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Abstract. The purpose of this short note is to give an operator-valued free
Poincaré inequality, which provides a simple proof to (an improvement of)
a lemma of Voiculescu (2000) asserting that the kernel of the free difference
quotient is exactly the coefficients.
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1. INTRODUCTION

Let M be a von Neumann algebra with a faithful normal tracial state τ , and B be a
unital von Neumann subalgebra of M with a (unique) τ -preserving conditional
expectation E from M onto B. Let X be a self-adjoint element of M , which
is assumed to be algebraically free from B. Let B⟨X⟩ denote the family of all
B-valued non-commutative polynomials, i.e., the linear span of all monomials
b0Xb1X . . .Xbn, bi ∈ B, and µ denotes the usual multiplication on B⟨X⟩. The
free difference quotient

∂X:B : B⟨X⟩ → B⟨X⟩⊗2

is a unique B⟨X⟩⊗2-valued derivation on B⟨X⟩ that satisfies ∂X:B[X]=1⊗1 and
∂X:B[b]=0 for any b∈B. Let L2(M, τ)=L2(M) denote the completion of M with
respect to the (tracial) L2-norm defined by |a|2 = τ(a∗a)1/2 for every a∈M . Set
B⟨t⟩:=B∗C⟨t⟩ (algebraic free product) with indeterminate t. Note that any element
of B⟨t⟩ is a linear combination of monomials b0tb1t · · · tbn (bi∈B). For any R>0,
let BR{t} be the completion of B⟨t⟩ with respect to the norm ||| · |||R defined by

|||p(t)|||R

= inf
{ n∑
k=1

∥bk,0∥ · ∥bk,1∥ · · · ∥bk,m(k)∥Rm(k)
∣∣∣ p(t) = n∑

k=1

bk,0tbk,1 · · · tbk,m(k)

}
for every p(t) ∈ B⟨t⟩.
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The purpose of this short note is to give an operator-valued free Poincaré in-
equality, which is almost of the same form as what Voiculescu conjectured (see [7])
but we choose the norm of ∂X:B[p(X)] here to be the projective tensor norm
instead of the L2-norm. Hence, our inequality may be called a free Poincaré
inequality. Nevertheless, it gives a rather simple proof to (an improvement of)
[6, Lemma 3.4], an important fact asserting that the kernel of ∂X:B is exactly the
algebra B in the analytic setup. Actually, the inequality is a byproduct of our inves-
tigation on [6], which became the groundwork for [2, 3]. (Compare the discussion
here to Voiculescu’s.) We remark that a scalar-valued free Poincaré inequality has
been established by Voiculescu in his unpublished note, and its proof can also be
found in e.g. [4, Section 8.1].

2. RESULTS

In this section, C∗(B⟨X⟩)⊗2 and C∗(B⟨X⟩)⊗̂2 denote the minimal tensor product
and the projective tensor product, respectively, that is, they are the completions of
the algebraic tensor product C∗(B⟨X⟩)⊗2 with respect to the C∗-norm ∥ · ∥ and
the Banach ∗-norm ∥ · ∥π, respectively, defined as follows:

∥ξ∥ = ∥(ρ1 ⊗ ρ2)(ξ)∥B(H⊗K), ξ ∈ C∗(B⟨X⟩)⊗2,

with some faithful ∗-representations ρ1 and ρ2 of C∗(B⟨X⟩) on some Hilbert
spaces H1 and H2, respectively, and

∥ξ∥π = inf
{ N∑
k=1

∥ξk,1∥ ∥ξk,2∥
∣∣∣ ξ =

N∑
k=1

ξk,1 ⊗ ξk,2, ξk,j ∈ C∗(B⟨X⟩), N ∈ N
}

for any ξ ∈ C∗(B⟨X⟩)⊗2. Note that the minimal C∗-tensor norm ∥ · ∥ does not
depend on the choice of the faithful ∗-representations (ρ1, H1) and (ρ2, H2).

Assume that ∂X:B from (C∗(B⟨X⟩), ∥ · ∥) to (C∗(B⟨X⟩)⊗2, ∥ · ∥) is clos-
able (this follows from the existence of conjugate variable in L2(M), see [5,
Corollary 4.2] and [6, Section 3.2]). We denote by ∂X:B the closure of ∂X:B

with respect to ∥ · ∥ on both sides. Note that the natural map from the tensor
product C∗(B⟨X⟩)⊗̂2 ⊂ M ⊗̂2 to C∗(B⟨X⟩)⊗2 ⊂ M⊗2 is injective. This in-
deed follows from Haagerup’s famous work [1, Proposition 2.2]. Hence, ∂X:B

from (C∗(B⟨X⟩), ∥ · ∥) to (C∗(B⟨X⟩)⊗̂2, ∥ · ∥π) is closable if it is so from
(C∗(B⟨X⟩), ∥ · ∥) to (C∗(B⟨X⟩)⊗2, ∥ · ∥). Let ∂̂X:B denote the closure of ∂X:B

with respect to ∥ · ∥ and ∥ · ∥π.
Voiculescu introduced a certain smooth subalgebra of C∗(B⟨X⟩), which is a

kind of Sobolev space (see [5, Section 4]). Let B(1)(X) be the completion of B⟨X⟩
with respect to the norm ||| · |||(1) defined by

|||p(X)|||(1) := ∥p(X)∥+ ∥∂X:B[p(X)]∥π
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for any p(X) ∈ B⟨X⟩. The resulting space becomes a Banach ∗-algebra. Here, we
can show two lemmas.

LEMMA 2.1. We have the following facts:

(1) For any η ∈ B(1)(X) there exist a unique ηπ ∈ C∗(B⟨X⟩)⊗̂2, a unique η∞ ∈
C∗(B⟨X⟩) and a net {pλ} of B⟨X⟩ such that |||η|||(1) = ∥η∞∥+ ∥ηπ∥π and

pλ → η in B(1)(X),

pλ → η∞ in C∗(B⟨X⟩),

∂X:B[pλ]→ ηπ in C∗(B⟨X⟩)⊗̂2.

(2) The correspondence ι : B(1)(X)→ C∗(B⟨X⟩) given by ι[η] := η∞ for every
η ∈ B(1)(X) defines a contractive algebra homomorphism with ι|B⟨X⟩ =

idB⟨X⟩. With this map, we regard B(1)(X) as a ∗-subalgebra of C∗(B⟨X⟩).

(3) The correspondence ∂̃X:B : B(1)(X) → C∗(B⟨X⟩)⊗̂2 given by ∂̃X:B[η] :=

ηπ for every η ∈ B(1)(X) defines a contractive derivation. Moreover, ∂̃X:B =

∂̂X:B ◦ ι and hence ∂̃X:B|B⟨X⟩ = ∂X:B .

(4) The non-commutative functional calculus map f(t) 7→ f(X) from BR{t} to
C∗(B⟨X⟩) sending t to X is well defined as long as ∥X∥ < R, and its range
becomes a ∗-subalgebra of B(1)(X).

Proof. We give only a sketch of proof.
(1) This follows from the definition of (B(1)(X), ||| · |||(1)).
(2) The well-definedness of ι follows from the fact that η∞ is unique.
(3) The well-definedness of ∂̃X:B follows similarly to (2). By the construction

of ∂̃X:B and the closability of ∂̂X:B , we have ∂̃X:B = ∂̂X:B ◦ ι. That ∂̃X:B is
a derivation follows from the first part of [6, Lemma 3.1], which is valid in the
present setting.

(4) Use the following inequalities (see [5, Section 4]):

∥p(X)∥ ¬ |||p(t)|||R, ∥∂X:B[p(X)]∥ ¬ ∥∂X:B[p(X)]∥π ¬ C|||p(t)|||R

for any p(t) ∈ B⟨t⟩, where C = supn∈N n∥X∥n−1/Rn. ■

LEMMA 2.2. The map ι : B(1)(X) → C∗(B⟨X⟩) is injective. Moreover, the
range of ι is exactly dom(∂̂X:B).

Proof. The first part is clear from Lemma 2.1. Next, we show the second
part. By Lemma 2.1(3), it follows that ran(ι) ⊂ dom(∂̂X:B). Conversely, for any
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f(X) ∈ dom(∂̂X:B) there exists a sequence {pn(X)}∞n=1 ⊂ B⟨X⟩ such that
pn(X)

n→∞−−−→ f(X) in ∥ · ∥ and ∂X:B[pn(X)]
n→∞−−−→ ∂̂X:B[f(X)] in ∥ · ∥π. Then

|||pn(X)− pm(X)|||(1) = ∥pn(X)− pm(X)∥+ ∥∂X:B[pn(X)]− ∂X:B[pm(X)]∥π
n→∞−−−→ ∥f(X)− f(X)∥+ ∥∂̂X:B[f(X)]− ∂̂X:B[f(X)]∥π = 0.

Therefore, there exists an η ∈ B(1)(X) such that pn(X)
n→∞−−−→ η in ||| · |||(1) and

we have f(X) = ι[η]. Thus, dom(∂̂X:B) ⊂ ran(ι). ■

We are now in a position to give the desired inequality.

THEOREM 2.1 (An operator-valued free Poincaré inequality). For an arbitrary
element f(X) ∈ dom(∂̂X:B),

|f(X)− E[f(X)]|2 ¬ 2|X|2∥∂̂X:B[f(X)]∥π;

equivalently, by Lemma 2.2, for any f(X) ∈ B(1)(X), the same inequality also
holds with ∂̃X:B[f(X)] in place of ∂̂X:B[f(X)], where ∥ · ∥π is the projective ten-
sor norm on C∗(B⟨X⟩)⊗̂2.

Proof. By the continuity of E and of the norm, it suffices to show the in-
equality for any non-commutative polynomial p(X) ∈ B⟨X⟩ (in this case, we
have ∂X:B[p(X)] = ∂̂X:B[p(X)] = ∂̃X:B[p(X)]). We denote by µ the multiplica-
tion map from B⟨X⟩⊗2 to B⟨X⟩. Let ♯ be a bilinear map on B⟨X⟩⊗2 such that
(a1 ⊗ a2) ♯ (a3 ⊗ a4) = (a1a3) ⊗ (a4a2) for every ai ∈ B⟨X⟩. For any p(X) ∈
B⟨X⟩ and any expression ∂X:B[p(X)] =

∑N
i=1 qi,1(X) ⊗ qi,2(X) ∈ B⟨X⟩⊗2

with monomials qi,j(X), we have

(µ ◦ (id⊗ E))
(
∂X:B[p(X)] ♯ (X ⊗ 1− 1⊗X)

)
=

N∑
i=1

(
qi,1(X)XE[qi,2(X)]− qi,1(X)E[Xqi,2(X)]

)
.

On the other hand, for any monomial q(X) = b0Xb1 · · ·Xbn ∈ B⟨X⟩, we have

∂X:B[q(X)] ♯ (X ⊗ 1− 1⊗X)

=
( n∑
i=1

b0Xb1 · · · bi−1 ⊗ biX · · ·Xbn

)
♯ (X ⊗ 1− 1⊗X)

= b0X ⊗ b1 · · ·Xbn − b0 ⊗Xb1 · · ·Xbn

+ b0Xb1X ⊗ b2 · · ·Xbn − b0Xb1 ⊗Xb2 · · ·Xbn

+ b0Xb1Xb2X ⊗ b3 · · ·Xbn − b0Xb1Xb2 ⊗Xb3 · · ·Xbn
...

+ b0Xb1X · · · bn−1X ⊗ bn − b0Xb1X · · · bn−1 ⊗Xbn.
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Since E is a B-bimodule map, it follows that

(µ ◦ (id⊗ E))(∂X:B[q(X)] ♯ (X ⊗ 1− 1⊗X))

= b0XE[b1 · · ·Xbn]− b0E[Xb1 · · ·Xbn]

+ b0Xb1XE[b2 · · ·Xbn]− b0Xb1E[Xb2 · · ·Xbn]

+ b0Xb1Xb2XE[b3 · · ·Xbn]− b0Xb1Xb2E[Xb3 · · ·Xbn]

...

+ b0Xb1X · · · bn−1XE[bn]− b0Xb1X · · · bn−1E[Xbn]

= b0XE[b1 · · ·Xbn]− E[q(X)]

+ b0Xb1XE[b2 · · ·Xbn]− b0XE[b1Xb2 · · ·Xbn]

+ b0Xb1Xb2XE[b3 · · ·Xbn]− b0Xb1XE[b2Xb3 · · ·Xbn]

...

+ q(X)− b0Xb1X · · ·XE[bn−1Xbn]

= q(X)− E[q(X)].

By linearity, we obtain

(µ ◦ (id⊗ E))(∂X:B[p(X)] ♯ (X ⊗ 1− 1⊗X)) = p(X)− E[p(X)]

for any p(X) ∈ B⟨X⟩. Therefore,

|p(X)− E[p(X)]|2 = |(µ ◦ (id⊗ E))(∂X:B[p] ♯ (X ⊗ 1− 1⊗X))|2

=
∣∣∣ N∑
i=1

(
qi,1(X)XE[qi,2(X)]− qi,1(X)E[Xqi,2(X)]

)∣∣∣
2

¬
N∑
i=1

(
|qi,1(X)XE[qi,2(X)]|2 + |qi,1(X)E[Xqi,2(X)]|2

)
¬ 2|X|2

N∑
i=1

∥qi,1(X)∥ · ∥qi,2(X)∥

since τ is tracial and E is contractive. It follows that

|p(X)− E[p(X)]|2 ¬ 2|X|2∥∂X:B[p(X)]∥π

by the definition of the projective tensor norm. ■

The inequality still holds even if the L2-norm is replaced with the operator
norm. The proof is completely identical.

COROLLARY 2.1. Both ker ∂̂X:B and ker ∂̃X:B are exactly B.
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From ∥∂X:B[p(X)]∥ ¬ ∥∂X:B[p(X)]∥π for every p(X) ∈ B⟨X⟩, and Lem-
mas 2.1(4) and 2.2, we have

{f(X) | f(t) ∈ BR{t}} ⊂ B(1)(X) = dom(∂̂X:B) ⊂ dom(∂X:B)

when ∥X∥ < R and ∂X:B is an extension of ∂̂X:B (via the natural injection from
M ⊗̂2 to M⊗2 due to [1, Proposition 2.2]). Therefore, Corollary 2.1 yields the fol-
lowing corollary:

COROLLARY 2.2. ker ∂X:B ∩B(1)(X) = B.

This statement is an improvement of [6, Lemma 3.4]; giving a concise proof of
it was our original purpose.

Acknowledgments. The author thanks his supervisor Prof. Yoshimichi Ueda for
conversations, comments and editorial support of this note. The author also ex-
presses his sincere gratitude to Prof. Dan Voiculescu who kindly gave him and
his supervisor an additional explanation to [6]. Furthermore, the author thanks the
referee for several suggestions.

REFERENCES

[1] U. Haagerup, The Grothendieck inequality for bilinear forms on C∗-algebras, Adv. Math. 56
(1985), 93–116.

[2] H. Ito, Differential calculus for fully matricial functions I, preprint (2023).
[3] H. Ito, Free analysis on non-commutative Grassmannian manifolds, in preparation.
[4] J. Mingo and R. Speicher, Free Probability and Random Matrices, Fields Inst. Monogr. 35,

Springer, 2017.
[5] D. Voiculescu, The analogues of entropy and of Fisher’s information measure in free probability

theory V. Noncommutative Hilbert transforms, Invent. Math. 132 (1998), 189–227.
[6] D. Voiculescu, The coalgebra of the free difference quotient and free probability, Int. Math. Res.

Notices 2000, 79–106.
[7] Problems posed during the workshop “Free Analysis” at American Institute of Mathematics,

2006; https://aimath.org/WWN/freeanalysis/freeanalysis.pdf.

Hyuga Ito
Graduate School of Mathematics
Nagoya University
Nagoya, 464-0862, Japan
E-mail: hyuga.ito.e6@math.nagoya-u.ac.jp

Received 17.10.2023;
accepted 9.2.2024

https://aimath.org/WWN/freeanalysis/freeanalysis.pdf

	1 Introduction
	2 Results
	References

