UNIVERSITY
OF WROCŁAW
 
Main Page
Contents
Online First
General Information
Instructions for authors


VOLUMES
44.1 43.2 43.1 42.2 42.1 41.2 41.1
40.2 40.1 39.2 39.1 38.2 38.1 37.2
37.1 36.2 36.1 35.2 35.1 34.2 34.1
33.2 33.1 32.2 32.1 31.2 31.1 30.2
30.1 29.2 29.1 28.2 28.1 27.2 27.1
26.2 26.1 25.2 25.1 24.2 24.1 23.2
23.1 22.2 22.1 21.2 21.1 20.2 20.1
19.2 19.1 18.2 18.1 17.2 17.1 16.2
16.1 15 14.2 14.1 13.2 13.1 12.2
12.1 11.2 11.1 10.2 10.1 9.2 9.1
8 7.2 7.1 6.2 6.1 5.2 5.1
4.2 4.1 3.2 3.1 2.2 2.1 1.2
1.1
 
 
WROCŁAW UNIVERSITY
OF SCIENCE AND
TECHNOLOGY

Contents of PMS, Vol. 42, Fasc. 2,
pages 195 - 217
DOI: 10.37190/0208-4147.00043
Published online 14.10.2022
 

A limit theorem for the last exit time over a moving nonlinear boundary for a Gaussian process

N. Karagodin

Abstract: We prove the convergence of the distribution of the scaled last exit time over a slowly moving nonlinear boundary for a class of Gaussian stationary processes. The limit is a double exponential (Gumbel) distribution.

2010 AMS Mathematics Subject Classification: Primary 60G10; Secondary 60F05.

Keywords and phrases: last exit time, nonlinear boundary, Gaussian process, limit theorem, double exponential law.

Download:    Abstract    Full text   Abstract + References