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GENERALIZATIONS OF THE FOURTH MOMENT THEOREM
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Abstract. Azmoodeh et al. established a criterion regarding conver-

gence of the second and other even moments of random variables in a

Wiener chaos with fixed order guaranteeing the central convergence of the

random variables. This was a major step in studies of the fourth moment

theorem. In this paper, we settle even more generalizations of the fourth

moment theorem by building on their ideas. More precisely, further criteria

implying central convergence are provided: (i) the convergence of the fourth

and any other even moment, (ii) the convergence of the sixth and some other

even moments.
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1. INTRODUCTION

The fourth moment theorem (Nualart-Peccati criterion), discovered by Nu-

alart and Peccati [9], provides a concise criterion for central convergence of ran-

dom variables {Zn}∞n=1 belonging to a Wiener chaos of fixed order. More pre-

cisely, Nualart and Peccati showed that if E[Z2
n]→ 1 and E[Z4

n]→ 3 as n→∞,

∗ This work was supported by JSPS KAKENHI Grant Number 17K14202.
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2 N. Naganuma

then {Zn}∞n=1 converges to a standard Gaussian random variable N in law. Subse-

quently, many researchers began studying generalizations and applications of the

theorem. For example, Peccati and Tudor [11] extended it to the multidimensional

case, and Nualart and Ortiz-Latorre [8] provided another proof for the theorem

in terms of Malliavin calculus. Nourdin and Peccati [5] provided Berry-Esséen

bounds in the Breuer–Major central limit theorem by combining Malliavin calcu-

lus and Stein’s method.

An extension by Ledoux [3] was a major step in the ongoing study of the fourth

moment theorem. He provided another proof for the fourth moment theorem in the

framework of diffusive Markov generators inspired by a proof based on Malliavin

calculus. More sophisticated and generalized results were provided by Azmoodeh,

Campese, and Poly [1]. These papers were devoted to answering the following

question stated in [2] by Azmoodeh, Malicet, Mijoule, and Poly.

What are the moment conditions that ensure central convergence?

This paper is also devoted to answering this question.

In order to go on discussion more precisely, we introduce some notation. Let

X = {X(h)}h∈H be an isonormal Gaussian process over a real separable Hilbert

space H. For every p ∈ N ∪ {0}, we write Hp to denote the pth Wiener chaos of

X . For precise definitions, see [7], [6]. Let {Zn}∞n=1 be a sequence of elements in

Hp for some integer p ­ 2. We denote by I a finite subset of even numbers.

Then, the question above may be able to be reduced to equivalence of (CL)

and (CM) for a finite subset I of even numbers:

Zn → N in law as n→∞.(CL)

E[Z2i
n ]→ E[N2i] as n→∞ for all 2i ∈ I.(CM)

Of course, the fourth moment theorem involves equivalence of (CL) and (CM) for

{2, 4} and after shown the theorem some researchers wonder that the equivalence
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Generalizations of the fourth moment theorem 3

holds for any set of two distinct even numbers. The authors of [2] showed the

equivalence of (CL) and (CM) for {2, 2k} with 2k ­ 4. One of their ingredients is

a formulation of central convergence in terms of polynomials (this will be stated in

Lemma 2.1). In this paper, we build on their formulation to suggest directions for

generalization of the fourth moment theorem. Although we cannot provide a full

answer of the question, we provide interesting examples of central convergence

based on a lemma in [2]. Our main theorem is as follows.

THEOREM 1.1. Let I be any of the following.

1. I = {2, 2k}, where 2k ­ 4 is an arbitrary even integer.

2. I = {4, 2k}, where 2k ­ 6 is an arbitrary even integer.

3. I = {6, 8}, {6, 10}.

4. I = {6, 12, 14, 2k}, where 2k ­ 16 is an arbitrary even integer.

5. I = {6, 12, 18, 30, 32, 2k}, where 2k ­ 34 is an arbitrary even integer.

Then, (CL) and (CM) for I are equivalent.

For readers’ convenience, this theorem contains previous results; that is, As-

sertion 1, a part of Assertion 2 and Assertion 3, have already been demonstrated

in [2, Theorem 1.2 and Section 5]. The cases of I = {4, 6}, {4, 8}, {4, 10} have

already been treated, and we demonstrate that convergences of the fourth and any

even moments imply central convergence in Assertion 2. Note that we can see that

only in cases 1, 2, and 3, the method in [2] is effective in the proof of equivalence

of (CL) and (CM) (this is one of contribution of this paper and stated in Proposi-

tion 3.1). Assertions 4 and 5 are entirely new. We make a remark on them.

• The case I = {6, 12} cannot be treated with the method in [2] due to Propo-

sition 3.1, although a truely nontrivial case is I = {6, 12} after cases 1, 2, and 3.

Hence the second smallest number in Assertions 4 and 5 should be greater than or

equal to 12. If we replace 12 by 10, we see the equivalence due to Assertion 3.

• At this stage, we have no counterexample for the case I = {6, 12}.
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4 N. Naganuma

• Assertions 4 and 5 are not trivial and their proofs are interesting from the

viewpoint of the properties of polynomials that appear in the proof.

For more discussion on our main theorem we should prepare more notation, and

we postpone it until Section 4.

The remainder of this paper is organized as follows. Section 2 reviews the

principal part of [2]. Section 3 is devoted to proving our main theorem. In Section 4,

we discuss on our main theorem. Section 5 investigates asymptotic characteristics

of the hypergeometric function.

Throughout this paper, we use the following notation. Let N be a standard

Gaussian random variable and set w(x) = 1√
2π
e−

x2

2 , which is the density function

ofN . Set µi = E[N2i] = (2i− 1)!! for i ∈ N∪ {0}with the convention (−1)!! =

0. We introduce the following functions.

• The Hermite polynomial: Hn(x) = (−1)ne
x2

2
dn

dxn e
−x2

2 for n ∈ N ∪ {0}.

• The Gamma function: Γ(a) =
∫∞
0
ua−1e−u du for a > 0.

• The Beta function:B(a, b) =
∫ 1

0
(1− u)a−1ub−1 du = Γ(a)Γ(b)

Γ(a+b) for a, b > 0.

• The Hypergeometric function:

F (a, b, c; z) =
1

B(a, c− a)

1∫
0

ua−1(1− u)c−a−1(1− uz)−b du

for 0 < a < c and |z| < 1.

We define {κi(m)}m­i­2 and {ξi(m)}m,i­2 as

κi(m) = B

(
i− 1,

1

2

)
F

(
i− 1,−(m− i), i− 1

2
,
1

2

)
(1.1)

=
1∫
0

ui−2(1− u)−
1
2

(
1− u

2

)m−i
du,

and

ξi(m) =


(m−1)!
(m−i)!κi(m), 2 ¬ i ¬ m,

0, otherwise.
(1.2)
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Generalizations of the fourth moment theorem 5

2. REVIEW OF AZMOODEH ET AL.

In this section, we summarize most important part of [2] and extend it. For

every i ­ 2, we define even polynomials Wi and ψi with degree 2i as

Wi(x) = (2i− 1)Φ[HiHi−2](x), ψi(x) = E[Wi(xN)],

where Φ is defined as

Φ[Q](x) = x
x∫
0

Q(t) dt−Q(x).

Note that Wi is monic. Let T be a monic even polynomial with degree 2k ­ 4 of

the form

T (x) =
k∑

i=2

αiWi(x)(2.1)

for some α2, . . . , αk−1 ∈ R and αk = 1. Then, the next lemma is a major compo-

nent of [2].

LEMMA 2.1 ([2, Lemma 4.2]). Let {Zn}∞n=1 be a sequence of elements inHp

for some integer p ­ 2, and let T be a monic even polynomial with degree 2k ­ 4

of the form (2.1) with positive α2, nonnegative α3, . . . , αk−1, and αk = 1. Then,

Zn → N in law as n→∞ if and only if E[T (Zn)]→ 0 as n→∞.

Lemma 2.1 tells us that we can obtain central convergence of {Zn}∞n=1 by

finding a suitable polynomial T . In general, a monic even polynomial T with de-

gree 2k ­ 4 is defined as

T (x) =
k∑

i=1

aix
2i + a0(2.2)

for some a0, . . . , ak−1 and ak = 1. To use Lemma 2.1, we seek to determine what

conditions on a0, . . . , ak imply T are of the form (2.1) with α2, . . . , αk, and we

provide a formula for calculating α2, . . . , αk from a0, . . . , ak. We know that

E[T (N)] = lim
n→∞

E[T (Zn)] = 0

108
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6 N. Naganuma

if {Zn}∞n=1 ⊂ Hp satisfies E[Z2i
n ]→ µi as n→∞. This is equivalent to ϕ(1) =

0, where ϕ(x) = E[T (xN)]. The next proposition follows.

PROPOSITION 2.1. Let T be an even polynomial with degree 2k ­ 4 and set

ϕ(x) = E[T (xN)]. The following are equivalent.

1. ϕ(1) = ϕ′(1) = 0 holds. In other words,

k∑
i=1

aiµi + a0 = 0,
k∑

i=1

ai2iµi = 0.(2.3)

2. There exist constants α2, . . . , αk ∈ R such that (2.1).

P r o o f. In this proof, we useψi(1) = ψ′i(1) = 0 for i ­ 2 (see [2, Lemma 4.1]).
We show that Assertion 1 implies Assertion 2. SinceWi is an even polynomial

with degree 2i, there exists a unique expansion of the form

T (x) =
k∑

i=2

αiWi(x) + βx2 + γ.

We see that β = γ = 0 as follows.

ϕ(x) =
k∑

i=2

αiE[Wi(xN)] + βE[(xN)2] + γ =
k∑

i=2

αiψi(x) + βx2 + γ.

Since ϕ(1) = ϕ′(1) = 0 and ψi(1) = ψ′i(1) = 0 for i ­ 2, it follows that β + γ =
0 and 2β = 0 so β = γ = 0. Hence, Assertion 2 holds.

Next, we show that Assertion 2 implies Assertion 1. The assumption implies
that ϕ(x) =

∑k
i=2 αiψi(x). This expression and the identity ψi(1) = ψ′i(1) = 0

yield Assertion 1. ■

Hereafter, we assume ϕ(1) = ϕ′(1) = 0. Then, as a result of Proposition 2.1,

a0, . . . , ak in (2.2) and α2, . . . , αk in (2.1) have good relations. We examine an

explicit formula for α2, . . . , αk by a0, . . . , ak. More precisely, setting ci = (2i −

1)i!(i− 2)! for i ­ 2, demonstrate the next proposition, an analogue of [2, Propo-

sition 4.1] demonstrated in a similar manner.

PROPOSITION 2.2. For every 2 ¬ i ¬ k,

αici =
1

2i−1

k∑
m=i

m!κi(m)

(m− i)!
amµm.

Here, {κi(m)}m­i­2 are defined by (1.1).
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Generalizations of the fourth moment theorem 7

The next corollary follows immediately from Proposition 2.2. It will be used

in Section 3 and play an important role in the proof of main theorem.

COROLLARY 2.1. Let 1 ¬ l < k and assume that am = 0 for all 1 ¬ m ¬

l − 1. Then, for every 2 ¬ i ¬ k,

αici =
1

2i−1

k∑
m=l+1

{ξi(m)− ξi(l)}mµmam.

Here, {ξi(m)}i,m­2 are defined by (1.2).

P r o o f. From Proposition 2.2, for all 2 ¬ i ¬ k, it follows that

αici2
i−1 =

k∑
m=i

ξi(m)mµmam =
k∑

m=2

ξi(m)mµmam =
k∑

m=l

ξi(m)mµmam.

In the above, we used ξi(m) = 0 for 2 ¬ m ¬ i − 1 and am = 0 for 1 ¬ m ¬
l − 1. Since ϕ′(1) = 0 (see (2.3)) and am = 0 for 1 ¬ m ¬ l − 1 imply

0 =
k∑

m=1

mµmam =
k∑

m=l

mµmam,

we have

ξi(l)lµlal = −
k∑

m=l+1

ξi(l)mµmam.

Substituting this equality into αici2
i−1 yields the assertion. ■

For readers’ convenience, we provide a proof of Proposition 2.2. For details,

see [2, Appendix A]. We introduce even polynomials Q and R with degree 2(k −

1) ­ 2 as

Q(x) =
k∑

i=2

αi(2i− 1)Hi(x)Hi−2(x), R(x) =
k∑

i=1

aiµi
i−1∑
r=0

x2r

µr
.

Then, Φ[Q] = T = Φ[R] from direct computation, and Q = R as a consequence

of [2, Lemma A.2].
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8 N. Naganuma

LEMMA 2.2. For all 1 ¬ n ¬ k − 1,

∞∫
−∞

Q(x)H2n(x)w(x) dx =
(2n)!

(n− 1)!(n+ 1)!

k∑
m=n+1

αmcm
(m− (n+ 1))!

,

∞∫
−∞

R(x)H2n(x)w(x) dx = 2n
k∑

m=n+1

amµm
m−1∑
r=n

r!

(r − n)!
.

P r o o f. We refer to [2, Lemma A.1]. The product formula and the orthogo-
nality of the Hermite polynomials imply that

∞∫
−∞

Hi(x)Hi−2(x)H2n(x)w(x) dx =
(2n)!

(n+ 1)!(n− 1)!

i!(i− 2)!

(i− (n+ 1))!
1n+1¬i.

Hence, the first equality holds. The second assertion follows from

1

µr

∞∫
−∞

x2rH2n(x)w(x) dx =
1

µr

(2r)!

2r−n(i− n)!
1n¬r =

2nr!

(r − n)!
1n¬r.

This completes the proof. ■

P r o o f o f P r o p o s i t i o n 2.2.. Set

f(x) =
k∑

i=2

αici
(i− 1)!

xi−1, g(x) =
k∑

i=1

aiµi
i−1∑
r=0

xr.

Since f (n)(0) = αn+1cn+1 holds for every 1 ¬ n ¬ k − 1, we look for other ex-
pressions of f (n)(0). First, we show that

f(1− 2x)− f(1) =
1∫
0

(1− u)−
1
2u−1

d

du
{ug(1− ux)} du(2.4)

and next we consider nth derivatives of both sides at x = 1/2. We obtain the as-
sertion as a consequence.

For every n ∈ N,

f (n)(x) =
k∑

i=n+1

αici
(i− (n+ 1))!

xi−(n+1),

g(n)(x) =
k∑

i=n+1

aiµi
i−1∑
r=n

r!

(r − n)!
xr−n.

Combining Lemma 2.2 with the above yields

(2n)!

(n− 1)!(n+ 1)!
f (n)(1) = 2ng(n)(1).
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Generalizations of the fourth moment theorem 9

Since (2n)!
(n−1)!(n+1)! =

22n

n+1
1

B( 1
2
,n)

as a consequence of [10, (5.4.6), (5.5.5) and (5.12.1)],

f (n)(1) =
n+ 1

2n
B

(
1

2
, n

)
g(n)(1).

By the above,

f(1− 2x)− f(1) =
k−1∑
n=1

f (n)(1)

n!
(−2x)n

=
k−1∑
n=1

1

n!

(
n+ 1

2n

1∫
0

(1− u)−
1
2un−1 du

)
g(n)(1)(−2)nxn

=
1∫
0

(1− u)−
1
2

(
k−1∑
n=1

g(n)(1)

n!
(n+ 1)un−1 (−1)nxn

)
du.

Here, noting that g(1) =
∑k

i=1 aiµii = 0 and applying the Taylor formula to g(1−
ux) yield

d

du
{ug(1− ux)} = d

du

{
u

k−1∑
n=1

g(n)(1)

n!
(−ux)n

}

=
k−1∑
n=1

g(n)(1)

n!
(n+ 1)(−ux)n.

The two equalities imply (2.4).
Next, we consider the nth derivative of (2.4) at x = 1/2. Substituting

d

du
{ug(1− ux)} = d

du

k∑
m=1

αmµmu
1− (1− ux)m

1− (1− ux)

=
k∑

m=1

amµm ·m(1− ux)m−1,

into (2.4) yields

f(1− 2x)− f(1) =
k∑

m=1

amµm ·m
1∫
0

(1− u)−
1
2u−1(1− ux)m−1 du.

Furthermore, for every n ¬ m− 1,

dn

dxn
(1− u)−

1
2u−1(1− ux)m−1

=
(m− 1)!

(m− 1− n)!
(1− u)−

1
2u−1(−u)n(1− ux)m−1−n

215
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10 N. Naganuma

and

sup
x∈(1/4,3/4)

|(RHS of the above)|

¬ (m− 1)!

(m− 1− n)!
(1− u)−

1
2un−1

(
1− u

4

)m−1−n
.

Hence, by Lebesgue’s derivative theorem,

(−2)nf (n)(0) = (−1)n
k∑

m=n+1

amµm ·
m(m− 1)!

(m− 1− n)!
κn+1(m),

where κn+1(m) is a constant defined by (1.1). This is the conclusion of the propo-
sition. ■

3. EXPRESSION OF T AND PROOF OF MAIN THEOREMS

In this section, we consider the positivity of {αi}2¬i¬k for several cases and

present our main theorem. Set k ­ 2, and write α̃i = α̃i(k) =
αici2

i−1

kµk
. From

Corollary 2.1, we have

α̃i = α̃i(k) =
k∑

m=l+1

{ξi(m)− ξi(l)}
mµm
kµk

am.(3.1)

3.1. T (x) = x2k + alx2l + a0. Consider an even polynomial T (x) = x2k +

alx
2l + a0 for 2k > 2l ­ 2. The function ϕ(x) = E[T (xN)] satisfies ϕ(1) =

ϕ′(1) = 0 if and only if al = −kµk
lµl

and a0 =
(
k
l − 1

)
µk. In this subsection, we

show the next proposition.

PROPOSITION 3.1. The polynomial T (x) = x2k + alx
2l + a0 is expressed as

(2.1) with positive coefficients α2, . . . , αk if and only if k > l = 1 or k > l = 2 or

(k, l) = (4, 3), (5, 3).

P r o o f. Substituting al+1 = · · · = ak−1 = 0 and ak = 1 into (3.1) we have
α̃i(k) = ξi(k) − ξi(l) for every 2 ¬ i ¬ k. We should recall ξi(l) 6= 0 only for
2 ¬ i ¬ l due to (1.2).

We can obtain the “only if” part of the assertion by focusing on α2. If l = 3,
then

α̃2(k) = ξ2(k)− ξ2(3) ¬ ξ2(6)− ξ2(3) =
166

63
− 8

3
< 0
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Generalizations of the fourth moment theorem 11

for all k ­ 6 (see Proposition 5.2 Assertion 3 and Proposition 5.1). If l ­ 4, then
α̃2(k) = ξ2(k) − ξ2(l) < 0 for all k > l (see Proposition 5.2 Assertion 3). This
yields the “only if” part.

Now, we show the “if” part. If l = 1, then α̃i(k) = ξi(k) > 0 for all 2 ¬ i ¬
k. If l = 2, then

α̃i(k) =

{
ξi(k), 3 ¬ i ¬ k,
ξ2(k)− ξ2(2), i = 2.

Hence we have α̃i(k) > 0 for i = 2 (resp. 3 ¬ i ¬ k) due to Proposition 5.2 As-
sertion 1 (resp. ξi(k) > 0). If l = 3, then α̃i(k) = ξi(k) − ξi(3) > 0 for k = 4, 5
due to the same reason with the case l = 2. This completes the proof. ■

3.2. T (x) = x2k + a7x14 + a6x12 + a3x6 + a0.

Select a natural number k ­ 8, and set T (x) = x2k + ax14 + bx12 + a3x
6 +

a0. Here, a3 and a0 is chosen to ensure that ϕ(1) = ϕ′(1) = 0. Then, from Corol-

lary 2.1,

α̃i(k) = {ξi(k)− ξi(3)}+ {ξi(7)− ξi(3)}
7µ7
kµk

a+ {ξi(6)− ξi(3)}
6µ6
kµk

b.

In what follows, we consider the caseα7 = 0 andα6 = 0 and show thatαk, . . . , α8,

α5, α4, α3, α2 are positive. In this case, it is necessary that

7µ7
kµk

a = −ξ7(k)
ξ7(7)

,
6µ6
kµk

b =
ξ7(k)

ξ6(7)

ξ6(7)

ξ6(6)
− ξ6(k)

ξ6(6)
.

Hence,

α̃i(k) = {ξi(k)− ξi(3)}+ {ξi(7)− ξi(3)}
(
−ξ7(k)
ξ7(7)

)
+ {ξi(6)− ξi(3)}

(
ξ7(k)

ξ7(7)

ξ6(7)

ξ6(6)
− ξ6(k)

ξ6(6)

)
= ξi(k) +

[
−ξi(7)− ξi(3)

ξ7(7)
+
ξ6(7)(ξi(6)− ξi(3))

ξ7(7)ξ6(6)

]
ξ7(k)

+

[
−ξi(6)− ξi(3)

ξ6(6)

]
ξ6(k)− ξi(3).

Since α̃i(k) = ξi(k) > 0 for 8 ¬ i ¬ k, we consider α̃i(k) for i = 2, 3, 4, 5.
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12 N. Naganuma

LEMMA 3.1. Let k ­ 8. Then, α̃i(k) > 0 for any i = 2, 3, 4, 5.

P r o o f. For 8 ¬ k < 3000, the assertion follows by direct computation. We
use Mathematica for this calculation. For the source code used, see Listing 1.
Next we show the assertion for k ­ 3000. As a consequence of Proposition 5.3,
{ξi(k)}∞k=2 converges to 2i−1(i− 2)! as k →∞, and we estimate the error of this
convergence. Setting ri(k) = ξi(k)− 2i−1(i− 2)! yields

α̃i(k) =


ξ2(k) +

1
3072ξ6(k) +

1
15360ξ7(k)−

8
3 , i = 2,

ξ3(k)− 29
768ξ6(k) +

121
7680ξ7(k)−

8
3 , i = 3,

ξ4(k)− 7
32ξ6(k) +

1
12ξ7(k), i = 4,

ξ5(k)− 5
8ξ6(k) +

29
160ξ7(k), i = 5,

=


r2(k) +

1
3072r6(k) +

1
15360r7(k) +

1
12 , i = 2,

r3(k)− 29
768r6(k) +

121
7680r7(k) +

280
3 , i = 3,

r4(k)− 7
32r6(k) +

1
12r7(k) + 488, i = 4,

r5(k)− 5
8r6(k) +

29
160r7(k) + 1008, i = 5,

which implies

α̃i(k) ­


−(|r2(k)|+ 1

3072 |r6(k)|+
1

15360 |r7(k)|) +
1
12 , i = 2,

−(|r3(k)|+ 29
768 |r6(k)|+

121
7680 |r7(k)|) +

280
3 , i = 3,

−(|r4(k)|+ 7
32 |r6(k)|+

1
12 |r7(k)|) + 488, i = 4,

−(|r5(k)|+ 5
8 |r6(k)|+

29
160 |r7(k)|) + 1008, i = 5,

> 0.

The last inequality follows from Proposition 5.3. This completes the proof. ■

Listing 1. Proof of Lemma 3.1

kappa[i_,m_]:=Beta[i-1,1/2]*Hypergeometric2F1[i-1,-(m-i)
,i-1/2,1/2];

xi[i_,m_]:=(m-1)!/(m-i)!*kappa[i,m]/;m>=i;
xi[i_,m_]:=0/;m<i;
tildeA[i_,k_]:=xi[i,k]+(-(xi[i,7]-xi[i,3])/xi[7,7]+xi

[6,7]*(xi[i,6]-xi[i,3])/(xi[7,7]*xi[6,6]))*xi[7,k
]+(-(xi[i,6]-xi[i,3])/xi[6,6])*xi[6,k]-xi[i,3]

(*Are tildeA[i,k]>0 for i=2,3,4,5 and k<3001?*)
Table[Map[tildeA[#,k]&,{2,3,4,5}],{k,8,3000}];
AllTrue[Flatten[%],Positive]

(*Are tildeA[i,k]>0 for i=2,3,4,5 and k>3000?*)
Map[tildeA[#,k]&,{2,3,4,5}]/.Array[xi[#,k]->2ˆ(#-1)

*(#-2)!+r[#,k]&,7,2]//Expand;
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Generalizations of the fourth moment theorem 13

CoefficientArrays[%,Map[r[#,k]&,Range[2,16]]]//Normal;
Map[Abs,%];
%[[1]]+%[[2]].Map[-r[#,k]&,Range[2,16]];
%/.MapThread[#1->2ˆ#2&,{Map[r[#,k]&,Range

[2,16]],{-18,-9,-5,-2,2,6,10,14,18,23,28,32,37,42,47}}];

AllTrue[Flatten[%],Positive]

3.3. T (x) = x2k + a16x32 + a15x30 + a9x18 + a6x12 + a3x6 + a0.

Select a natural number k ­ 17, and set T (x) = x2k + ax32 + bx30 + cx18 +

dx12 + a3x
6 + a0. Here, a3 and a0 are chosen to ensure that ϕ(1) = ϕ′(1) = 0.

Then, from Corollary 2.1,

α̃i(k) = {ξi(k)− ξi(3)}+ {ξi(16)− ξi(3)}
16µ16
kµk

a+ {ξi(15)− ξi(3)}
15µ15
kµk

b

+ {ξi(9)− ξi(3)}
9µ9
kµk

c+ {ξi(6)− ξi(3)}
6µ6
kµk

d.

Here, we choose a, b, c, d to ensure that αi = 0 for all i ∈ {6, 7, 12, 13}. It fol-

lows from this expression that α̃i(k) = ξi(k) > 0 for any 17 ¬ i ¬ k, and we can

demonstrate the next lemma in the same manner as Lemma 3.1.

LEMMA 3.2. Let k ­ 17. For every i ∈ {2, . . . , 16} \ {6, 7, 12, 13}, we have

α̃i(k) > 0.

3.4. Proof of main theorem.

P r o o f o f T h e o r e m 1.1.. Proposition 3.1 implies that T (x) = x2k− kµk
lµl
x2l +(

k
l − 1

)
µk can be written as (2.1) with positive α2, . . . , αk for k > l = 1 or

k > l = 2 or (k, l) = (4, 3), (5, 3). Combining this fact with Lemma 2.1 yields
Assertions 1, 2 and 3.

In the same manner as the above, combining Lemmas 2.1, 3.1 and 3.2 yields
Assertions 4 and 5. ■

4. DISCUSSION ON MAIN THEOREM

After [9], [2] and the present paper, the next conjecture is still open:
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14 N. Naganuma

CONJECTURE 4.1. Let I = {2l, 2k} for 6 ¬ 2l < 2k. Then, (CL) and (CM)

for I are equivalent.

As stated in Section 1, we cannot give a proof to Conjecture 4.1 by the method

in [2] (see Proposition 3.1). Here we reconsider this fact intensely. Write I =

{2l1, . . . , 2lM , 2k} with 2 ¬ 2l1 < · · · < 2lM < 2k.

Since our proof of “(CM) ⇒ (CL)” relies on Lemma 2.1, T should be ex-

pressed as (2.1) and ϕ(1) = ϕ′(1) = 0 should be satisfied (see Proposition 2.1).

Note that the conditions ϕ(1) = ϕ′(1) = 0 give a system of two linear equations

(2.3) with k unknowns a0, a1, . . . , ak−1 (ak = 1 because T is monic). Since we

should obtain E[T (Zn)] → 0 from convergence of moments in I, we should set

ai = 0 for i ∈ {0, . . . , k − 1} \ {l1, . . . , lM}. Hence we have two linear equations

with (M + 1) unknowns a0, al1 , . . . , alM . Of course, we may be able to obtain

a unique solution only for M = 1 and we have choices in a0, a1, . . . , ak−1 for

M ­ 2. After finding a0, a1, . . . , ak−1, we can calculate α2, . . . , αk−1 (αk = 1

since T and Wk are monic) from a0, a1, . . . , ak−1 due to Proposition 2.2

For the caseM = 1 (that is, I = {2l, 2k}with 2 ¬ 2l < 2k), a0, a1, . . . , ak−1

are uniquely determine and do so α2, . . . , αk−1. Furthermore, for some cases (e.g.

I = {6, 12}), we have α2 < 0 and cannot show the equivalence of (CM) and

(CL). If M ­ 2, a0, a1, . . . , ak−1 are not uniquely determine and does not so

α2, . . . , αk−1. Hence we may be able to choose a0, a1, . . . , ak−1 so thatα2, . . . , αk−1

are nonnegative.

From the observation above, we found I in Assertions 4 and 5 of Theorem 1.1

so that α2, . . . , αk−1 are nonnegative. This procedure needs numerical calculation

(Listing 2 is the source code in Mathematica, which is used to find I). Other than

I in Assertions 4 and 5, we observe the next examples:

• The largest number of I in Assertions 4 (I = {6, 12, 14, 2k}) and 5 (I =

{6, 12, 18, 30, 32, 2k}) of Theorem 1.1 is arbitrary, however it does not holds in

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

14 Jun 2022 04:10:23 CEST
Version 2 -- submitted to Probability and Mathematical Statistics

https://www.editorialsystem.com/


Generalizations of the fourth moment theorem 15

general. For example, all of α2, . . . , αk are (resp. are not) nonnegative for I = {6,

12, 16, 2k} with 18 ¬ 2k ¬ 40 (resp. 42 ¬ 2k ¬ 100)

• The smallest number of I may be arbitrary. For example, α2, . . . , αk are

nonnegative for I = {8, 12, 14, 18, 26, 32, 34, 36, 38, 1000}, I = {8, 12, 14,

18, 28, 30, 34, 36, 38, 1000} and I = {10, 14, 16, 18, 24, 28, 30, 32, 34, 36, 38,

1000}.

However we can not describe a rule which the nonnegativity of α2, . . . , αk−1 obeys

clearly. These examples suggest the following conjecture, which is a relaxed ver-

sion of Conjecture 4.1.

CONJECTURE 4.2. Let 2l1 ­ 8 be an arbitrary even integer, and choose (M −

1) suitable integers l2, . . . , lM with l1 < l2 < · · · < lM , where M ­ 1. Let 2k ­

2(lM + 1) be an arbitrary even integer. Set I = {2l1, . . . , 2lM , 2k}. Then, (CL)

and (CM) for I are equivalent.

Of course the cases 2l1 = 2, 4, 6 are obtained in Theorem 1.1 and this conjec-

ture might be shown by the method in [2].

Listing 2. How to find examples

he[k_,x_]:=he[k,x]=2ˆ(-k/2)HermiteH[k,x/Sqrt[2]];
(* Define w *)
w[l_,x_]:=w[l,x]=Module[{coeffList},coeffList=

CoefficientList[he[l/2,t]*he[l/2-2,t],t];
(2*l/2-1)*({0,0}˜Join˜(coeffList*Map[1/#&,Range[Length[

coeffList]]])-(coeffList˜Join˜{0,0})).Map[xˆ#&,Range
[0,l]]]//Expand;

(* Set list={l,...,k}. Consider an identity with respect
to x so that a_0+a_lxˆl+...+a_kxˆk = b_4 w[4,x]+...+
b_k w[k,x] *)

equalities[list_]:=equalities[list]=Map[#==0&,
CoefficientList[Plus@@Map[Subscript[a, #]*xˆ#&,{0}˜
Join˜list]-Plus@@Map[Subscript[b, #]*w[#,x]&,Range[4,
Last[list],2]],xˆ2]];

(* Find example a_k,...,a_1,b_1,...,b_k so that a_k=1,
b_k=1, b_k,...,b_4 are nonnegative *)

example[list_]:=FindInstance[Join[{Subscript[a, Last[
list]]==1,Subscript[b, Last[list]]==1},Map[Subscript[
b, #]>=0&,Range[4,Last[list],2]],equalities[list]],
Map[Subscript[a, #]&,{0}˜Join˜list]˜Join˜Map[
Subscript[b, #]&,Range[4,Last[list],2]]]

list = {6, 12, 16, 100};
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16 N. Naganuma

equalities[list]
example[list]

5. APPENDIX

In this section, we study properties of ξi(k) defined by (1.2). First, we obtain

the next proposition by direct calculation.

PROPOSITION 5.1. The first few exact values of {ξi(m)}m­i­2 are

ξ2(2) = 2, ξ2(3) =
8

3
= 2.66 . . . , ξ2(4) =

14

5
= 2.8,

ξ2(5) =
96

35
= 2.74 . . . , ξ2(6) =

166

63
= 2.63 . . . , ξ2(7) =

584

231
= 2.52 . . . ,

ξ3(3) =
8

3
= 2.66 . . . , ξ3(4) =

24

5
= 4.8, ξ3(5) =

208

35
= 5.94 . . . .

In addition, we can obtain more information regarding ξi(k) by studying the

hypergeometric function, as follows.

PROPOSITION 5.2. Let i = 2. Then,

1. ξ2(2) = 2 and 2 < ξ2(k) for k ­ 3.

2. ξ2(2) < ξ2(3) < ξ2(4).

3. ξ2(4) > ξ2(5) > ξ2(6) > · · · .

PROPOSITION 5.3. For every i ­ 2, {ξi(k)}∞k=2 converges to 2i−1(i− 1)! as

k →∞. In addition, for all 2 ¬ i ¬ 16 and k ­ 3000, ri(k) = ξi(k) − 2i−1(i −

2)! satisfies

|ri(k)| ¬ 2pi

The values of pi are as listed in Table 1.

Table 1. Definition of pi
i 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

pi −18 −9 −5 −2 2 6 10 14 18 23 28 32 37 42 47
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5.1. Proof of Proposition 5.2.

In this subsection, we demonstrate Proposition 5.2.

P r o o f o f P r o p s o t i o n 5.2.. First,

(1− u)−
1
2 ¬

(
1− u

2

)−2
for 0 ¬ u ¬ 1/2,(5.1)

(1− u)−
1
2 ­

(
1− u

2

)−1
for 0 ¬ u ¬ 1.(5.2)

Then, Assertions (5.2) and (5.2) for k = 2, 3 follow from Proposition 5.1. For
k ­ 4, it follows from (5.2) that

ξ2(k) ­ (k − 1)
1∫
0

(
1− u

2

)−1 (
1− u

2

)k−2
du = 2 +

2

k − 2

(
1− k − 1

2k−2

)
.

Since the last term is positive for k ­ 4, ξ2(k) > 2 for k ­ 4.
Now, we demonstrate (5.2). Since ξ2(4) > ξ2(5) > ξ2(6) > ξ2(7) from Propo-

sition 5.1, we show that ξ2(k) > ξ2(k + 1) for k ­ 7. If we set δk = ξ2(k + 1)−
ξ2(k), then

δk =
1∫
0

(1− u)−
1
2

(
1− u

2

)k−2(
1− k

2
u

)
du.

Noting that 1− k
2u ≷ 0 for u ≶ 2

k and using estimates (5.1) and (5.2) yield

δk ¬
2/k∫
0

(
1− u

2

)k−4(
1− k

2
u

)
du+

1∫
2/k

(
1− u

2

)k−3(
1− k

2
u

)
du

= 2

[
− 2

(k − 3)(k − 2)

+
3k2

(k − 3)(k − 2)(k − 1)2

(
1− 1

k

)k

+
2(k2 − 2k + 2)

(k − 2)(k − 1)

(
1

2

)k
]
.

Here, the fact that (i) k 7→
(
1− 1

k

)k is increasing and converges to 1/e(< 7/19)

as k → ∞, that (ii) k 7→ k2

(k−1)2 is decreasing, and that (iii) k 7→ 2(k2−2k+2)
(k−2)(k−1) is
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decreasing, yields that for k ­ 7,

δk ¬ 2

[
− 2

(k − 3)(k − 2)

+
3 · 72

(k − 3)(k − 2)(7− 1)2
7

19
+

2(72 − 2 · 7 + 2)

(7− 2)(7− 1)

(
1

2

)k
]

= 2

[
−113
228

1

(k − 3)(k − 2)
+

37

15

(
1

2

)k
]

= − 2 · 37
15(k − 3)(k − 2)2k

[
15

37

113

228
2k − (k − 3)(k − 2)

]
.

Since the last term is negative if k ­ 7, the assertion is demonstrated. This com-
pletes the proof. ■

5.2. Proof of Proposition 5.3.

Now, we examine the hypergeometric function F (a, b, c; z).

LEMMA 5.1 (Watson’s lemma, [4, Proposition 2.1]). Let ϕ : (0, 1) → R be

an integrable function on (0, 1). Assume that there exist constants σ > 0 and 0 <

ρ < 1 and a smooth function ψ on [0, ρ] such that ϕ(s) = ψ(s)sσ−1. Then,∣∣∣∣∣ 1∫0 ϕ(s)e−λs ds− ψ(0)Γ(σ)

λσ

∣∣∣∣∣
¬ 2|ψ(0)|

ρλeρλ
+

(max0¬s¬ρ |ψ′(s)|)Γ(σ + 1)

λσ+1
+

1

eρλ

1∫
ρ

|ϕ(s)| ds

for any λ ­ 2σ/ρ.

P r o o f. Following a proof in [4] and using the monotonicity of the function
t 7→ e−

t
2 tσ−1 on [2σ,∞) in estimating an incomplete Gamma function yield the

estimate. ■

LEMMA 5.2. Let a ­ 1, 0 < c− a < 1, and 0 < z < 1. Then,∣∣∣∣B(a, c− a)F (a,−b, c; z)− Γ(a)

za(b+ 1)a

∣∣∣∣ ¬Ma,c;z(−(b+ 1) log(1− z))
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for any−(b+1) log(1− z) > 2a/ρ. Here, 0 < ρ < 1 is an arbitrary constant and

Ma,c;z is defined as

Ma,c;z(λ) =
1

(1− z)a+1

(
2

ρλeρλ
+

(1− ρ)c−a−2Γ(a+ 2)

λa+1
+
B(a, c− a)

eρλ

)
.

P r o o f. We expand B(a, c − a)F (a,−b, c; z) =
∫ 1

0
ua−1(1 − u)c−a−1(1 −

zu)b du with respect to b+ 1 making use of Lemma 5.1.
Set v = log(1−zu)

log(1−z) , ξ = − log(1−z)
z , η = −(1−z) log(1−z)

z , and h(w) = ew−1
w .

Then, the fact that

u

v
= ξh(v log(1− z)), 1− u

1− v
= ηh((v − 1) log(1− z)), 1− zu = ev log(1−z),

yields

ua−1(1− u)c−a−1(1− zu)b

=
(u
v

)a−1(1− u
1− v

)c−a−1
va−1(1− v)c−a−1(1− zu)b

= ξ−1ϕ(v)evb log(1−z)

= ξ−1ψ(v)va−1evb log(1−z),

where

ϕ(v) = ψ(v)va−1, ψ(v) = Kg(v)(1− v)c−a−1,
K = ξaηc−a−1, g(v) = h(v log(1− z))a−1h((v − 1) log(1− z))c−a−1.

Combining this with du
dv = ξev log(1−z) and writing λ = −(b+ 1) log(1− z) yield

B(a, c− a)F (a,−b, c; z) =
1∫
0

ϕ(v)e−λv dv.

In what follows, we expand the integral above with respect to λ making use of
Lemma 5.1. Here, we list properties of h, as follows.

• h is strictly increasing and positive;
• h(log(1− z)) = ξ−1, h(0) = 1 and h(− log(1− z)) = η−1;
• h′/h is strictly increasing and 0 < (h′/h)(w) < 1 for w ∈ R;
• (h′/h)(0) = 1/2 and (h′/h)(− log(1− z)) = 1/z + 1/ log(1− z);
• 0 < (h′/h)′(w) ¬ |(h′/h)′(0)| = 1/12 for w ∈ R.
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First, ψ(0) = Kg(0) = Kh(0)a−1h(− log(1− z))c−a−1 = ξa. From this and
0 < ξ ¬ (1− z)−1, it follows that

ψ(0)Γ(a)

λa
=

Γ(a)

za(b+ 1)a
, |ψ(0)| ¬ (1− z)−a.

Next, we estimate max0¬v¬ρ |ψ′(v)|. Note that g′(v) = g(v)f(v), where

f(v) =

{
(a− 1)

h′(v log(1− z))
h(v log(1− z))

+(c− a− 1)
h′((v − 1) log(1− z))
h((v − 1) log(1− z))

}
log(1− z),

implying that

ψ′(v) = Kg(v)(1− v)c−a−2{f(v)(1− v)− (c− a− 1)}.

It follows from a− 1 ­ 0, −1 < c− a− 1 < 0, and the properties of h that

max
0¬v¬1

|g(v)| ¬ h(0)a−1h(0)c−a−1 = 1,

max
0¬v¬1

|f(v)| ¬ {|a− 1|+ |c− a− 1|}| log(1− z)| ¬ a| log(1− z)|.

Hence, usingK = ξc−1(1− z)c−a−1 ¬ (1− z)−a (c ­ 1) and | log(1− z)| ∨ 1 ¬
(1− z)−1 for 0 < z < 1 yields

max
0¬v¬ρ

|ψ′(v)| ¬ K(1− ρ)c−a−2{a| log(1− z)|+ 1}

¬ (1− ρ)c−a−2(a+ 1)(1− z)−(a+1).

and finally,

1∫
ρ

|ϕ(v)| dv ¬ K max
0¬s¬1

|g(s)|
1∫
0

va−1(1− v)c−a−1 dv ¬ (1− z)−aB(a, c− a).

Hence, the remainder is bounded by

1

(1− z)a

(
2

ρλeρλ
+

(1− ρ)c−a−2(a+ 1)

1− z
Γ(a+ 1)

λa+1
+

1

eρλ
B(a, c− a)

)
.

This bound and 1 ¬ (1− z)−1 complete the proof. ■
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P r o o f o f P r o p o s i t i o n 5.3.. Recalling (1.1) and applying Lemma 5.2
with a = i − 1, b = k − i and c = i − 1

2 yield ri(k) = ξi(k) − 2i−1(i − 2)! =
r1,i(k) + r2,i(k), where

r1,i(k) =
(k − 1)!

(k − i)!

{
B

(
i− 1,

1

2

)
F

(
i− 1,−(k − i), i− 1

2
;
1

2

)
− 2i−1(i− 2)!

(k − i+ 1)i−1

}
,

r2,i(k) =
(k − 1)!

(k − i)!
2i−1(i− 2)!

(k − i+ 1)i−1
− 2i−1(i− 2)!.

Write ci(k) =
(k−1)!

(k−i)!(k−i+1)i−1 . Then, ci(k) =
∏i−1

α=1

(
1 + α−1

k−i+1

)
is monotoni-

cally convergent to 1 as k →∞.
Setting λ = (k − i+ 1) log 2 yields

|r1,i(k)| ¬
(k − 1)!

(k − i)!
Mi−1,i− 1

2
; 1
2
(λ) =

ci(k)

(log 2)i−1
· λi−1Mi−1,i− 1

2
; 1
2
(λ)

for all λ ­ 2(i− 1)/ρ. Since, for every n ­ 0 the functions λ 7→ λne−ρλ and λ 7→
λ−n are decreasing on [n/ρ,∞), the function [0,∞) 3 λ 7→ λi−1Mi−1,i− 1

2
; 1
2
(λ)

is decreasing on [(i− 1)/ρ,∞) and converges to 0 as λ→∞. In addition,

0 ¬ r2,i(k) = 2i−1(i− 2)!{ci(k)− 1}.

From the above, it follows that ξi(k)→ 2i−1(i− 2)! as k →∞.
Choose k0 ∈ N and i ∈ N to ensure that (k0 − i+ 1) log 2 ­ 2(i− 1)/ρ, in

other words, (k0+1)ρ log 2+2
ρ log 2+2 ­ i. Then, for all k ­ k0,

|ri(k)| ¬
ci(k0)

(log 2)i−1
· λi−1Mi−1,i− 1

2
; 1
2
(λ)
∣∣∣
λ=(k0−i+1) log 2

+ 2i−1(i− 2)!{ci(k0)− 1}.

Since (k0+1)ρ log 2+2
2+ρ log 2 ­ 64 for k0 = 3000 and ρ = 2−4, we can choose i = 2, . . . , 16

and obtain the estimate of |ri(k)| for i = 2, . . . , 16. ■
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