

(Mf)p−1|f | dλk ¬
( ∫
Rk

(Mf)p dλk

)(p−1)/p( ∫
Rk

|f |p dλk

)1/p
,

which combined with the previous estimate yields

(p− 1)

(∥Mf∥Lp(Rk)

∥f∥Lp(Rk)

)p

− p

(∥Mf∥Lp(Rk)

∥f∥Lp(Rk)

)p−1
− (k − 1) ¬ 0.

It remains to note that the function s 7→ (p − 1)sp − psp−1 − (k − 1) is increas-
ing on [1,∞) and Cp,k is its unique root. This establishes the desired Lp bound
∥Mf∥Lp(Rk) ¬ Cp,k∥f∥Lp(Rk). ■

Combining the Lp estimate we have just proved with inequality (1.6), we im-
mediately obtain (1.2), Doob’s inequality for the generalized coherent random vari-
ables. It remains to prove the optimality of the constant Cp,k in the latter estimate.
Having proved this sharpness, we immediately deduce the optimality of the con-
stant for the uncentered maximal operator.

Proof of sharpness of Cp,k. Let 1 < p < ∞ and k ∈ {1, 2, . . .} be fixed.
Consider the probability space Rk with its Borel subsets and normalized one-
dimensional Lebesgue measure λk. Fix an auxiliary constant r ∈ (0, p−1) and
consider the random variable ξ(x) = |x|−r; then the estimate r < p−1 guarantees
that this variable belongs to Lp. To define the filtrations, let λr,k be the unique root
of the equation

(3.3) λ(1− r)− (k − 1)rλ(r−1)/r − 1 = 0, 1 ¬ λ <∞.

The existence and uniqueness of λr,k is direct consequence of the fact that the left-
hand side, considered as a function of λ, is strictly increasing, negative at λ = 1
and positive for large λ. Now, for any j ∈ {1, . . . , k}, introduce the closed ball Bj

which has center e2πij/k(1− λ
−1/r
r,k )/2 and radius (1 + λ

−1/r
r,k )/2. This ball covers

the whole ray Hj and some portion of the remaining rays: |Bj ∩Hi| = λ
−1/r
r,k for

i ̸= j. Therefore if x lies on the jth ray of Rk, then the rescaled ball |x|Bj =
{|x|y ∈ Rk : y ∈ Bj} satisfies

1

λk(|x|Bj)

∫
|x|Bj

ξ dλk =

∫ |x|
0

ω−r dω + (k − 1)
∫ λ
−1/r
r,k |x|

0 ω−r dω

|x|+ (k − 1)λ
−1/r
r,k |x|

= λr,k · ξ(x),

by (3.3). Since both sides are homogeneous of order −r (as functions of x), one
can actually show a bit more: for any ε > 0 there is δ ∈ (0, 1) such that if y ∈ Hj
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satisfies δ < |y/x| ¬ 1, then

(3.4)
1

λk(|x|Bj)

∫
|x|Bj

ξ dλk ­ (λr,k − ε) · ξ(y).

Fix ε, δ with the above property and pick a large integer N . For any n =
0, 1, . . . , N , let Gjn be the σ-algebra generated by the balls Bj , δBj , . . . , δn−1Bj .
It follows directly from (3.4) that

MGξ ­ (λr,k − ε)ξ almost surely onRk \ δNBj .

But ξ ∈ Lp, as we have already discussed above. Since ε and N were taken arbi-
trarily, the best constant allowed in the estimate (1.2) is at least λr,k. It remains to
note that if we let r → p−1, then λr,k converges to the constant Cp,k: in the limit,
(3.3) becomes (1.3). This proves the desired sharpness. ■

Finally, we handle the sharp version of Doob’s estimate in the coherent setting.

Proof of Theorem 1.2. Put P(ξ = 1) = q. Then for t ∈ [0, 1] we have the
identity ξ∗(e2πij/kt) = 1(t ¬ q) and therefore

Mξ∗(e2πij/kt) =


1 if t ¬ q,

kq

(k − 1)q + t
if t > q,

for all j = 1, . . . , k. By Theorem 1.4, we can write

∥MGξ∥pp
∥ξ∥pp

¬ ∥Mξ∗∥pp
∥ξ∥pp

=

[
q +

1∫
q

(
kq

(k − 1)q + t

)p

dt

]
1

q

= 1 +
1/q∫
1

(
k

k − 1 + s

)p

ds

¬ 1 +
∞∫
1

(
k

k − 1 + s

)p

ds = 1 +
k

p− 1
,

which gives the desired bound. To see that the estimate is sharp, we construct
an example for which all the inequalities above become almost-equalities. More
precisely, consider the probability spaceRk with its Borel subsets and normalized
one-dimensional Lebesgue measure λk and fix an arbitrary ε > 0. Introduce the
random variable ξ(x) = 1(|x| < q), where q ∈ (0, 1) satisfies

1/q∫
1

(
k

k − 1 + s

)p

ds+ ε =
∞∫
1

(
k

k − 1 + s

)p

ds.
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For fixed 1 ¬ j ¬ k and 0 ¬ n ¬ N , consider the point xn = (N − n)/(2N)
and let Bj

n be the ball centered at e2πij/kxn and of radius xn + q. Finally, consider
the filtration (Gjn)0¬n¬N = (σ(Bj

0, B
j
1, . . . , B

j
n))0¬n¬N . Arguing as above, one

easily checks that the maximal function MGξ can be made arbitrarily close, in
L∞ norm, toMξ∗, by picking N sufficiently large. Thus one can guarantee that
∥MGξ∥pp/∥ξ∥pp + ε > ∥Mξ∗∥pp/∥ξ∥pp, and hence

∥MGξ∥pp
∥ξ∥pp

> 1 +
k

p− 1
− 2ε.

Since ε was chosen arbitrarily, the sharpness follows. ■
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