UNIVERSITY
OF WROCŁAW
 
Main Page
Contents
Online First
General Information
Instructions for authors


VOLUMES
44.1 43.2 43.1 42.2 42.1 41.2 41.1
40.2 40.1 39.2 39.1 38.2 38.1 37.2
37.1 36.2 36.1 35.2 35.1 34.2 34.1
33.2 33.1 32.2 32.1 31.2 31.1 30.2
30.1 29.2 29.1 28.2 28.1 27.2 27.1
26.2 26.1 25.2 25.1 24.2 24.1 23.2
23.1 22.2 22.1 21.2 21.1 20.2 20.1
19.2 19.1 18.2 18.1 17.2 17.1 16.2
16.1 15 14.2 14.1 13.2 13.1 12.2
12.1 11.2 11.1 10.2 10.1 9.2 9.1
8 7.2 7.1 6.2 6.1 5.2 5.1
4.2 4.1 3.2 3.1 2.2 2.1 1.2
1.1
 
 
WROCŁAW UNIVERSITY
OF SCIENCE AND
TECHNOLOGY

Contents of PMS, Vol. 39, Fasc. 8,
pages 385 - 401
DOI: 10.19195/0208-4147.39.2.8
 

ASYMPTOTIC BEHAVIOR FOR QUADRATIC VARIATIONS OF NON-GAUSSIAN MULTIPARAMETER HERMITE RANDOM FIELDS

T. T. Diu Tran

Abstract: Let (Zq,H )    d
  t  t∈[0,1]  denote a d -parameter Hermite random field of order q ≥ 1 and self-similarity parameter                    1  d
H  = (H1, ...,Hd ) ∈ (2,1)  . This process is H -self-similar, has stationary increments and exhibits long-range dependence. Particular examples include fractional Brownian motion (q = 1 , d = 1 ), fractional Brownian sheet (q = 1,d ≥ 2) , the Rosenblatt process (q = 2 , d = 1 ) as well as the Rosenblatt sheet (q = 2,d ≥ 2) . For any q ≥ 2,d ≥ 1 and      1  d
H ∈ (2,1)  we show in this paper that a proper renormalization of the quadratic variation of Zq,H  converges in L2(Ω) to a standard d -parameter Rosenblatt random variable with self-similarity index H′′ = 1+ (2H - 2)∕q .

2000 AMS Mathematics Subject Classification: Primary: 60F05, 60H07; Secondary: 60G18, 60H05.

Keywords and phrases: Limit theorems, power variations, Hermite random field, Rosenblatt random field, self-similar stochastic processes.

Download:    Abstract    Full text   Abstract + References