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Abstract. In this paper, we study the Skorokhod problem with two con-
straints, where both constraints are nonlinear. We prove the existence and
uniqueness of a solution and also provide an explicit construction for the
solution. In addition, a number of properties of the solution are investi-
gated, including continuity under uniform and J1 metrics and a comparison
principle.
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1. INTRODUCTION

The Skorokhod problem is a convenient tool to study equations with reflecting
boundary conditions. In 1961, Skorokhod [11] originally constructed the solution
of a stochastic differential equation (SDE for short) on the half-line [0,∞). A non-
decreasing function is added in this equation to push the solution upward in a
minimal way so that it satisfies the so-called Skorokhod condition. In [3, 4], the
authors considered a deterministic version of the Skorokhod problem for continu-
ous functions and for càdlàg functions, respectively. A multidimensional extension
of the Skorokhod problem was considered by Tanaka [17].

Due to the wide applications of reflecting Brownian motions including statisti-
cal physics [2, 16], queueing theory [10], control theory [5], the Skorokhod prob-
lem with two reflecting boundaries, also called the two-sided Skorokhod problem,
has attracted a great deal of attention of many researchers. Roughly speaking, the
Skorokhod problem with two reflecting boundaries α, β is to find a pair (X,K) of
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functions such that Xt = St +Kt ∈ [αt, βt] for any t ­ 0 and K satisfies some
necessary conditions, where S, α, β (α < β) are some given right-continuous func-
tions with left limits. For simplicity, (X,K) is called the solution to the Skorokhod
problem on [α, β] for S. Kruk et al. [9] presented an explicit formula to make a de-
terministic function stay in the interval [0, a] (i.e., α, β are two constants) and stud-
ied the properties of the solutions. Then Burdzy et al. [1] considered the Skorokhod
problem in a time-dependent interval. They obtained the existence and uniqueness
of a solution to the so-called extended Skorokhod problem, which is a slight gener-
alization of the Skorokhod problem. Under the assumption that inft(βt −αt) > 0,
the solution to the extended Skorokhod problem coincides with the one to the Sko-
rokhod problem. We refer the interested reader to [8, 12, 13, 14, 15] and the refer-
ences therein for related work in this field.

It is worth pointing out that in the existing literature, the solution of a Sko-
rokhod problem with two reflecting boundaries is required to remain in a (time-
dependent) interval. The objective of this paper is to study the Skorokhod problem
with two reflecting boundaries behaving in a nonlinear way, that is, we need to
make sure that two functions of the solution stay positive and negative, respectively.
More precisely, let S be a right-continuous function with left limits on [0,∞) tak-
ing values in R. Given two functions L,R : [0,∞)×R→ R with L < R, we need
to find a pair (X,K) of functions such that

(i) Xt = St +Kt;

(ii) L(t,Xt) ¬ 0 ¬ R(t,Xt);

(iii) K0− = 0 and K has the decomposition K = Kr − K l, where Kr,K l are
nondecreasing functions satisfying

∞∫
0

1{L(s,Xs)<0} dK
l
s = 0,

∞∫
0

1{R(s,Xs)>0} dK
r
s = 0.

By choosing L,R appropriately, the Skorokhod problem with two nonlinear re-
flecting boundaries may degenerate into the classical Skorokhod problem (see
[11]), the Skorokhod problem on [0, a] (see [9]) and the Skorokhod problem in
a time-dependent interval (see [1, 12, 13]). Recalling the results in [1], the second
component of the solution to the Skorokhod problem on [α, β] for S is given by

Kt = −max
([

(S0)
+ ∧ inf

u∈[0,t]
S̄u

]
, sup
s∈[0,t]

[
Ss ∧ inf

u∈[s,t]
S̄u

])
,

where S̄ = S−α and S = S−β. Motivated by this construction, for the nonlinear
case, we first find functions ΦS , ΨS satisfying the following nonlinear reflecting
constraints:

L(t, St +ΦS
t ) = 0, R(t, St +ΨS

t ) = 0, t ­ 0.
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We show that ΦS and ΨS will take over the roles of β−S and α−S, respectively
and the inducedK is the second component of the solution to the Skorokhod prob-
lem with two nonlinear reflecting boundaries. The explicit characterization for K
allows us to obtain the continuity of the solution with respect to the input function
S and the nonlinear functions L,R. We also present some comparison theorems.
Roughly speaking, the nondecreasing function Kr aims to push the solution up-
ward so that R(t,Xt) ­ 0, while the nondecreasing function K l tries to pull the
solution downward to make sure that L(t,Xt) ¬ 0. It is natural to conjecture that
the forces Kr and K l will increase if R becomes smaller or L becomes larger. The
Skorokhod problem with two nonlinear reflecting boundaries is a building block
for studying doubly mean reflected (backward) SDEs (see [6, 7]).

The paper is organized as follows. We first formulate the Skorokhod problem
with two nonlinear reflecting boundaries in detail and provide the existence and
uniqueness result in Section 2. Then, in Section 3, we investigate the properties of
solutions to Skorokhod problems, such as the comparison property and the conti-
nuity property.

2. SKOROKHOD PROBLEM WITH TWO NONLINEAR REFLECTING BOUNDARIES

2.1. Basic notations and problem formulation. Let D[0,∞) be the set of real-
valued right-continuous functions having left limits (usually called càdlàg func-
tions); I[0,∞), C[0,∞), BV [0,∞) and AC[0,∞) are the subsets of D[0,∞)
consisting of the nondecreasing functions, continuous functions, functions of
bounded variation and absolutely continuous functions, respectively. For any K ∈
BV [0,∞) and t ­ 0, |K|t is the total variation of K on [0, t].

DEFINITION 2.1. Let S ∈ D[0,∞) and let L,R : [0,∞)× R → R with L ¬
R. A pair (X,K) ∈ D[0,∞) × BV [0,∞) is called a solution of the Skorokhod
problem for S with nonlinear constraints L,R (briefly, (X,K) solves SPR

L(S)) if

(i) Xt = St +Kt;

(ii) L(t,Xt) ¬ 0 ¬ R(t,Xt);

(iii) K0− = 0 and K has a decomposition K = Kr − K l, where Kr,K l are
nondecreasing functions satisfying

∞∫
0

1{L(s,Xs)<0} dK
l
s = 0,

∞∫
0

1{R(s,Xs)>0} dK
r
s = 0.

REMARK 2.1. (i) The integration in (iii) of Definition 2.1 is carried out in-
cluding the initial time 0. That is, if K0 > 0, we must have R(0, X0)K0 = 0; if
K0 < 0, we must have L(0, X0)K0 = 0.

(ii) If L ≡ −∞ and R(t, x) = x, then the Skorokhod problem associated with
S,L,R turns into the classical Skorokhod problem as in [11].
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(iii) If L(t, x) = x−a and R(t, x) = x, where a is a positive constant, then the
Skorokhod problem associated with S,L,R coincides with the Skorokhod problem
on [0, a] studied in [9].

(iv) If L(t, x) = x− rt and R(t, x) = x− lt, where r, l ∈ D[0,∞) with l ¬ r,
then the Skorokhod problem associated with S,L,R corresponds to the Skorokhod
problem on [l, r] for S as in [1, 12, 13].

(v) If L = −∞ (resp. R = ∞), Definition 2.1 is a special case of Definition
2.8 (resp. Definition 2.10) in [6] with l = 0 (resp. u = 0).

REMARK 2.2. It is worth pointing out that the Skorokhod problem on [l, r]
for S as in Remark 2.1(iv) is a building block for the Skorokhod problem with mean
minimality condition studied in [6]. More explicitly, consider a filtered probability
space (Ω,F , {Ft}t­0,P). Let h : [0,∞) × R → R be a measurable function
satisfying the linear growth condition in its second argument. Given an adapted
process Y with càdlàg trajectories and l, r ∈ D[0,∞) with l ¬ r and E[h(0, Y0)] ∈
[l0, r0], a pair (X,K) is a solution of the Skorokhod problem with mean minimality
condition and two constraints associated with h, Y, l, r if

(i) Xt = Yt +Kt, t ­ 0;

(ii) E[h(t,Xt)] ∈ [lt, rt], t ­ 0;

(iii) for every 0 ¬ t ¬ q,

Kq −Kt ­ 0 if E[h(s,Xs)] < rs for all s ∈ (t, q],

Kq −Kt ¬ 0 if E[h(s,Xs)] > ls for all s ∈ (t, q],

and for every t ­ 0, ∆Kt ­ 0 if E[h(t,Xt)] < rt and ∆Kt ¬ 0 if
E[h(t,Xt)] > lt.

For any t ­ 0 and z ∈ R, we define a new map H(t, ·, Yt) : R→ R by

H(t, z, Yt) = E[h(t, Yt − E[Yt] + z)].

Under appropriate assumptions on h, there exists a strictly increasing and contin-
uous inverse map H−1(t, ·, Yt) : R → R. Then the second component K of the
solution to the Skorokhod problem associated with h, Y, l, r coincides with the one
to the Skorokhod problem on [l̄, r̄] for ȳ, where yt = E[Yt], l̄t = H−1(t, lt, Yt) and
r̄t = H−1(t, rt, Yt), t ­ 0.

However, if we propose the following constraints for the resulting process X:

(ii′) E[L(t,Xt)] ¬ 0 ¬ E[R(t,Xt)], t ­ 0,

then the construction of the solution to the above Skorokhod problem with two
nonlinear constraints needs our Skorokhod problem introduced in Definition 2.1,
which is the motivation to study this problem.
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In order to solve the Skorokhod problem with two nonlinear reflecting bound-
aries, we propose the following assumption on the functions L,R.

ASSUMPTION 2.1. The functions L,R : [0,∞)×R→ R satisfy the following
conditions:

(i) For each fixed x ∈ R, L(·, x), R(·, x) ∈ D[0,∞),

(ii) For any fixed t ­ 0, L(t, ·), R(t, ·) are strictly increasing,

(iii) There exist constants 0 < c < C <∞ such that for any t ­ 0 and x, y ∈ R,

c|x− y| ¬ |L(t, x)− L(t, y)| ¬ C|x− y|,
c|x− y| ¬ |R(t, x)−R(t, y)| ¬ C|x− y|.

(iv) inf(t,x)∈[0,∞)×R(R(t, x)− L(t, x)) > 0.

REMARK 2.3. Actually, all the results in this paper, including the existence and
uniqueness result (Theorem 2.1) and the properties of solutions to the Skorokhod
problems (Theorems 3.1–3.2, Propositions 3.3–3.5), still hold if (iv) in Assumption
2.1 is replaced by the weaker condition

inf
t¬q, x∈R

(R(t, x)− L(t, x)) > 0, q ­ 0.

Conditions (ii) and (iii) in Assumption 2.1 imply that for any t ­ 0,

lim
x→−∞

L(t, x) = −∞, lim
x→+∞

L(t, x) = +∞,

lim
x→−∞

R(t, x) = −∞, lim
x→+∞

R(t, x) = +∞.

Now, given S ∈ D[0,∞), for any t ­ 0, the above equation and condition (iii)
in Assumption 2.1 imply that the mappings x 7→ L(t, St + x), x 7→ R(t, St + x) :
R→ R are one-to-one. Let ΦS

t , ΨS
t be the unique solutions to the following equa-

tions, respectively:

(2.1) L(t, St + x) = 0, R(t, St + x) = 0.

In the following, for simplicity, we always omit the superscript S. We first investi-
gate the properties of Φ and Ψ.

LEMMA 2.1. Under Assumption 2.1, for any given S ∈ D[0,∞), we have
Φ,Ψ ∈ D[0,∞) and

inf
t­0

(Φt −Ψt) > 0.
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Proof. By a similar analysis to the proof of [6, Lemma 2.2], we have Φ,Ψ ∈
D[0,∞). It remains to prove that inft­0(Φt − Ψt) > 0. First, it is easy to check
that Φt > Ψt for any t ­ 0. Indeed, suppose that there exists some t ­ 0 such that
Φt ¬ Ψt. By Assumption 2.1(ii, iv) and the definition of Φ,Ψ, we have

0 = L(t, St +Φt) < R(t, St +Φt) ¬ R(t, St +Ψt) = 0,

which is a contradiction. Set

α = inf
(t,x)∈[0,∞)×R

(R(t, x)− L(t, x)) > 0.

It follows that

−L(t, St +Ψt) = R(t, St +Ψt)− L(t, St +Ψt) > α.

Then
α < L(t, St +Φt)− L(t, St +Ψt) ¬ C(Φt −Ψt),

which implies that inft­0(Φt −Ψt) ­ α/C. The proof is complete. ■

REMARK 2.4. Assume that for any x ∈ R, we haveL(·, x), R(·, x) ∈ C[0,∞)
and L,R satisfy Assumption 2.1(ii)–(iv). Given S ∈ C[0,∞), we can show that
Φ,Ψ ∈ C[0,∞).

2.2. Existence and uniqueness result. In this subsection, we first establish unique-
ness of solutions to the Skorokhod problem with two nonlinear reflecting bound-
aries. The proof is a relatively straightforward modification of the proof for the ex-
tended Skorokhod problem in a time-dependent interval (see [1, Proposition 2.8]).

PROPOSITION 2.1. Suppose that L,R satisfy Assumption 2.1. For any given
S ∈ D[0,∞), there exists at most one solution to the Skorokhod problem SPR

L(S).

Proof. Let (X,K) and (X ′,K ′) solve SPR
L(S). At time 0, we have the follow-

ing three cases.

CASE I: L(0, S0) ¬ 0 ¬ R(0, S0). In this case, Ψ0 ¬ 0 ¬ Φ0 and K0 =
K ′0 = 0.

CASE II: L(0, S0) < 0. In this case, Ψ0 > 0 and K0 = K ′0 = Ψ0.
CASE III: R(0, S0) > 0. In this case, Φ0 < 0 and K0 = K ′0 = Φ0.

Therefore, we may conclude that K0 = K ′0 = [−(Φ0)
−] ∨ Ψ0. Consequently,

X0 = X ′0.
Suppose that there exists some T > 0 such that XT > X ′T . Let

τ = sup {t ∈ [0, T ] : Xt ¬ X ′t}.

Since X0 = X ′0, τ is well-defined. We have the following two cases.
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CASE 1: Xτ ¬ X ′τ . In this case, for any t ∈ (τ, T ], we have Xt > X ′t. It
follows that for any t ∈ (τ, T ],

(2.2) R(t,Xt) > R(t,X ′t) ­ 0 ­ L(t,Xt) > L(t,X ′t).

Using condition (iii) in Definition 2.1, we have

KT −Kτ = −(K l
T −K l

τ ) ¬ 0 ¬ K ′,rT −K
′,r
τ = K ′T −K ′τ .

Therefore,

0 < XT −X ′T = KT −K ′T ¬ Kτ −K ′τ = Xτ −X ′τ ,

which contradicts the case assumption.

CASE 2: Xτ > X ′τ . Recalling that X0 = X ′0, we have τ > 0. Moreover, the
definition of τ yields

(2.3) Xτ− ¬ X ′τ−.

Furthermore, in this case, (2.2) holds for t = τ . Similar to the proof of Case 1, we
have

Kτ −Kτ− = −(K l
τ −K l

τ−) ¬ 0 ¬ K ′,rτ −K
′,r
τ ′ = K ′τ −K ′τ ′ .

It follows that

0 < Xτ −X ′τ = Kτ −K ′τ ¬ Kτ− −K ′τ− = Xτ− −X ′τ−,

which contradicts (2.3).
All the above analysis indicates that XT ¬ X ′T for any T ­ 0. A similar argu-

ment implies that XT ­ X ′T for any T ­ 0. Hence, XT = X ′T , and consequently
KT = K ′T for any T ­ 0. ■

REMARK 2.5. The proof of Proposition 2.1 is valid if L,R satisfy (i) and (ii)
in Assumption 2.1 and R(t, x) ­ L(t, x) for any (t, x) ∈ [0,∞)× R.

Now, we state the main result of this section.

THEOREM 2.1. Suppose that Assumption 2.1 holds. Given S ∈ D[0,∞), set

(2.4) Kt = −max
(
(−Φ0)

+ ∧ inf
r∈[0,t]

(−Ψr), sup
s∈[0,t]

[
(−Φs) ∧ inf

r∈[s,t]
(−Ψr)

])
,

and X = S + K. Then (X,K) is the unique solution to the Skorokhod problem
SPR

L(S).
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REMARK 2.6. (i) For the case of Remark 2.1(iv), i.e., L(t, x) = x − rt,
R(t, x) = x− lt, we have Φt = rt − St, Ψt = lt − St, and thus

Kt = −max
(
(S0 − r0)+ ∧ inf

r∈[0,t]
(Sr − lr), sup

s∈[0,t]

[
(Ss − rs) ∧ inf

r∈[s,t]
(Sr − lr)

])
,

which coincides with the results in [1, 12]. In particular, let rt = eatq, lt = eatp,
St =

(
x0 +

β
a

)
− β

a e
at with a, β > 0, p ¬ x0 ¬ q and p > −β/a. Then we may

calculate that the second component K of the solution to SPR
L(S) is given by

Kt =

{(
p+

β

a

)
eat −

(
x0 +

β

a

)}
1{t>t0},

where t0 = 1
a

(
ln
(
x0 +

β
a

)
− ln

(
p+ β

a

))
.

(ii) Let L(t, x) = x + α sin(x) − q, R(t, x) = x + α sin(x) − p with p < q,
|α| < 1. Then L,R satisfy Assumption 2.1. Given S ∈ D[0,∞), for any t ­ 0, let
Φt, Ψt be the solutions to

L(t, St +Φt) = 0, R(t, St +Ψt) = 0.

We define

Kt = −max
(
[(−Φ)−0 ] ∧ inf

r∈[0,t]
(−Ψr), sup

s∈[0,t]

[
(−Φs) ∧ sup

r∈[s,t]
(−Ψr)

])
.

Then K is the second component of the solution to SPR
L(S).

The proof of Theorem 2.1 will be divided into several lemmas. We first show
that the function K defined by (2.4) is right-continuous with left limits. The proof
needs the following observation used in [1, 12]: ϕ ∈ D[0,∞) if and only if the
following two conditions hold for any ε > 0:

(i) for each θ1 ­ 0, there exists some θ2 > θ1 such that

sup
t1,t2∈[θ1,θ2)

|ϕt1 − ϕt2 | ¬ ε;

(ii) for each θ2 > 0, there exists some 0 ¬ θ1 < θ2 such that

sup
t1,t2∈[θ1,θ2)

|ϕt1 − ϕt2 | ¬ ε.

LEMMA 2.2. If Φ,Ψ ∈ D[0,∞), then K defined by (2.4) belongs to D[0,∞).
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Proof. For any 0 ¬ s ¬ t, set

HΦ,Ψ(t) = (−Φ0)
+ ∧ inf

r∈[0,t]
(−Ψr),

RΦ,Ψ
t (s) = (−Φs) ∧ inf

r∈[s,t]
(−Ψr),

CΦ,Ψ(t) = sup
s∈[0,t]

RΦ,Ψ
t (s).

For simplicity, we always omit the superscript Φ,Ψ. It is easy to check that

(2.5) (−Φt) ∧ (−Ψt) ¬ C(t) ¬ −Ψt.

For any 0 ¬ θ1 < θ2, let t1, t2 be in [θ1, θ2) with t1 ¬ t2, and

a := sup
s,u∈[θ1,θ2)

|Φs − Φu|+ sup
s,u∈[θ1,θ2)

|Ψs −Ψu|.

Then, for any s ∈ [0, t1], we have Rt2(s) ¬ Rt1(s) and

sup
s∈(t1,t2]

Rt2(s) ¬ sup
s∈(t1,t2]

(−Φs) ∧ (−Ψs) ¬ (−Φt1) ∧ (−Ψt1) + a.

It follows that

C(t2) = sup
s∈[0,t1]

Rt2(s) ∨ sup
s∈(t1,t2]

Rt2(s)

¬ sup
s∈[0,t1]

Rt1(s) ∨ [(−Φt1) ∧ (−Ψt1) + a]

¬ sup
s∈[0,t1]

Rt1(s) + a = C(t1) + a.

On the other hand, noting (2.5), we obtain

C(t1)− a ¬ C(t1) ∧ (−Ψt1 − a)

¬ sup
s∈[0,t1]

[
Rt1(s) ∧ inf

r∈(t1,t2]
(−Ψr)

]
= sup

s∈[0,t1]
Rt2(s) ¬ sup

s∈[0,t2]
Rt2(s) = C(t2).

All the above analysis indicates that |C(t1) − C(t2)| ¬ a. Moreover, a simple
calculation yields

H(t2) ¬ H(t1) = H(t1) ∧ (−Ψt1 − a+ a)

¬ H(t1) ∧ (−Ψt1 − a) + a

¬ H(t1) ∧ inf
s∈(t1,t2]

(−Ψs) + a = H(t2) + a,
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which indicates that |H(t1) − H(t2)| ¬ a. It is easy to check that the following
inequality holds for any xi, yi ∈ R, i = 1, 2:

|x1 ∨ x2 − y1 ∨ y2| ¬ |x1 − x2| ∨ |y1 − y2|.

Then we obtain

|Kt1 −Kt2 | ¬ |H(t1)−H(t2)| ∨ |C(t1)− C(t2)| ¬ a.

Since t1 ¬ t2 are arbitrarily chosen in [θ1, θ2), we deduce that

sup
t1,t2∈[θ1,θ2)

|Kt1 −Kt2 | ¬ sup
s,u∈[θ1,θ2)

|Φs − Φu|+ sup
s,u∈[θ1,θ2)

|Ψs −Ψu|.

Consequently, K ∈ D[0,∞). ■

REMARK 2.7. The proof of Lemma 2.2 also shows that on the closed interval
[θ1, θ2], the oscillation of K can be dominated by the oscillation of Φ and Ψ:

sup
t1,t2∈[θ1,θ2]

|Kt1 −Kt2 | ¬ sup
s,u∈[θ1,θ2]

|Φs − Φu|+ sup
s,u∈[θ1,θ2]

|Ψs −Ψu|.

Therefore, if Φ,Ψ ∈ C[0,∞), we have K ∈ C[0,∞). Under the assumption as in
Remark 2.4, for any given S ∈ C[0,∞), each component of the solution (X,K)
to SPR

L(S) is continuous.

Now, we define the following pair of times:

(2.6) σ∗ = inf {t > 0 : Φt ¬ 0}, τ∗ = inf {t > 0 : Ψt ­ 0}.

REMARK 2.8. (i) Noting that a := inft(Φt − Ψt) > 0 as shown in Lemma
2.1, three cases are possible:

(2.7) either σ∗ = τ∗ =∞, σ∗ < τ∗ or σ∗ > τ∗.

If σ∗ = τ∗ =∞, we have Ψt < 0 < Φt for any t ­ 0. Consequently, Kt = 0 and
L(t, St) < 0 < R(t, St) for any t. Hence, (S, 0) solves SPR

L(S). In the rest of this
section, we only consider the other two cases.

(ii) For any t ∈ [0, σ∗ ∧ τ∗), we have Ψt < 0 < Φt. It follows that Kt = 0
when t ∈ [0, σ∗ ∧ τ∗).

If τ∗ > σ∗, we set τ0 = 0, σ0 = σ∗, and for k ­ 1, we set

τk = inf
{
t > σk−1 : inf

s∈[σk−1,t]
Φs ¬ Ψt

}
,(2.8)

σk = inf
{
t > τk : sup

s∈[τk,t]
Ψs ­ Φt

}
.(2.9)
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Since Φ,Ψ are right-continuous, τk, σk are well-defined.
If τ∗ < σ∗, we set τ0 = τ∗ and define σk by (2.9) for all k ­ 0, and τk by (2.8)

for all k ­ 1.
It is easy to check that in both cases τ∗ < σ∗ and τ∗ > σ∗, the following two

inequalities hold for k ­ 1:

inf
s∈[σk−1,t]

Φs > Ψt for any t ∈ [σk−1, τk),(2.10)

inf
s∈[σk−1,τk]

Φs ¬ Ψτk ,(2.11)

Furthermore, the following two inequalities hold for any k ­ 1 if τ∗ > σ∗, and for
any k ­ 0 if τ∗ < σ∗:

Φt > sup
s∈[τk,t]

Ψs for any t ∈ [τk, σk),(2.12)

Φσk
¬ sup

s∈[τk,σk]
Ψs.(2.13)

Finally, if τ∗ > σ∗, we have Ψt ¬ 0 for any t ∈ [0, σ0] and

(2.14) Φσ0 ¬ 0.

If τ∗ < σ∗, we have Φt ­ 0 for any t ∈ [0, τ0] and

(2.15) Ψτ0 ­ 0.

By (2.10), it is easy to check that Φs > Ψt for any σk−1 ¬ s ¬ t < τk, k ­ 1. It
follows that

(2.16) Φs > sup
t∈[s,τk)

Ψt for any s ∈ [σk−1, τk).

It is clear that

0 ¬ τ0 ¬ σ0 < τ1 < σ1 < τ2 < σ2 < · · · .

We first show that τk, σk tend to infinity as k →∞.

PROPOSITION 2.2. Under Assumption 2.1, we have

lim
k→∞

τk = lim
k→∞

σk =∞.

Proof. The proof is similar to the one of [9, Proposition 3.1]. For the readers’
convenience, we give a short argument. By Lemma 2.1, a := inft­0(Φt−Ψt) > 0.
Suppose that

lim
k→∞

τk = lim
k→∞

σk = t∗ <∞.
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For any k ­ 1, there exists ρk ∈ [σk−1, τk] such that

inf
t∈[σk−1,τk]

Φt ­ Φρk − a/2.

Recalling (2.11) and the definition of a, we have

Ψτk ­ Ψρk + a/2.

Letting k → ∞, it follows that Ψ does not have a left limit at t∗, which is a
contradiction. Therefore,

lim
k→∞

τk = lim
k→∞

σk =∞. ■

By (iii) in Definition 2.1, the second component of the solution to the Sko-
rokhod problem with two nonlinear reflecting boundaries is of bounded variation.
In the following two propositions, we show that K is piecewise monotone. There-
fore, K defined by (2.4) is a bounded variation function.

PROPOSITION 2.3. Under Assumption 2.1, for any k ­ 1 and t ∈ [σk−1, τk),
we have

−Kt = sup
s∈[σk−1,t]

(−Φs).

Proof. The proof is similar to the one of [13, Lemma 2.7]. For the readers’
convenience, we give a short argument. For any k ­ 1 and t ∈ [σk−1, τk), set

I1t = (−Φ0)
+ ∧ inf

r∈[0,t]
(−Ψr),

I2,k−1t = sup
s∈[0,τk−1]

[
(−Φs) ∧ inf

r∈[s,t]
(−Ψr)

]
,

I3,k−1t = sup
s∈[τk−1,σk−1)

[
(−Φs) ∧ inf

r∈[s,t]
(−Ψr)

]
,

I4,k−1t = sup
s∈[σk−1,t]

[
(−Φs) ∧ inf

r∈[s,t]
(−Ψr)

]
.

It is obvious that −Kt = I1t ∨ I
2,k−1
t ∨ I3,k−1t ∨ I4,k−1t .

CASE 1: k ­ 2 if τ∗ > σ∗ and k ­ 1 if τ∗ < σ∗. By (2.13), it follows that

(2.17) inf
s∈[τk−1,σk−1]

(−Ψs) ¬ −Φσk−1
¬ sup

s∈[σk−1,t]
(−Φs).

Therefore,

I1t ¬ inf
r∈[0,t]

(−Ψr) ¬ inf
s∈[τk−1,σk−1]

(−Ψs) ¬ sup
s∈[σk−1,t]

(−Φs),

I2,k−1t ¬ sup
s∈[0,τk−1]

inf
r∈[s,t]

(−Ψr) ¬ inf
s∈[τk−1,σk−1]

(−Ψs) ¬ sup
s∈[σk−1,t]

(−Φs).
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Recalling (2.12), for any t ∈ [τk−1, σk−1) we have −Φt < infr∈[τk−1,t](−Ψr).
Then we find that for any t ∈ [σk−1, τk),

I3,k−1t ¬ sup
s∈[τk−1,σk−1)

[
inf

r∈[τk−1,t]
(−Ψr) ∧ inf

r∈[s,t]
(−Ψr)

]
¬ inf

r∈[τk−1,σk−1]
(−Ψr) ¬ sup

s∈[σk−1,t]
(−Φs),

where we have used (2.17) in the last inequality. It follows from (2.16) that for any
k ­ 1,

(2.18) I4,k−1t = sup
s∈[σk−1,t]

(−Φs).

Thus, in this case, −Kt = sups∈[σk−1,t]
(−Φs).

CASE 2: k = 1 if τ∗ > σ∗. In this case, for any t ∈ [0, σ0), we have Ψt ¬ 0 ¬
Φt, Ψσ0 ¬ 0, Φσ0 ¬ 0. Therefore, it is easy to check that for any t ∈ [σ0, τ1),

I1t ¬ (−Φ0)
+ = 0, I2,0t = (−Φ0) ∧ (−Ψ0) ¬ 0,

I3,0t = sup
s∈[0,σ0)

[(−Φs) ∧ inf
r∈[s,t]

(−Ψr)]

¬ sup
s∈[0,σ0)

[(−Φs) ∧ inf
r∈[s,σ0]

(−Ψr)] = sup
s∈[0,σ0)

(−Φs) ¬ 0.

Recalling (2.18), we have I4,0t = sups∈[σ0,t](−Φs) ­ −Φσ0 ­ 0. Therefore, in
this case, −Kt = sups∈[σ0,t](−Φs). The proof is complete. ■

PROPOSITION 2.4. Suppose Assumption 2.1 holds. If k ­ 1 or τ∗ < σ∗ and
k = 0, then for any t ∈ [τk, σk), we have

−Kt = inf
s∈[τk,t]

(−Ψs).

Proof. The proof is similar to the one of [13, Lemma 2.8]. For the readers’
convenience, we give a short argument. Let t ∈ [τk, σk). Set

I5,kt = sup
s∈[τk,t]

[
(−Φs) ∧ inf

r∈[s,t]
(−Ψr)

]
.

Then−Kt = I1t ∨I
2,k
t ∨I

5,k
t , where I1, I2,k are defined in the proof of Proposition

2.3. It is easy to check that

I1t ¬ inf
s∈[0,t]

(−Ψs) ¬ inf
s∈[τk,t]

(−Ψs),

I2,kt ¬ sup
s∈[0,τk]

inf
r∈[s,t]

(−Ψr) ¬ inf
s∈[τk,t]

(−Ψs).
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By (2.12), we have

I5,kt ¬ sup
s∈[τk,t]

[
inf

r∈[τk,s]
(−Ψr) ∧ inf

r∈[s,t]
(−Ψr)

]
¬ inf

s∈[τk,t]
(−Ψs).

The above analysis indicates that −Kt ¬ infs∈[τk,t](−Ψs).
Now, we are in a position to prove the reverse inequality. It is sufficient to prove

that for k ­ 1,

(2.19) I2,kt ­ inf
s∈[τk,t]

(−Ψs) for t ∈ [τk, σk)

and for τ∗ < σ∗ and k = 0,

(2.20) I1t = inf
r∈[τ0,t]

(−Ψr) for t ∈ [τ0, σ0).

We first prove (2.19). For any fixed ε > 0 and k ­ 1, there exists some ρ ∈
[σk−1, τk] such that

inf
s∈[σk−1,τk]

Φs ­ Φρ − ε.

Together with (2.11), we have

−Φρ ­ −Ψτk − ε.

Recalling (2.16), we obtain

I2,kt ­ (−Φρ) ∧ inf
r∈[ρ,t]

(−Ψr)

­ (−Φρ) ∧ inf
r∈[ρ,τk)

(−Ψr) ∧ inf
r∈[τk,t]

(−Ψr)

= (−Φρ) ∧ inf
r∈[τk,t]

(−Ψr)

­ (−Ψτk − ε) ∧ inf
r∈[τk,t]

(−Ψr) ­ inf
r∈[τk,t]

(−Ψr)− ε.

Since ε can be arbitrarily small, (2.19) holds true for any k ­ 1.
It remains to prove that (2.20) holds when τ∗ < σ∗ and k = 0. Indeed, since

σ∗ > 0, we have Φ0 > 0. Moreover, as τ0 = τ∗, we have supr∈[0,τ0)Ψr ¬ 0 and
supr∈[τ0,t]Ψr ­ Ψτ0 ­ 0. Then, we may check that

I1t = 0 ∧ inf
r∈[0,τ0)

(−Ψr) ∧ inf
r∈[τ0,t]

(−Ψr) = inf
r∈[τ0,t]

(−Ψr).

The proof is complete. ■

Combining Remark 2.8 and Propositions 2.3 and 2.4, we have the following
representation for K, which is a generalization of [12, Theorem 2.2] and [13, The-
orem 2.6].
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THEOREM 2.2. Under Assumption 2.1, let K be defined by (2.4). If τ∗ > σ∗,
then

(2.21) −Kt =


0, t ∈ [0, σ0),

sups∈[σk−1,t]
(−Φs), t ∈ [σk−1, τk), k ­ 1,

infs∈[τk,t](−Ψs), t ∈ [τk, σk), k ­ 1.

If τ∗ < σ∗, then

(2.22) −Kt =


0, t ∈ [0, τ0),

infs∈[τk,t](−Ψs), t ∈ [τk, σk), k ­ 0,

sups∈[σk−1,t]
(−Φs), t ∈ [σk−1, τk), k ­ 1.

REMARK 2.9. It is easy to check that, for any k ­ 0, Kσk
= Φσk

and if k ­ 1
or τ∗ < σ∗ and k = 0, then Kτk = Ψτk .

Now, we show thatK can be represented as the difference of two nondecreasing
functions which only increase when R(·, X·), L(·, X·) hit 0.

THEOREM 2.3. Suppose that Assumption 2.1 holds. Let X = S+K. Then the
following hold:

(1) K ∈ BV [0,∞);

(2) L(t,Xt) ¬ 0 ¬ R(t,Xt) for any t ­ 0;

(3) |K|t =
∫ t

0
1{L(s,Xs)=0 or R(s,Xs)=0} d|K|s;

(4) Kt =
∫ t

0
1{R(s,Xs)=0} d|K|s −

∫ t

0
1{L(s,Xs)=0} d|K|s.

Proof. (1) is a direct consequence of Theorem 2.2. Formula (2.4) can be written
as

Kt = min
(
[−(Φ0)

−] ∨ sup
r∈[0,t]

Ψr, inf
s∈[0,t]

[
Φs ∨ sup

r∈[s,t]
Ψr

])
.

Recalling that Φ ­ Ψ, it follows that

inf
s∈[0,t]

[
Φs ∨ sup

r∈[s,t]
Ψr

]
¬ Φt ∨Ψt = Φt,

which implies Kt ¬ Φt. On the other hand, it is easy to check that

[−(Φ0)
−] ∨ sup

r∈[0,t]
Ψr ­ Ψt,

Φs ∨ sup
r∈[s,t]

Ψr ­ Ψt for any s ∈ [0, t].
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Consequently, Kt ­ Ψt. Therefore, by the definition for Φ,Ψ, we have

L(t,Xt) = L(t, St +Kt) ¬ L(t, St +Φt) = 0,

R(t,Xt) = R(t, St +Kt) ­ R(t, St +Ψt) = 0.

Motivated by the proof of [9, Theorem 3.4], we only prove (3), (4) for the case
τ∗ > σ∗ since the case τ∗ < σ∗ can be proved similarly. Since Kt = 0 when
t ∈ [0, σ0), we focus on t ­ σ0. We claim that for t ­ σ0,

R(t,Xt) = 0 implies that t ∈ [τk, σk) for some k ­ 1,(2.23)

L(t,Xt) = 0 implies that t ∈ [σk−1, τk) for some k ­ 1.(2.24)

We first prove (2.23). Suppose that t ∈ [σk−1, τk) for some k ­ 1. Recalling (2.10)
and (2.21), we have

−Ψt > sup
s∈[σk−1,t]

(−Φs) = −Kt.

It follows that
R(t,Xt) > R(t, St +Ψt) = 0,

which implies that (2.23) holds.
Now, suppose that t ∈ [τk, σk) for some k ­ 1. By (2.12) and (2.21), we obtain

−Φt < inf
s∈[τk,t]

(−Ψs) = −Kt.

Consequently,
L(t,Xt) < L(t, St +Φt) = 0.

Therefore, (2.24) holds. Thus, if assertion (3) is true, by (2.21), (2.23) and (2.24),
we deduce that (4) is true.

Now, it remains to prove (3). Set

A := {t ­ σ0 : L(t,Xt) < 0 < R(t,Xt)}.

It suffices to prove that
∫
A
d|K|t = 0. For t ∈ A, we define

lt = L(t,Xt), rt = R(t,Xt),

αt = inf {s ∈ [σ0, t] : (s, t] ⊂ A},
βt = sup {s ∈ [t,∞) : [t, s) ⊂ A}.

By the right-continuity of l and r, we have βt /∈ A, while αt may or may not belong
to A. Moreover, we have αt ¬ t < βt, which implies that (αt, βt) is nonempty.
The above analysis implies that A has the representation

A =
(⋃
t∈I

(αt, βt)
)
∪ {αt : t ∈ J},
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where I is a countable subset of [0,∞) and J ⊂ I .
We first show that

∫
(αt,βt)

d|K|s = 0 for any t ∈ I . Note that for any s ∈
(αt, βt), we have ls < 0 < rs. Recalling the definition of Φ, Ψ and Remark 2.9,
for any k ­ 1 we have

(2.25) rτk = R(τk, Sτk +Ψτk) = 0, lσk−1
= L(σk−1, Sσk−1

+Φσk−1
) = 0.

Therefore, there are only two possibilities: either (αt, βt) ⊂ (τk, σk) or (αt, βt) ⊂
(σk−1, τk) for some k ­ 1. We only consider the second case as the first case is
analogous. It is enough to show that K is a constant on [at, bt] for any [at, bt] ⊂
(αt, βt). Recall that when t ∈ [σk−1, τk), we have Kt = infs∈[σk−1,t]Φs. Set

ρ = inf {s ∈ [at, bt] : Ks < Kat}.

Suppose that ρ < ∞. The right-continuity of K yields Ks = Kat for any s ∈
[at, ρ) and either Kρ = Φρ < Kat or Kρ = Φρ = Kat . In either case,

lρ = L(ρ,Xρ) = L(ρ, Sρ +Φρ) = 0,

which contradicts ρ ∈ A. Hence, ρ =∞ and K is a constant on [at, bt].
To complete the proof, it suffices to show that for any αt ∈ A with t ∈ J ,

K is continuous at at. Recalling (2.25), there exists some k ­ 1 such that either
αt ⊂ (τk, σk) or αt ⊂ (σk−1, τk). By the definition of αt, we may find a sequence
{γn}∞n=1 ⊂ (0, αt) ∩Ac such that γn ↑ αt.

We first consider the case that lγn = 0 or equivalently Kγn = Φγn for infinitely
many values of n. Applying (2.24), we have γn ∈ [σk−1, τk) for some k ­ 1. There
exists some k∗ independent of n such that for n large enough, γn ∈ [σk∗−1, τk∗)
and αt ∈ (σk∗−1, τk∗). Therefore,

Φγn = Kγn = inf
s∈[σk∗−1,γn]

Φs.

Letting n→∞ implies that

Φαt− = Kαt− = inf
s∈[σk∗−1,αt)

Φs.

Since αt ∈ [σk∗−1, τk∗), we have Kαt = infs∈[σk∗−1,αt]Φs, which yields
Kαt ¬ Kαt−. Suppose that Kαt < Kαt−, which implies Kαt = Φαt . This leads
to

lαt = L(αt, Xαt) = L(αt, Sαt +Φαt) = 0,

which contradicts αt ∈ A. Therefore, Kαt = Kαt−, that is, K is continuous at αt.
For the case when lγn = 0 does not hold for infinitely many values of n,

rγn = 0 must hold for infinitely many values of n. By a similar analysis, we can
also show that K is continuous at αt. The proof is complete. ■



18 H. Li

Proof of Theorem 2.1. The uniqueness of solution is a direct consequence of
Proposition 2.1. Let K be defined as in (2.4) and set Xt = St +Kt and

Kr
t =

t∫
0

1{R(s,Xs)=0} d|K|s, K l
t =

t∫
0

1{L(s,Xs)=0} d|K|s.

Clearly,Kr,K l are nondecreasing functions. By Theorem 2.3, we haveL(t,Xt) ¬
0 ¬ R(t,Xt), Kt = Kr

t −K l
t for any t ­ 0, and

∞∫
0

1{L(s,Xs)<0} dK
l
s = 0,

∞∫
0

1{R(s,Xs)>0} dK
r
s = 0.

That is, (X,K) solves SPR
L(S). ■

REMARK 2.10. Let (X,K) solve SPR
L(S). For any t > 0, it is easy to check

that
Kt −Kt− = Xt −Xt− − (St − St−).

By the proof of Theorem 2.1, Kr, K l do not increase simultaneously. If
Kt −Kt− > 0, we have

Kr
t −Kr

t− = Kt −Kt− = Xt −Xt− − (St − St−) and K l
t −K l

t− = 0.

Similarly, if Kt −Kt− < 0, we have

K l
t−K l

t− = −(Kt−Kt−) = −(Xt−Xt−− (St−St−)) and Kr
t −Kr

t− = 0.

Therefore,

Kr
t −Kr

t− = (Xt −Xt− − (St − St−))+,
K l

t −K l
t− = (Xt −Xt− − (St − St−))−.

REMARK 2.11. Suppose that L ≡ −∞. Then the Skorokhod problem with
two nonlinear reflecting boundaries turns into the Skorokhod problem with one
constraint. More precisely, given S ∈ D[0,∞), we need to find (X,K) ∈
D[0,∞)× I[0,∞) such that

(i) Xt = St +Kt;

(ii) R(t,Xt) ­ 0;

(iii) K0− = 0 and K is a nondecreasing function satisfying

∞∫
0

1{R(s,Xs)>0} dKs = 0.
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For simplicity, we then write that (X,K) solves SPR(S).
Since L ≡ −∞, Φ may be interpreted as +∞. Recalling (2.4), we have

Kt = sup
s∈[0,t]

Ψ+
s .

In particular, if R(t, x) = x, the Skorokhod problem with nonlinear constraint
degenerates to the classical Skorokhod problem. In this case, we have Ψt = −St.
Consequently, Kt = sups∈[0,T ] S

−
t , which coincides with the result in [11].

REMARK 2.12. Suppose that (X,K) solves SPR
L(S) and K admits the de-

composition K = Kr −K l. Then (X,Kr) may be interpreted as the solution to
the Skorokhod problem with nonlinear constraint SPR(S−K l). For any t ­ 0, let
Ψr

t be the solution
R(t, St −K l

t +Ψr
t ) = 0.

Then Kr
t = sups∈[0,t](Ψ

r
s)

+. On the other hand, (−X,K l) may be regarded as the

solution to SPL̃(−S −Kr), where L̃(t, x) := −L(t,−x). For any t ­ 0, let Φl
t be

the solution to

L̃(t,−St −Kr
t +Φl

t) = −L(t, St +K l
t − Φl

t) = 0.

Then K l
t = sups∈[0,t](Φ

l
s)

+.

REMARK 2.13. It is worth pointing out that (iv) in Assumption 2.1 is necessary
for K to be of bounded variation. The readers may refer to [12, Example 2.1] for a
counterexample.

3. PROPERTIES OF SOLUTIONS TO SKOROKHOD PROBLEMS WITH TWO
NONLINEAR REFLECTING BOUNDARIES

3.1. Nonanticipatory properties. In this subsection, suppose (X,K) is the solution
to a Skorokhod problem with two nonlinear reflecting boundaries. We investigate if
the pair of shifted functions is still the solution to some other Skorokhod problem.
For this purpose, for any fixed d ­ 0, we define two operators Td, Hd : D[0,∞)→
D[0,∞) as follows:

(3.1) (Td(ψ))t = ψd+t − ψd, (Hd(ψ))t = ψd+t, t ­ 0.

Moreover, we define two functions Ld, Rd : [0,∞)× R→ R by

Ld(t, x) = L(t+ d, x), Rd(t, x) = R(t+ d, x).

THEOREM 3.1. Under Assumption 2.1, for a given S ∈ D[0,∞), if (X,K)

solves SPR
L(S), then (Hd(X), Td(K)) solves SPRd

Ld (Td(S) +Xd).
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Proof. Clearly, if L,R satisfy Assumption 2.1, so do Ld, Rd. For any t ­ 0, it
is easy to check that

(Hd(X))t = Xd+t = Sd+t +Kd+t = (Td(S))t + (Td(K))t + (Sd +Kd)

= (Td(S))t +Xd + (Td(K))t.

Moreover, we have

Ld(t, (Hd(X))t) = L(t+ d,Xt+d) ¬ 0 ¬ R(t+ d,Xt+d) = Rd(t, (Hd(X))t)

and

∞∫
0

1{Ld(s,(Hd(X))s)<0} d(Td(K
l))s =

∞∫
d

1{L(s,Xs)<0} dK
l
s = 0,

∞∫
0

1{Rd(s,(Hd(X))s)>0} d(Td(K
r))s =

∞∫
d

1{R(s,Xs)>0} dK
r
s = 0.

The proof is complete. ■

REMARK 3.1. Theorem 3.1 is an extension of [12, Theorem 3.1] to the non-
linear reflecting case.

3.2. Comparison properties. In this subsection, we present some comparison prop-
erties of Skorokhod problems with two nonlinear reflecting boundaries. In the
proofs, the following inequalities are frequently used:

(a+ b)± ¬ a± + b±, (a− b)± ­ a± − b±, for any a, b ∈ R.

Before investigating the comparison property for the doubly reflected problem, we
first establish the comparison property for the singly reflected case, which may be
of independent interest.

PROPOSITION 3.1. Let Assumption 2.1(i)–(iii) hold for R. Given ci0 ∈ R and
Si ∈ D[0,∞) for i = 1, 2 with S1

0 = S2
0 = 0, suppose that there exists a nonneg-

ative ν ∈ I[0,∞) such that S2 ¬ S1 ¬ S2 + ν. Let (Xi,Ki) solve SPR(ci0 + Si)
for i = 1, 2. Then

(1) K1
t − (c20 − c10)+ ¬ K2

t ¬ K1
t + νt + (c10 − c20)+;

(2) X2
t − νt − (c20 − c10)+ ¬ X1

t ¬ X2
t + νt + (c10 − c20)+.

Proof. Let Ψi
s be such that R(s, ci0 + Si

s + Ψi
s) = 0 for i = 1, 2 and s ­ 0.

Recalling Remark 2.11, we have Ki
t = sups∈[0,t](Ψ

i
s)

+. Noting that S2 ¬ S1 and

R(s, c10 + S1
s +Ψ1

s) = 0 = R(s, c20 + S2
s +Ψ2

s),
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we have

(3.2) Ψ2
s ­ Ψ1

s + c10 − c20.

Since S1 ¬ S2 + ν, it follows that

R(s, c20 + S2
s +Ψ2

s) = 0 ¬ R(s, c20 + S2
s + νs +Ψ1

s + c10 − c20).

Consequently,

(3.3) Ψ2
s ¬ Ψ1

s + νs + c10 − c20.

Recalling that ν ∈ I[0,∞) is nonnegative, by (3.3) we obtain

K2
t = sup

s∈[0,t]
(Ψ2

s)
+ ¬ sup

s∈[0,t]
(Ψ1

s + νs + c10 − c20)+

¬ sup
s∈[0,t]

(Ψ1
s + νt + c10 − c20)+

¬ sup
s∈[0,t]

(Ψ1
s)

+ + νt + (c10 − c20)+

= K1
t + νt + (c10 − c20)+.

Applying (3.2) yields

K1
t = sup

s∈[0,t]
(Ψ1

s)
+ ¬ sup

s∈[0,t]
(Ψ2

s + c20 − c10)+

¬ sup
s∈[0,t]

(Ψ2
s)

+ + (c20 − c10)+ = K2
t + (c20 − c10)+.

We have obtained property (1).
Based on (1), together with the facts that K2 = X2 − c20 − S2 and S1 ­ S2, it

is easy to check that

X1 = c10 + S1 +K1 ­ c10 + S1 +K2 − ν − (c10 − c20)+

= c10 − c20 + S1 − S2 +X2 − ν − (c10 − c20)+

­ X2 − ν − (c20 − c10)+.

On the other hand, since S1 ¬ S2 + ν, we obtain

X1 = c10 + S1 +K1 ¬ c10 + S1 +K2 + (c20 − c10)+

= c10 − c20 + S1 − S2 +X2 + (c20 − c10)+

¬ X2 + ν + (c10 − c20)+.

The proof is complete. ■

Now we establish the comparison property for the double nonlinear reflected
problem.
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PROPOSITION 3.2. Let Assumption 2.1 hold. Given ci0 ∈ R and Si ∈ D[0,∞)
for i = 1, 2 with S1

0 = S2
0 = 0, suppose that there exists a nonnegative ν ∈ I[0,∞)

such that S2 ¬ S1 ¬ S2 + ν. Let (Xi,Ki) solve SPR
L(c

i
0 + Si) for i = 1, 2. Then

(1) K1
t − (c20 − c10)+ ¬ K2

t ¬ K1
t + νt + (c10 − c20)+;

(2) X2
t − νt − (c20 − c10)+ ¬ X1

t ¬ X2
t + νt + (c10 − c20)+.

Proof. The analysis in the proof of Lemma 3.1 implies that

Ψ1
s + c10 − c20 ¬ Ψ2

s ¬ Ψ1
s + νs + c10 − c20,

Φ1
s + c10 − c20 ¬ Φ2

s ¬ Φ1
s + νs + c10 − c20.

By Theorem 2.1, we have

Ki
t = min

(
(−(Φi

0)
−) ∨ sup

r∈[0,t]
Ψi

r, inf
s∈[0,t]

[
Φi
s ∨ sup

r∈[s,t]
Ψi

r

])
.

For any 0 ¬ s ¬ t, it is easy to check that

sup
r∈[s,t]

Ψ1
r + c10 − c20 ¬ sup

r∈[s,t]
Ψ2

r ¬ sup
r∈[s,t]

(Ψ1
r + νr + c10 − c20)

¬ sup
r∈[s,t]

Ψ1
r + νt + c10 − c20,

Φ1
s + c10 − c20 ¬ Φ2

s ¬ Φ1
s + νs + c10 − c20 ¬ Φ1

s + νt + c10 − c20.

Thus, we have

−(Φ2
0)
− ¬ −(Φ1

0 + νt + c10 − c20)− ¬ −(Φ1
0)
− + νt + (c10 − c20)+,

−(Φ2
0)
− ­ −(Φ1

0 + c10 − c20)− ­ −(Φ1
0)
− − (c10 − c20)−.

All the above inequalities indicate that

K1
t − (c10 − c20)− ¬ K2

t ¬ K1
t + νt + (c10 − c20)+.

Consequently,

X2
t −X1

t = S2
t − S1

t + c20 − c10 +K2
t −K1

t

¬ c20 − c10 + νt + (c10 − c20)+ = νt + (c10 − c20)−

and

X2
t −X1

t = S2
t − S1

t + c20 − c10 +K2
t −K1

t

­ −νt + c20 − c10 − (c10 − c20)− = −νt − (c20 − c10)−.

The proof is complete. ■
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REMARK 3.2. Propositions 3.1 and 3.2 extend [9, Lemma 4.1 and Corol-
lary 4.2] to the nonlinear reflecting case. Proposition 3.2 is also an extension of
[1, Proposition 3.4]. However, in Proposition 3.2, we do not need to assume that
S1 = S2 + ν, while this condition appears in [9, Corollary 4.2] and [1, Propo-
sition 3.4]. Moreover, suppose (Xi,Ki) solves the Skorokhod problem on [0, a]
for ci0 + Si, i = 1, 2, with fixed a > 0 (i.e., (Xi,Ki) solves SPR

L(c
i
0 + Si) with

L(t, x) = x− a and R(t, x) = x). Corollary 4.2 in [9] shows that

K1
t − 2(c20 − c10)+ ¬ K2

t ¬ K1
t + 2νt + 2(c10 − c20)+.

Compared with this result, our estimate in Proposition 3.2 is more accurate. Actu-
ally, Remark 4.3 in [9] finally provides the strengthened inequality

K1
t − (c20 − c10)+ ¬ K2

t ¬ K1
t + νt + (c10 − c20)+.

It is worth pointing out that the proof needs the nonanticipatory properties. There-
fore, our proof is simpler.

Proposition 3.2 only provides the comparison between the net constraining
terms K1 and K2. A natural question is whether we could compare the individual
constraining terms. The answer is affirmative; the following theorem generalizes
[9, Theorem 1.7] and [1, Proposition 3.5].

THEOREM 3.2. Let Assumption 2.1 hold. Given ci0 ∈ R and Si ∈ D[0,∞) for
i = 1, 2 with S1

0 = S2
0 = 0, suppose that there exists ν ∈ I[0,∞) such that S1 =

S2 + ν. Let (Xi,Ki) solve SPR
L(c

i
0 + Si) with decomposition Ki = Ki,r −Ki,l

for i = 1, 2. Then

(1) K1,r
t − (c20 − c10)+ ¬ K

2,r
t ¬ K

1,r
t + νt + (c10 − c20)+;

(2) K2,l
t − (c20 − c10)+ ¬ K

1,l
t ¬ K

2,l
t + νt + (c10 − c20)+.

Proof. Define

α = inf {t > 0 : K1,r
t + νt + (c10 − c20)+ < K2,r

t or K1,l
t + (c20 − c10)+ < K2,l

t }.

We claim that α =∞. Then, for any t ­ 0, we have

K1,r
t + νt + (c10 − c20)+ ­ K

2,r
t and K1,l

t + (c20 − c10)+ ­ K
2,l
t ,

which are the second inequality in (1) and the first inequality in (2). We will argue
by way of contradiction. Suppose that α <∞. The proof will be in two steps.

STEP 1. We claim that

K2,r
α ¬ K1,r

α + να + (c10 − c20)+,(3.4)

K2,l
α ¬ K1,l

α + (c20 − c10)+.(3.5)
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First, by the definition of α, for any s ∈ [0, α) we have

K2,r
s ¬ K1,r

s + νs + (c10 − c20)+,(3.6)

K2,l
s ¬ K1,l

s + (c20 − c10)+.(3.7)

Noting that ν,K1,r,K1,l are nondecreasing, ifK2,r,K2,l are continuous at α, (3.4)
and (3.5) hold true by using (3.6) and (3.7), respectively.

Now, suppose that K2,r
α > K2,r

α−. Then K2,l
α = K2,l

α− and

(3.8) R(α,X2
α) = R(α, c20 + S2

α +K2,r
α −K2,l

α ) = 0.

On the other hand, since (X1,K1) solves SPR
L(c

1
0 + S1), we have

R(α, c10 + S1
α +K1,r

α −K1,l
α ) ­ 0.

Combining the above inequality and (3.8) implies that

K2,r
α ¬ c10 − c20 + S1

α − S2
α +K2,l

α −K1,l
α +K1,r

α

¬ c10 − c20 + να +K2,l
α− −K

1,l
α− +K1,r

α ,

(3.9)

where we have used the facts that K2,l
α = K2,l

α−, S1 = S2 + ν and that K1,l is
nondecreasing. Letting s ↑ α in (3.7) yields

K2,l
α− −K

1,l
α− ¬ (c20 − c10)+.

Plugging this inequality into (3.9), we obtain

K2,r
α ¬ c10 − c20 + να + (c20 − c10)+ +K1,r

α

= K1,r
α + να + (c10 − c20)+,

which is indeed (3.4). The proof of (3.5) under the assumption that K2,l
α > K2,l

α− is
similar and therefore omitted.

STEP 2. By the definition of α and recalling (3.4) and (3.5), there exists a
sequence {sn}n∈N converging to 0 decreasingly such that for any n ∈ N, one of
the following two cases holds:

(3.10) K2,r
α+sn > K1,r

α+sn + να+sn + (c10 − c20)+,

or

(3.11) K2,l
α+sn > K1,l

α+sn + (c20 − c10)+.

We claim that in fact neither (3.10) nor (3.11) can hold.
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Suppose that (3.10) holds. Letting n → ∞, the right-continuity of K2,r,K1,r

and ν implies that
K2,r

α ­ K1,r
α + να + (c10 − c20)+.

The above inequality together with (3.4) yields

(3.12) K2,r
α = K1,r

α + να + (c10 − c20)+.

We first claim that R(α,X1
α) = R(α,X2

α) = 0. In fact, since K1,r + ν is non-
decreasing, it follows from (3.10) and (3.12) that K2,r

α+sn > K2,r
α for any n ∈ N.

Since sn ↓ 0, we haveR(α,X2
α) = 0. Applying (3.5) and (3.12), it is easy to check

that

0 ¬ R(α,X1
α) = R(α, c10 + S1

α +K1,r
α −K1,l

α )

¬ R
(
α, c10 + S2

α + να +K2,r
α − να − (c10 − c20)+ −K2,l

α + (c20 − c10)+
)

= R(α,X2
α) = 0.

Hence, the claim holds true, which implies that L(α,X1
α) = L(α,X2

α) < 0 and
X1

α = X2
α. Since Xi, i = 1, 2, are right-continuous, there exists some ε > 0 such

that for any s ∈ [0, ε], L(α + ε,X1
α+ε) < 0 and L(α + ε,X2

α+ε) < 0. Thus, for
any s ∈ [0, ε] we have Ki,l

α+s = Ki,l
α for i = 1, 2. Therefore, (Xi

α+s,K
i,r
α+s −

Ki,r
α )s∈[0,ε] can be seen as the solution to the Skorokhod problem with one con-

straint, SPRα
(Si,α), on the time interval [0, ε], where

Rα(t, x) := R(α+ t, x), Si,α
t := Xi

α + Si
α+t − Si

α.

Applying Proposition 3.1(1) and noting that X1
α = X2

α, for any s ∈ [0, ε] we have

K2,r
α+s −K2,r

α ¬ K
1,r
α+s −K1,r

α + να+s − να.

Plugging (3.12) into this inequality implies that

K2,r
α+s ¬ K

1,r
α+s + να+s + (c10 − c20)+,

which contradicts (3.10). Thus, (3.10) cannot hold.
It remains to show (3.11) does not hold. By the above analysis, together with

(3.6) and (3.4), there exists some δ > 0 such that for any s ∈ [0, α+ δ],

(3.13) K2,r
s ¬ K1,r

s + νs + (c10 − c20)+.

Recalling Remark 2.12, (−Xi,Ki,l) may be interpreted as the solution to the Sko-
rokhod problem with one constraint SPL̃(−ci0 − Si − Ki,r), i = 1, 2, where
L̃(t, x) = −L(t,−x). For any s ­ 0, let Φi,l

s be the solution to

L̃(s,−ci0 − Si
s −Ki,r

s +Φi,l
s ) = 0.
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Then, for any t ∈ [0, α+δ], we have c10+S
1
t +K

1,r
t −Φ

1,l
t = c20+S

2
t +K

2,r
t −Φ

2,l
t

and

K2,l
t = sup

s∈[0,t]
(Φ2,l

s )+ = sup
s∈[0,t]

(c20 + S2
s +K2,r

s − c10 − S1
s −K1,r

s +Φ1,l
s )+

¬ sup
s∈[0,t]

(c20 − c10 − νs + νs + (c10 − c20)+ +Φ1,l
s )+

¬ sup
s∈[0,t]

(Φ1,l
s )+ + (c20 − c10)+ = K1,l

t + (c20 − c10)+,

where we have used (3.13) and the fact that S2 = S1 + ν. However, the above
inequality contradicts (3.11).

All the above analysis indicates that neither (3.10) nor (3.11) holds, which
means that α = ∞. That is, the second inequality in (1) and the first inequality
in (2) are satisfied.

Now, set

β = inf {t > 0 : K2,l
t + νt + (c10 − c20)+ < K1,l

t or K2,r
t + (c20 − c10)+ < K1,r

t }.

By a similar analysis, we may show that β =∞. This implies that the first inequal-
ity in (1) and the second inequality in (2) are satisfied. The proof is complete. ■

REMARK 3.3. The solution to the Skorokhod problem SPR
L(S) is a pair of

functions (X,K), where K has the decomposition K = Kr −K l. In fact, Kr can
be regarded as the force aiming to push the solution upwards, while K l represents
the force aiming to pull the solution downwards. Proposition 2.1 only provides
the uniqueness for the overall function K. Applying the comparison properties of
Theorem 3.2, we could also obtain the uniqueness for the individual constraining
functions Kr,K l, i.e., the decomposition of K is unique.

All the above results in this subsection give the comparison properties of solu-
tions to Skorokhod problems with respect to the input function S. In the following,
we provide the monotonicity property of the individual constraining functions with
respect to the nonlinear reflecting boundaries L,R.

LEMMA 3.1. Suppose (Li, Ri) satisfy Assumption 2.1 for i = 1, 2 with R1 ≡
R2 and L1 ¬ L2. For any given S ∈ D[0,∞), let (Xi,Ki) be the solution to the
Skorokhod problem SPRi

Li (S) with Ki = Ki,r−Ki,l. Then, for any t ­ 0, we have

K2,r
t ­ K

1,r
t and K2,l

t ­ K
1,l
t .

Proof. For any t ­ 0, let Φi
t, Ψ

i
t, i = 1, 2, be the solutions to

Li(t, St +Φi
t) = 0, Ri(t, St +Ψi

t) = 0.
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It is easy to check that Ψ1
t = Ψ2

t and Φ1
t ­ Φ2

t . By Theorem 2.1, we have Xi
t =

St +Ki
t , i = 1, 2, where

Ki
t := min

(
(−(Φi

0)
−) ∨ sup

r∈[0,t]
Ψi

r, inf
s∈[0,t]

[
Φi
s ∨ sup

r∈[s,t]
Ψi

r

])
.

Thus, we obtain K1
t ­ K2

t and

(3.14) X1
t ­ X2

t .

Note that Ki,l
t = −Ki

t +Ki,r
t . It suffices to prove that for any t ­ 0,

(3.15) K2,r
t ­ K

1,r
t .

At time 0, if R1(0, S0) = R2(0, S0) ­ 0, then K1,r
0 = K2,r

0 = 0. If R1(0, S0)

= R2(0, S0) < 0, then K1,r
0 = K2,r

0 = Ψ1
0 > 0. Hence, (3.15) holds at the initial

time.
Now, set

t∗ = inf {s ­ 0 : K2,r
s < K1,r

s }.

We claim that t∗ =∞, which will complete the proof.
Towards a contradiction, suppose that t∗ <∞. Then

(3.16) K2,r
t∗− ­ K

1,r
t∗−,

and for any ε0 > 0 there exists ε ∈ (0, ε0) such that

(3.17) K2,r
t∗+ε < K1,r

t∗+ε.

We first show thatK2,r
t∗ ­ K

1,r
t∗ . IfK1,r

t∗ −K
1,r
t∗− = 0, it is clear thatK2,r

t∗ −K
2,r
t∗−

­ K1,r
t∗ − K1,r

t∗− since K2,r is nondecreasing. If K1,r
t∗ − K1,r

t∗− > 0, we have
R1(t∗, X1

t∗) = 0. The facts that R1 ≡ R2 and that (X2,K2) solves SPR2

L2 (S)
imply that

R2(t∗, X1
t∗) = 0 ¬ R2(t∗, X2

t∗),

which together with (3.14) indicates that X2
t∗ = X1

t∗ . Recalling Remark 2.10, we
obtain

K2,r
t∗ −K

2,r
t∗− = (X2

t∗ −X2
t∗− − (St∗ − St∗−))+

­ (X1
t∗ −X1

t∗− − (St∗ − St∗−))+

= K1,r
t∗ −K

1,r
t∗−,

where we have used (3.14) in the second inequality. Therefore, the inequality
K2,r

t∗ −K
2,r
t∗− ­ K1,r

t∗ −K
1,r
t∗− always holds true. Combining it with (3.16) yields

K2,r
t∗ ­ K

1,r
t∗ . Now, we consider the following two cases.
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CASE 1: K2,r
t∗ > K1,r

t∗ . Due to the right-continuity ofK1,r andK2,r, for ε > 0
small enough we have K2,r

t∗+ε > K1,r
t∗+ε, which contradicts (3.17).

CASE 2: K2,r
t∗ = K1,r

t∗ . Noting that Ki,r are nondecreasing, by (3.17), for any
ε0 > 0 there exists ε ∈ (0, ε0) such that K1,r

t∗ < K1,r
t∗+ε. According to Definition

2.1, this implies that R1(t∗, X1
t∗) = 0. Recalling (3.14) and the fact that R1 ≡ R2,

it follows that
0 = R2(t∗, X1

t∗) ­ R2(t∗, X2
t∗) ­ 0,

which indicates that X1
t∗ = X2

t∗ and R1(t∗, X1
t∗) = R2(t∗, X2

t∗) = 0. Conse-
quently,

L1(t∗, X1
t∗) < 0 and L2(t∗, X2

t∗) < 0.

Due to the right-continuity of Xi, there exists some δ > 0 small enough such that
for any t ∈ [t∗, t∗ + δ],

L1(t,X1
t ) < 0, L2(t,X2

t ) < 0.

Therefore, for any t ∈ [t∗, t∗ + δ], we have Ki,l
t = Ki,l

t∗ and thus Ki
t − Ki

t∗ =

Ki,r
t − K

i,r
t∗ , i = 1, 2. Then, similar to Theorem 3.1, we deduce that on the time

interval [0, δ],

(Ht∗(X
i), Tt∗(K

i,r)) solves SPRi,t∗
(Xi

t∗ + Tt∗(S)), i = 1, 2,

where Ri,t∗(t, x) = Ri(t + t∗, x) and Tt∗ , Ht∗ are defined in (3.1). For any s ∈
[0, δ], let Ψi,t∗

s , i = 1, 2, be the solution to

Ri,t∗(s,Xi
t∗ + (Tt∗(S))s +Ψi,t∗

s ) = 0.

Since R1 ≡ R2 and X1
t∗ = X2

t∗ , it follows that Ψ1,t∗
s = Ψ2,t∗

s . By Remark 2.11,

K1,r
t∗+δ −K

1,r
t∗ = (Tt∗(K

1,r))δ

= sup
s∈[0,δ]

(Ψ1,t∗
s )+ = sup

s∈[0,δ]
(Ψ2,t∗

s )+

= (Tt∗(K
2,r))δ = K2,r

t∗+δ −K
2,r
t∗ .

Since we are considering the case K2,r
t∗ = K1,r

t∗ , we deduce that K2,r
t∗+δ = K1,r

t∗+δ,
which contradicts (3.17).

Therefore, all the above analysis indicates that t∗ = ∞, and the desired result
holds true. ■

REMARK 3.4. Suppose l, l̃, r, r̃ ∈ D[0,∞) with l ≡ l̃, r ¬ r̃ and inft­0(rt −
lt) > 0. LetR1(t, x) = x− l̃t,R2(t, x) = x− lt, L1(t, x) = x− r̃t and L2(t, x) =
x−rt. Clearly,Ri, Li, i = 1, 2, satisfy the assumptions in Lemma 3.1. In this case,
our result reduces to [1, Lemma 3.1].
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By a similar analysis to the proof of Lemma 3.1, we obtain the following
lemma.

LEMMA 3.2. Suppose (Li, Ri) satisfy Assumption 2.1 for i = 1, 2 with R1 ­
R2 and L1 ≡ L2. For any given S ∈ D[0,∞), let (Xi,Ki) solve the Skorokhod
problem SPRi

Li (S) with Ki = Ki,r −Ki,l. Then, for any t ­ 0,

K2,r
t ­ K

1,r
t and K2,l

t ­ K
1,l
t .

PROPOSITION 3.3. Suppose (Li, Ri) satisfy Assumption 2.1 for i = 1, 2 with
R1 ­ R2 and L1 ¬ L2. For any given S ∈ D[0,∞), let (Xi,Ki) solve the
Skorokhod problem SPRi

Li (S) with Ki = Ki,r −Ki,l. Then, for any t ­ 0,

K2,r
t ­ K

1,r
t and K2,l

t ­ K
1,l
t .

Proof. Let (X∗,K∗) solve SPR2

L1 (S) with K∗ = K∗,r −K∗,l. By Lemma 3.1,

K2,r
t ­ K

∗,r
t and K2,l

t ­ K
∗,l
t .

By Lemma 3.2,
K∗,rt ­ K

1,r
t and K∗,lt ­ K

1,l
t .

The above inequalities yield the desired result. ■

REMARK 3.5. Proposition 3.3 is an extension of [1, Proposition 3.3] to the
case of two nonlinear reflecting boundaries.

3.3. Continuity properties. In this subsection, we discuss the continuity properties
of Skorokhod problems with two nonlinear reflecting boundaries under the uniform
metric and J1 metric d0. The proofs are based on the representation forK obtained
in (2.4). Therefore, we first establish some estimates for Φ and Ψ.

LEMMA 3.3. Suppose that (Li, Ri) satisfy Assumption 2.1 for i = 1, 2. Given
Si ∈ D[0,∞), i = 1, 2, for any t ­ 0, let Φi,Ψi, i = 1, 2, be the solutions to

Li(t, Si
t +Φi

t) = 0, Ri(t, Si
t +Ψi

t) = 0.

Then

|Φ1
t − Φ2

t | ¬
C

c
|St − S′t|+

1

c
sup
x∈R
|L1(t, x)− L2(t, x)|,

|Ψ1
t −Ψ2

t | ¬
C

c
|St − S′t|+

1

c
sup
x∈R
|R1(t, x)−R2(t, x)|.
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Proof. It suffices to prove the first inequality. A simple calculation yields

c|Φ1
t − Φ2

t |
¬|L1(t, S1

t +Φ1
t )− L1(t, S1

t +Φ2
t )| = |L2(t, S2

t +Φ2
t )− L1(t, S1

t +Φ2
t )|

¬ |L2(t, S2
t +Φ2

t )− L2(t, S1
t +Φ2

t )|+ |L2(t, S1
t +Φ2

t )− L1(t, S1
t +Φ2

t )|
¬ C|S1

t − S2
t |+ sup

x∈R
|L1(t, x)− L2(t, x)|.

The proof is complete. ■

PROPOSITION 3.4. Suppose that (Li, Ri) satisfy Assumption 2.1 for i = 1, 2.
Given Si ∈ D[0,∞), let (Xi,Ki) solve the nonlinear Skorokhod problem
SPRi

Li (Si). Then

sup
t∈[0,T ]

|K1
t −K2

t | ¬
C

c
sup

t∈[0,T ]
|S1

t − S2
t |+

1

c
(L̄T ∨ R̄T ),

where

L̄T := sup
(t,x)∈[0,T ]×R

|L1(t, x)− L2(t, x)|,

R̄T := sup
(t,x)∈[0,T ]×R

|R1(t, x)−R2(t, x)|.

Proof. Note that for any xi, yi ∈ R, i = 1, 2, the following inequalities hold:

|x1 ∧ x2 − y1 ∧ y2| ¬ |x1 − y1| ∨ |x2 − y2|,
|x+1 − x

+
2 | ¬ |x1 − x2|.

It is easy to check that

∣∣∣(−Φ1
0)

+ ∧ inf
r∈[0,t]

(−Ψ1
r)− (−Φ2

0)
+ ∧ inf

r∈[0,t]
(−Ψ2

r)
∣∣∣

¬ |(−Φ1
0)

+ − (−Φ2
0)

+| ∨
∣∣∣ inf
r∈[0,t]

(−Ψ1
r)− inf

r∈[0,t]
(−Ψ2

r)
∣∣∣

¬ |Φ1
0 − Φ2

0| ∨ sup
r∈[0,t]

|Ψ1
r −Ψ2

r |
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and∣∣∣ sup
s∈[0,t]

[
(−Φ1

s) ∧ inf
r∈[s,t]

(−Ψ1
r)
]
− sup

s∈[0,t]

[
(−Φ2

s) ∧ inf
r∈[s,t]

(−Ψ2
r)
]∣∣∣

¬ sup
s∈[0,t]

∣∣∣(−Φ1
s) ∧ inf

r∈[s,t]
(−Ψ1

r)− (−Φ2
s) ∧ inf

r∈[s,t]
(−Ψ2

r)
∣∣∣

¬ sup
s∈[0,t]

[
|Φ1

s − Φ2
s| ∨ | inf

r∈[s,t]
(−Ψ1

r)− inf
r∈[s,t]

(−Ψ2
r)|

]
¬ sup

s∈[0,t]

[
|Φ1

s − Φ2
s| ∨ sup

r∈[s,t]
|Ψ1

r −Ψ2
r |
]

¬ sup
s∈[0,t]

|Φ1
s − Φ2

s| ∨ sup
s∈[0,t]

|Ψ1
s −Ψ2

s|.

Recalling the construction of Ki in (2.4) and applying Lemma 3.3, we obtain the
desired result. ■

REMARK 3.6. Proposition 3.4 is a generalization of [9, Corollary 1.6] and [12,
Proposition 4.1]. In fact, for any given αi, βi ∈ D[0,∞) with inft(β

i
t − αi

t) > 0,
i = 1, 2, let Li(t, x) = x−βit and Ri(t, x) = x−αi

t. The result in Proposition 3.4
coincides with [12, (4.2)].

For any fixed T > 0, letMT be the collection of strictly increasing continuous
functions λ of [0, T ] onto itself. The J1 metric d0,T on D[0, T ] is defined by

d0,T (f, g) = inf
λ∈MT

(
sup

t∈[0,T ]
|λ(t)− t| ∨ sup

t∈[0,T ]
|ft − gλ(t)|

)
.

PROPOSITION 3.5. Suppose that Assumption 2.1 holds. Given S, S′ ∈
D[0,∞), let (X,K), (X ′,K ′) solve the nonlinear Skorokhod problems SPR

L(S)
and SPR

L(S
′), respectively. Then, for any T > 0,

d0,T (K,K
′) ¬ 1

c
(L̂T ∨ R̂T ) +

C

c
d0,T (S, S

′),

where

L̂T := sup
(t,s,x)∈[0,T ]×[0,T ]×R

|L(t, x)− L(s, x)|,

R̂T := sup
(t,s,x)∈[0,T ]×[0,T ]×R

|R(t, x)−R(s, x)|.

Proof. Without loss of generality, we assume that S ̸= S′. By the definition of
d0,T , for any δ > 0 there exists some λ ∈MT such that

sup
t∈[0,T ]

|λ(t)− t| ¬ d0,T (S, S′) + δ[1 ∧ d0,T (S, S′)],

sup
t∈[0,T ]

|S′t − Sλ(t)| ¬ d0,T (S, S′) + δ[1 ∧ d0,T (S, S′)].
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Given λ ∈ MT , for any t ∈ [0, T ], applying the definition of K in (2.4), it is
easy to check that

Kλ(t) = −max
(
(−Φ0)

+ ∧ inf
r∈[0,t]

(−Ψλ(r)), sup
s∈[0,t]

[
(−Φλ(s)) ∧ inf

r∈[s,t]
(−Ψλ(r))

])
.

That is, (X ◦ λ,K ◦ λ) solves SPR◦λ
L◦λ(S ◦ λ) on [0, T ], where (f ◦ λ)t = fλ(t) for

f = X,K, S and (g ◦ λ)(t, x) = g(λ(t), x) for g = L,R. By Proposition 3.4, we
have

sup
t∈[0,T ]

|K ′t −Kλ(t)|

¬ 1

c

[
sup

(t,x)∈[0,T ]×R
|L(t, x)− L(λ(t), x)| ∨ sup

(t,x)∈[0,T ]×R
|R(t, x)−R(λ(t), x)|

]
+
C

c
sup

t∈[0,T ]
|S′t − Sλ(t)|

¬ 1

c
(L̂T ∨ R̂T ) +

C

c

(
d0,T (S, S

′) + δ[1 ∧ d0,T (S, S′)]
)
.

Since the above inequality holds for any δ > 0, we obtain the desired result. ■

REMARK 3.7. Proposition 3.5 is a generalization of [9, Corollary 1.6] and
[12, Proposition 4.2]. In contrast to the results in [9] for the Skorokhod map on
a time-independent interval [0, a], where a is a positive constant, the solution to
the Skorokhod problem with two nonlinear reflecting boundaries is not continuous
under the J1 metric. The terms L̂T , R̂T may be regarded as the “oscillations” of L
and R, which cannot be omitted (see [12, Example 4.1]).
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[14] L. Słomiński and T. Wojciechowski, Stochastic differential equations with jump reflection at
time-dependent barriers, Stoch. Process. Appl. 120 (2010), 1701–1721.
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