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Abstract. It is well established that the normalized exceedances resulting
from a standard stationary Gaussian triangular array at high levels follow
a Poisson process under the Berman condition. To model frequent cluster
phenomena, we consider the asymptotic distribution of the point process of
clusters for a Gaussian random field on a lattice. Our analysis demonstrates
that the point process of clusters also converges to a Poisson process in dis-
tribution, provided that the correlations of the Gaussian random field meet
certain conditions. Additionally, we provide a numerical example to illus-
trate our theoretical results.
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1. INTRODUCTION

For a centered unit-variance stationary Gaussian sequence {Xn,s, 0 ¬ s ¬ n}
with correlation ρj = corr(Xn,s, Xn,s+j), under the Berman condition

ρj log j → 0 as j →∞,

which requires the correlation to tend to zero as j → ∞, [18] established that
the exceedances point process Nn(B) converges weakly to a Poisson process with
intensity e−x. The process Nn(B) is defined by

Nn(B) =
n∑

s=0

I{Xn,s > un(x), s/n ∈ B}, x ∈ R,
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where B is a Borel subset of [0, 1], and un(x) = bn + x/an is a high level. Here,
an and bn are defined by

an =
√

2 log n, bn =
√

2 log n− log logn+ log 4π

2
√
2 log n

.(1.1)

This demonstrates that the number of exceedances of un(x) by a Gaussian se-
quence Xn,s in {0, 1, . . . , n} follows an asymptotic Poisson distribution. However,
[15] proposed a more general stationary Gaussian triangular array with correlations
that tend to 1 at a certain rate to better model the extremes of correlated Gaussian
sequences. For such arrays, the exceedances of un(x) may tend to occur in clus-
ters, i.e., an exceedance is likely to have neighboring exceedances, resulting in
clustering of exceedances. To define the point process of clusters, we can consider
a sequence sn+ ℓn and events that occur within a distance of sn+ ℓn as belonging
to the same cluster. The first systematic study of the point process of clusters for a
stationary sequence {ξn,s, 0 ¬ s ¬ n} was reported by Leadbetter in 1983, where
the point process of clusters was defined by

N̂n(B) =
tn∑
k=1

I
{ ⋃
s∈Qk

ξn,s > un(x), s/n ∈ B
}
, x ∈ R,

where Qk = {(k − 1)(sn + ℓn), (k − 1)(sn + ℓn) + 1, . . . , k(sn + ℓn)− 1}, and
sn, ℓn are positive integers. Here tn = [ n+1

sn+ℓn
], and [ · ] denotes the integer part.

[17] showed that N̂n(B) can also converge in distribution to a Poisson process.
Using analogues of conditions of [15], which allow for strong local dependence

among variables while keeping their asymptotic independence, [13] generalized
the results of [15] and [14] to multivariate stationary Gaussian triangular arrays.
The limiting distribution of the normalized maxima for Gaussian random vectors
was derived, and [14] established the limit law for the bivariate stationary Gaus-
sian triangular arrays. Furthermore, [11] and [19] extended the results to stationary
random fields and it was shown that a two-dimensional Gaussian random field
{Xn,ij , 0 ¬ i, j ¬ n} also exhibits extremal clustering in the limit. The asymp-
totic distribution of the maximum of a Gaussian random field was established in
which the spatial domain is rescaled. Recently, [12] established asymptotic be-
haviors of point processes of clusters for stationary bivariate Gaussian triangular
arrays. However, to the best of our knowledge, there is not much research on the
point process of a Gaussian random field on a lattice, because the theoretical devel-
opment of multivariate extreme value theory is far behind its univariate counterpart.
Moreover, there is no study on the asymptotics of point processes of clusters for
two-dimensional Gaussian random fields.

Motivated by [11, 12], we consider asymptotic behaviors of the point process
of clusters for a Gaussian random field {Xn,ij , 0 ¬ i, j ¬ n} on a lattice. Similar
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to the definition of N̂n(B), the point process of clusters formed by {Xn,ij , 0 ¬
i, j ¬ n} is defined by

Nn2 =
tn∑
s=1

tn∑
t=1

I
{ ⋃
(i,j)∈Ist

Xn,ij > un2(x)
}
, x ∈ R,(1.2)

where un2(x) = x/an2 + bn2 , and

an2 = 2
√

log n, bn2 = 2
√

log n− log log n2 + log 4π

4
√
log n

,

with

Ist = {(i, j) : (s− 1)(sn + ℓn) ¬ i ¬ s(sn + ℓn)− 1,(1.3)
(t− 1)(sn + ℓn) ¬ j ¬ t(sn + ℓn)− 1}

for s, t = 1, . . . , tn. As an immediate consequence of our results, one recovers the
results of [11].

It is worth mentioning that the behavior of extremes of random fields has many
applications. [7] considered the application of the behavior of extremes of ran-
dom fields in brain mapping. [21] derived control methods for random fields and
identified the clusters of galaxies in astronomy. When a smooth Gaussian random
field is sampled on a discrete lattice, [23] focused on approximations of the ex-
ceedance probability of the maximum in a finite region and applied the results to
image discrimination. [10] studied the multiple testing problem in the context of
constructing confidence regions for level curves of Gaussian random fields. Fur-
thermore, the theory of extremes of random fields has been applied to construct
simultaneous confidence bands for electrical load curves (see e.g. [4]). For more
advanced topics related to random fields and their applications, see [3, 9, 2, 22].

The paper is organized as follows. We present the main results in Section 2, and
an illustrative numerical example in Section 3. Auxiliary results and the proofs are
given in Sections 4 and 5, respectively.

2. MAIN RESULTS

By assuming conditions similar to those of [11], which generalized the cluster con-
ditions for the correlations of [15] to Gaussian random fields on a two-dimensional
lattice, we will show in Theorem 2.1 that the limiting point process of clusters
of a Gaussian random field on a lattice is a Poisson process. Additionally, if the
covariance function of the random field satisfies the condition that sample paths
are almost surely continuous and have short-range dependence, Theorem 2.2 will
show the result also holds.

THEOREM 2.1. Let {Xn,ij , 0 ¬ i, j ¬ n} be a mean zero, variance one, sta-
tionary Gaussian random field on an n×n lattice. Denote the correlation between
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Xn,ij and Xn,kℓ by ρn,ij,kℓ = E(Xn,ijXn,kℓ). Suppose that

(2.1) (1− ρn,ij,kℓ) log n→ δij,kℓ ∈ (0,∞) as n→∞

for all i, j, k, ℓ ∈ Z such that (i, j) ̸= (k, ℓ) and there exist positive integers sn, ℓn
such that

ℓn
sn
→ 0,

sn
n
→ 0 as n→∞,(2.2)

lim
n→∞

sup√
i2+j2­ℓn

|ρn,ij,00| log n = 0,(2.3)

and

(2.4)

lim
m→∞

lim sup
n→∞

∑
(i,j)∈{0,1,...,ℓn}2\{0,1,...,m}2

n
−2

1−ρn,ij,00
1+ρn,ij,00

(log n)
−

ρn,ij,00
1+ρn,ij,00√

1− ρ2n,ij,00

= 0.

Then the point process of clusters Nn2 converges to N in distribution as n → ∞,
where N is a Poisson process with intensity parameters ϑ exp(−x) on (0, 1] and

ϑ = P

(
E

4
+

√
1

2
δij,00Wij ¬ δij,00, (i, j) ∈ K

)
,

with K = {N × {0}} ∪ {Z × N}, E is a standard exponential random variable,
and {Wij} is a mean zero, variance one, Gaussian random field independent of E
with correlation

corr(WijWkℓ) =
δij,00 + δkℓ,00 − δij,kℓ

2
√
δij,00δkℓ,00

.

REMARK 2.1. The limiting distribution of the maximum of a stationary Gaus-
sian random field {Xn,ij , 0 ¬ i, j ¬ n} on a lattice in [11] is a direct corollary of
Theorem 2.1.

Since isotropic Gaussian random fields are common in practice [1], we consider
the asymptotic behavior of the point process of clusters formed from an isotropic
Gaussian random field {Y (s)} in the following theorem.

THEOREM 2.2. Let {Y (s)} be an isotropic Gaussian random field on R2

whose correlation function ρ(h) = ρ(∥h∥) is decreasing and such that

(i) ρ(h) = 1− ∥h∥β(1 + o(1)) as ∥h∥ ↓ 0, for some 0 < β ¬ 2,

(ii) 0 ¬ ρ(h) ¬ D exp(−∥h∥a) for some constants D, a > 0 and all h ∈ R2.



Point process of clusters for a Gaussian random field 5

Let Xn,ij = Y ((i, j)/(log n)1/β), i, j = 0, 1, . . . , n. Then the assumptions of
Theorem 2.1 are satisfied by Xn,ij and hence the conclusion of Theorem 2.1 holds
with

δij,kl = [(k − i)2 + (l − j)2]β/2, (i, j), (k, l) ∈ K.

REMARK 2.2. By [6], the Gaussian process {Y (s/(log n)1/β)}, as given in
Theorem 2.2, belongs to the domain of attraction of a max-stable process known
as a Brown–Resnick process. See [16, 20, 8] for advanced works on this class of
processes.

3. AN ILLUSTRATIVE EXAMPLE

In this section, we discuss how to compute the extremal index ϑ and illustrate our
results with a numerical example. Consider a stationary Gaussian random field
{Xn,ij , 1 ¬ i, j ¬ n} with mean zero and unit variance on an n× n lattice. Set

Xn,21 = dnXn,11+
√
1−d2nZn,21, . . . , Xn,n1 = dnXn,(n−1) 1+

√
1−d2nZn,n 1,

Xn,22 = dnXn,12+
√
1−d2nZn,22, . . . , Xn,n2 = dnXn,(n−1) 2+

√
1−d2nZn,n 2,

...
Xn,2n = dnXn,1n+

√
1−d2nZn,2n, . . . , Xn,nn = dnXn,(n−1)n+

√
1−d2nZn,nn,

and

Xn,12 = dnXn,11 +
√

1− d2nZn,12, . . . , Xn,1n = dnXn,1(n−1) +
√
1− d2nZn,1n

where Zn,ij are independent of Xn,ij for 1 ¬ i, j ¬ n and {Zn,ij , 1 ¬ i, j ¬ n}
are independent and identically distributed standard normal random variables. As-
sume that

dn = 1− ζ

log n
for some ζ ∈ (0,∞).(3.1)

By stationarity, we have the correlation

ρn,ij,00 = di+j
n =

(
1− ζ

log n

)i+j

.

Thus, condition (2.1) in Theorem 2.1 holds with

δij,00 = (i+ j)ζ.

Now let ℓn = (log n) log(log n)2. Then we can show that

sup√
i2+j2­ℓn

|ρn,ij,00| log n ¬ exp

(
− ζℓn
log n

+ log log n

)
→ 0 as n→∞,

and hence condition (2.3) follows.
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Next, we verify (2.4). For any ϵ ∈ (0, 2), if (i+ j)ζ/log n > ϵ, then

ρn,ij,00 ¬ e−ϵ.(3.2)

If (i+ j)ζ/log n ¬ ϵ, then by Taylor expansion we obtain

(i+ j)ζ

log n

(
1− ϵ

2

)
¬ 1− ρn,ij,00 ¬

(i+ j)ζ

log n
.(3.3)

It follows from (3.2) and (3.3) that

∑
(i,j)∈{0,1,...,ℓn}2\{0,1,...,m}2

n
−2

1−ρn,ij,00
1+ρn,ij,00

(log n)
−

ρn,ij,00
1+ρn,ij,00√

1− ρ2n,ij,00

=
∑

(i,j)∈{0,1,...,ℓn}2\{0,1,...,m}2
n
−2

1−ρn,ij,00
1+ρn,ij,00

(log n)
1−ρn,ij,00

2(1+ρn,ij,00)√
(1− ρ2n,ij,00) log n

¬
{ ∑

(i,j)∈{0,1,...,ℓn}2\{0,1,...,m}2
n
−2 1−e−ϵ

1+e−ϵ
(log n)1/2√

(1− e−ϵ) log n

∨
∑

(i,j)∈{0,1,...,ℓn}2\{0,1,...,m}2
exp

[
−(i+ j)ζ

2

(
1− ϵ

2

)]
exp

( (i+j)ζ log logn
2 logn

)√
(i+ j)ζ(1− ϵ/2)

}
.

Therefore, (2.4) is satisfied and the conclusion of Theorem 2.1 holds.
Now, we discuss how to compute the extremal index ϑ for this example. We can

replace Wij by (i+ j)−1/2
∑i

t1=1

∑j
t2=1(Zt1 + εt2) with εt2 independent of Zt1 .

Then

ϑ = P

(
E

4
+
√

1
2ζ

i∑
t1=1

j∑
t2=1

(Zt1 + εt2) ¬ (i+ j)ζ for all i, j ­ 1

)
,(3.4)

where E denotes a standard exponential random variable independent of the Zt1

and εt2 . Since Zt1 and εt2 are independent and identically distributed standard
normal random variables, a calculation based on (3.4) is straightforward. We com-
puted the extremal indices ϑ for various sample sizes n and d, and recorded the
results in Table 1. Noting that d = dn, given by (3.1), it is clear that, for larger d, it
takes a larger n for ϑ to approach 1.

To confirm our asymptotic results in Theorems 2.1 and 2.2, we choose a specific
value of d, say d = 0.9. Then ζ̃ = (1− d) log n and

ϑ̃ = P
(
E

4
+

√
1
2 ζ̃

i∑
t1=1

j∑
t2=1

(Zt1 + εt2) ¬ (i+ j)ζ̃ for all i, j ­ 1

)
.
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Table 1. Extremal indices ϑ

d = 0.7 d = 0.75 d = 0.8 d = 0.85 d = 0.9

n = 20 0.935 0.905 0.860 0.789 0.674
n = 100 0.979 0.965 0.939 0.890 0.795
n = 1000 0.995 0.990 0.979 0.954 0.890
n = 10000 0.998 0.997 0.993 0.979 0.939
n = 50000 0.999 0.998 0.996 0.988 0.959

Figure 1. Solid lines are for the distribution of Nn2 based on the observed frequencies; dotted lines
represent the distribution of the Poisson process N ; n represents different lengths of sequences.

The distributions of the point process of clusters Nn2 and the Poisson process N
for different sample sizes n when x = 0 are displayed in Figure 1. From this figure,
we can see that the distribution of Nn2 approximates that of N better as n becomes
larger, as guaranteed by our results in Theorems 2.1 and 2.2.

4. AUXILIARY RESULTS

In order to prove the theorems, we need some auxiliary lemmas. Define the indi-
cator variable

ηst =

{
1 when max {Xn,ij , (i, j) ∈ I∗st} > un2(x),

0 otherwise,

where

I∗st = {(i, j) : (s− 1)(sn + ℓn) + ℓn ¬ i ¬ s(sn + ℓn)− ℓn,

(t− 1)(sn + ℓn) + ℓn ¬ j ¬ t(sn + ℓn)− ℓn},
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and I ′st = Ist \ I∗st, with Ist is given by (1.3). Here sn and ℓn are positive integers
and s, t = 1, . . . , tn, tn =

[
n+1

rn+ℓn

]
.

To simplify the notation, we define Mn = max {Xn,ij , 0 ¬ i, j ¬ n}
and Mtn = max {Xn,ij , 0 ¬ i, j ¬ tn}. Additionally, let M[i:j],[k:ℓ] =
max {Xn,st, i ¬ s ¬ j, k ¬ t ¬ ℓ} be the maximum of the set of random
variables in horizontal positions i through j and vertical positions k through ℓ, and
simplify this to M[i:j],[k] = max {Xn,st, i ¬ s ¬ j} when only random variables
from a single row k are under consideration. Note that M[i:j],[k:ℓ] = −∞ if i > j
or k > ℓ. For simplicity, we use the same letter C to denote positive constants that
may take different values at different places.

LEMMA 4.1. For any random field {Xn,ij , 0 ¬ i, j ¬ n}, we have

(4.1) P(Mn > un2(x))

=
n∑

i=0

n∑
j=0

P
(
Xn,ij > un2(x), M[i+1:n],[j] ∨M[0:n],[j+1:n] ¬ un2(x)

)
.

Proof. To calculate P(Mn >un2(x)), we first intersect the set {Mn >un2(x)}
with the union events {Xn,ij > un2(x)} ∪ {Xn,ij ¬ un2(x)} for 1 ¬ i, j ¬ n,
and then sum over the disjoint events and simplify. More precisely,

P(Mn > un2(x)) = P
(
Mn > un2(x), {Xn,nn > un2(x)} ∪ {Xn,nn ¬ un2(x)}

)
= P(Xn,nn > un2(x))

+ P
(
M[0:n],[0:n−1] ∨M[0:n−1],[n] > un2(x), Xn,nn ¬ un2(x)

)
.

Continuing this pattern by decrementing the horizontal position i by 1 each time
until the first position of the row is reached, we have

P(Mn > un2(x))

= P(Xn,nn > un2(x)) + P
(
Xn,(n−1)n > un2(x), Xn,nn ¬ un2(x)

)
+ P

(
M[0:n],[0:n−1] ∨M[0:n−2],[n] > un2(x), Xn,(n−1)n ¬ un2(x),

Xn,nn ¬ un2(x)
)

=
n∑

i=0

P
(
Xn,in > un2(x), M[i+1:n],[n] ¬ un2(x)

)
+ P

(
M[0:n],[0:n−1] > un2(x), M[0:n],[n] ¬ un2(x)

)
.

Finally, we continue this pattern for the vertical position j until we reach (i, j) =
(0, 0). Thus, we get the assertion. ■

LEMMA 4.2. Under the assumptions of Theorem 2.1, we have

lim
n→∞

∣∣∣P(ηst = est, s, t = 1, . . . , tn)−
tn∏
s=1

tn∏
t=1

P(ηst = est)
∣∣∣ = 0,(4.2)

where est are variables assuming only the values 0 and 1 for s, t = 1, . . . , tn.
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Proof. As in the proof of [5, Lemma 8.1], we only need to prove that (4.2)
holds when est = 0, s, t = 1, . . . , tn. By the Normal Comparison Lemma (see e.g.
[18]), we have

(4.3)
∣∣∣P(ηst = 0, s, t = 1, . . . , tn)−

tn∏
s=1

tn∏
t=1

P(ηst = 0)
∣∣∣

=
∣∣∣P( max

(i,j)∈I∗st
Xn,ij ¬ un2(x), s, t = 1, . . . , tn

)
−

tn∏
s=1

tn∏
t=1

P
(

max
(i,j)∈I∗st

Xn,ij ¬ un2(x)
)∣∣∣

¬ C
∑

(i,j)∈I∗
11

,

(k,ℓ)∈I∗\I∗
11

|ρn,ij,kℓ| exp
(
−

u2n2(x)

1 + |ρn,ij,kℓ|

)

+ C
∑

(i,j)∈I∗
12

,

(k,ℓ)∈I∗\I∗
12

|ρn,ij,kℓ| exp
(
−

u2n2(x)

1 + |ρn,ij,kℓ|

)

+ · · ·+ C
∑

(i,j)∈I∗tntn
,

(k,ℓ)∈I∗\I∗tntn

|ρn,ij,kℓ| exp
(
−

u2n2(x)

1 + |ρn,ij,kℓ|

)

¬ Ct2ns
2
nn

2ρ∗n exp

(
−
u2n2(x)

1 + ρ∗n

)
,

where

I∗ = {I∗11, I∗12, . . . , I∗tntn}, ρ∗n =max {|ρn,ij,kℓ|,
√
(k − i)2 + (ℓ− j)2 ­ ℓn}.

From [18, (4.3.4)], we have

exp

(
−u

2
n(x)

2

)
∼

Cun(x)

n
and un(x) ∼

√
2 log n.

So, exp(−u2n2(x)) ∼ Cu2n2(x)/n
4 and

Ct2ns
2
nn

2|ρ∗n| exp
(
−

u2n2(x)

1 + |ρ∗n|

)
¬ Cn4|ρ∗n| exp(−u2n2) exp

(
u2n2(x)|ρ∗n|
1 + |ρ∗n|

)
¬ C|ρ∗n| log n exp(u2n2 |ρ∗n|)
¬ C|ρ∗n| log n exp(4 log n |ρ∗n|).

From condition (2.3) of Theorem 2.1, we have

lim
n→∞
|ρ∗n| log n = 0,

and combining this with (4.3) yields (4.2). ■



10 Y. Lu and J. Guo

LEMMA 4.3. Under the assumptions of Theorem 2.1, for any bounded set K ⊂
{N× {0}} ∪ {Z× N}, we have

lim
n→∞

P
(
max

(i,j)∈K
Xn,ij ¬ un2(x)

∣∣∣ Xn,00 > un2(x)
)

= P

(
E

4
+

√
1
2δij,00Wij ¬ δij,00, (i, j) ∈ K

)
,

where E is a standard exponential random variable and Wij is a mean zero, vari-
ance one, Gaussian random field with correlation

corr(WijWkℓ) =
δij,00 + δkℓ,00 − δij,kℓ

2
√
δij,00δkℓ,00

.

Proof. The proof can be found in [11, Lemma 5]. ■

LEMMA 4.4. Under the assumptions of Theorem 2.1, let rn be a positive inte-
ger that satisfies

(4.4)
ℓn
rn
→ 0,

rn
sn
→ 0,

rn
n
→ 0 as n→∞.

Then

(4.5)
lim
n→∞

P
(
M[1:rn−ℓn],[0] ∨M[−rn:rn−ℓn],[1:rn−ℓn] ¬ un2(x)

∣∣ Xn,00 > un2(x)
)
= ϑ,

and

(4.6)
lim
n→∞

P
(
M[1:sn−ℓn],[0] ∨M[−sn:sn−ℓn],[1:sn−ℓn] ¬ un2(x)

∣∣ Xn,00 > un2(x)
)
= ϑ.

Proof. Define

An = {1, . . . , rn− ℓn}×{0}
∪{−rn,−rn+1, . . . , rn− ℓn}×{1, . . . , rn− ℓn},

Gm,n = {(i, j) ∈ An : |i|, |j| ¬ m},

and Hm,n = An \ Gm,n for m ∈ N. It follows from Lemma 4.3 that for (4.5) we
only have to show

(4.7) lim
m→∞

lim
n→∞

P
( ⋃
(i,j)∈Hm,n

{Xn,ij > un2(x)}
∣∣∣ Xn,00 > un2(x)

)
= 0.
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By similar arguments to those in the proof of Lemma 4.3, we have

P
( ⋃
(i,j)∈Hm,n

{Xn,ij > un2(x)}
∣∣∣ Xn,00 > un2(x)

)
∼
∞∫
0

P

( ⋃
(i,j)∈Hm,n

{Xn,ij > un2(x)}
∣∣∣∣ Xn,00 = un2(x) +

z

un2(x)

)
× exp

(
−z − z2

2u2
n2(x)

)
dz.

Next, we assume that {Yn,ij , (i, j) ∈ Hm,n} has the same distribution as
{Xn,ij , (i, j) ∈ Hm,n | Xn,00 = un2(x)+z/un2(x)}. Then (Yn,ij , (i, j) ∈ Hm,n)
∼ N(µ,Σ), where

µ =

(
ρn,ij,00

(
un2(x) +

z

un2(x)

)
, (i, j) ∈ Hm,n

)
,

Σ = (ρn,ij,kℓ − ρn,ij,00ρn,kℓ,00)(i,j),(k,ℓ)∈Hm,n
.

Standardizing Yn,ij and letting

Zn,ij =
Yn,ij − ρn,ij,00

(
un2(x) + z

un2 (x)

)√
1− ρ2n,ij,00

,

we have

(4.8) P
( ⋃
(i,j)∈Hm,n

{Xn,ij > un2(x)}
∣∣∣ Xn,00 > un2(x)

)
∼
∞∫
0

exp

(
−z − z2

2u2
n2(x)

)

× P

( ⋃
(i,j)∈Hm,n

{
Zn,ij >

un2(x)− ρn,ij,00
(
un2(x) + z

un2 (x)

)√
1− ρ2n,ij,00

})
dz.

Note that, by similar arguments to those used in the proof of [11, Lemma 7], for
large enough m and n, we have

θn =
un2(x)− un2(x)ρn,ij,00√

1− ρ2n,ij,00

− zρn,ij,00

un2(x)
√

1− ρ2n,ij,00

> 0,

and by Mill’s inequality,

P(Zn,ij > θn) ¬
1√
2π θn

exp

(
−1
2
θ2n

)
.
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From the definition of un2(x),

θ2n ­
1− ρn,ij,00
1 + ρn,ij,00

(4 log n− log(2 log n)) + C,

and so

P

(
Zn,ij >

un2(x)− ρn,ij,00
(
un2(x) + z

un2 (x)

)√
1− ρ2n,ij,00

)

= P(Zn,ij > θn) ¬ C
1√

1− ρ2n,ij,00

n
−2

1−ρn,ij,00
1+ρn,ij,00 (log n)

−
ρn,ij,00

1+ρn,ij,00 .

Therefore,

(4.9) P

( ⋃
(i,j)∈Hm,n

{
Zn,ij >

un2(x)− ρn,ij,00
(
un2(x) + z

un2 (x)

)√
1− ρ2n,ij,00

})

¬ C
∑

(i,j)∈Hm,n

1√
1− ρ2n,ij,00

n
−2

1−ρn,ij,00
1+ρn,ij,00 (log n)

−
ρn,ij,00

1+ρn,ij,00 .

It follows from (2.4) that

lim
m→∞

lim sup
n→∞

∑
(i,j)∈{0,1,...,ℓn}2\{0,1,...,m}2

n
−2

1−ρn,ij,00
1+ρn,ij,00

(log n)
−

ρn,ij,00
1+ρn,ij,00√

1− ρ2n,ij,00

= 0,

and we have ρn,ij,00 → 0 when i > ℓn or j > ℓn by (2.3). Thus

sup
i>ℓn or j>ℓn

1√
1− ρ2n,ij,00

n
2−2

1−ρn,ij,00
1+ρn,ij,00 (log n)

−
ρn,ij,00

1+ρn,ij,00 → 1,

and by (4.4),

(4.10)
∑

(i,j)∈{0,1,...,rn}2\{0,1,...,ℓn}2

1√
1− ρ2n,ij,00

n
−2

1−ρn,ij,00
1+ρn,ij,00 (log n)

−
ρn,ij,00

1+ρn,ij,00

¬ (rn + 1)2 − (ℓn + 1)2

n2

1√
1− ρ2n,ij,00

n
2−2

1−ρn,ij,00
1+ρn,ij,00 (log n)

−
ρn,ij,00

1+ρn,ij,00 → 0
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as n→∞. Combining this with (2.4) and (4.10), we have

(4.11)
∑

(i,j)∈{0,1,...,rn}2\{0,1,...,m}2

1√
1− ρ2n,ij,00

n
−2

1−ρn,ij,00
1+ρn,ij,00 (log n)

−
ρn,ij,00

1+ρn,ij,00

¬
∑

(i,j)∈{0,1,...,rn}2\{0,1,...,ℓn}2
+

∑
(i,j)∈{0,1,...,ℓn}2\{0,1,...,m}2

→ 0 as n→∞.

Since

2
∑

(i,j)∈{0,1,...,rn}2\{0,1,...,m}2

1√
1− ρ2n,ij,00

n
−2

1−ρn,ij,00
1+ρn,ij,00 (log n)

−
ρn,ij,00

1+ρn,ij,00

­
∑

(i,j)∈Hm,n

1√
1− ρ2n,ij,00

n
−2

1−ρn,ij,00
1+ρn,ij,00 (log n)

−
ρn,ij,00

1+ρn,ij,00 ,

combining (4.8), (4.9) and (4.11) we get (4.5). By similar arguments, (4.6) can be
established. ■

5. PROOFS

5.1. Proof of Theorem 2.1. By the definition of Nn2 and ηst for s, t = 1, , . . . , tn,
we have

(5.1)
∣∣E(ωNn2 )− E

(
ω
∑tn

s=1

∑tn
t=1 ηij

)∣∣
¬ P

( ⋃
(i,j)∈I′st

{Xn,ij > un2(x)}, s, t = 1, . . . , tn

)
¬ Ct2nsnℓn P(Xn,00 > un2(x))

=
Ct2nsnℓn

n2
n2(1− Φ(un2(x)))→ 0 as n→∞,

because n2(1−Φ(un2(x)))→ e−x and by (2.2). By Lemmas 4.1 and 4.4, we have

P(η11 = 1)

= P(M[ℓn:sn],[ℓn:sn] > un2(x))

=
sn∑

i=ℓn

sn∑
j=ℓn

P
(
Xn,ij > un2(x), M[i+1:sn],[j] ∨M[ℓn:sn],[j+1,sn] ¬ un2(x)

)
=

sn−ℓn∑
i=0

sn−ℓn∑
j=0

P
(
Xn,00 > un2(x),

M[1:sn−ℓn−i],[0] ∨M[−i:sn−ℓn−i],[1,sn−ℓn−j] ¬ un2(x)
)

­ (sn − ℓn)
2 P

(
Xn,00 > un2(x), M(Qn) ¬ un2(x)

)
,
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where Qn={1, . . . , sn−ℓn}×{0}∪{−sn,−sn+1, . . . , sn−ℓn}×{1, . . . , sn−ℓn},
and

(5.2) E(ωη11) = ωP(η11 = 1) + P(η11 = 0) = 1− (1− ω) P(η11 = 1)

¬ 1− (1− ω)(sn − ℓn)
2 P(Xn,00 > un2(x), M(Qn) ¬ un2(x)).

Then, by Lemmas 4.2 and 4.4, we have

(5.3) E(ωNn2 )

¬ [1− (1− ω)(sn − ℓn)
2 P(Xn,00 > un2(x), M(An) ¬ un2(x))]t

2
n

∼ exp(−(1− ω)ϑe−x) as n→∞.

Next, to develop a lower bound for E(ωNn2 ), let cn = sn+ℓn−1 and pn = rn+ℓn
with sn = o(n), ℓn = o(rn) and rn = o(sn). Denote A∗n = {pn + 1, pn + 2,
. . . , cn− pn}2 and A′n = {0, 1, . . . , cn}2/A∗n. It follows from Lemmas 4.1 and 4.4
that, for large enough n, we have

(5.4) P(Mcn > un2(x))

= P(M(A′n) > un2(x)) + P
(
M(A′n) ¬ un2(x),M(A∗n) > un2(x)

)
¬ Cpncn

n2
n2(1− Φ(un2(x))) +

cn−pn∑
i=pn+1

cn−pn∑
j=pn+1

P
(
Xn,ij > un2(x),

M[i+1:cn−pn],[j] ∨M[pn+1:cn−pn],[j+1,cn−pn] ∨M(A′n) ¬ un2(x)
)

¬ (cn − pn)
2 P

(
Xn,00 > un2(x),M(An) ¬ un2(x)

)
+ o(1),

where An={1, . . . , rn−ℓn}×{0}∪{−rn,−rn+1, . . . , rn−ℓn}×{1, . . . , rn−ℓn},
and so

(5.5) P
(
M[ℓn:sn],[ℓn:sn] > un2(x)

)
¬ P

(
Mcn > un2(x)

)
¬ (cn − pn)

2 P
(
Xn,00 > un2(x), M(An) ¬ un2(x)

)
+ o(1).

Therefore, by similar arguments to those used in (5.3) and (5.4), we have

(5.6) E(ωNn2 )

­
[
1− (1− ω)(cn − pn)

2 P
(
Xn,00 > un2(x), M(An) ¬ un2(x)

)]t2n
∼ exp(−(1− ω)ϑe−x) as n→∞,

and the conclusion of Theorem 2.1 follows by (5.3) and (5.6). ■
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5.2. Proof of Theorem 2.2. Set Xn,ij = Y ((i, j)/(log n)1/β), i, j = 1, . . . n. The
distance ∥h∥ between any two random variables Xn,ij and Xn,kl will have the form

∥h∥ = hij,kl =
1

(log n)1/β

√
(k − i)2 + (l − j)2.

Thus ρn,ij,kl = ρn(hij,kl) and it follows by condition (i) that

lim
n→∞

(1− ρn,ij,kl) log n = δij,kl = [(k − i)2 + (l − j)2]β/2 ∈ (0,∞).

Hence, (2.1) in Theorem 2.1 holds. To prove Theorem 2.2, we also need to verify
conditions (2.3) and (2.4) of Theorem 2.1 under conditions (i) and (ii). The proofs
are similar to those of [11, Theorem 2.2] and the details are omitted here. ■
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