UNIVERSITY
OF WROC£AW
 
Main Page
Contents
Online First
General Information
Instructions for authors


VOLUMES
44.1 43.2 43.1 42.2 42.1 41.2 41.1
40.2 40.1 39.2 39.1 38.2 38.1 37.2
37.1 36.2 36.1 35.2 35.1 34.2 34.1
33.2 33.1 32.2 32.1 31.2 31.1 30.2
30.1 29.2 29.1 28.2 28.1 27.2 27.1
26.2 26.1 25.2 25.1 24.2 24.1 23.2
23.1 22.2 22.1 21.2 21.1 20.2 20.1
19.2 19.1 18.2 18.1 17.2 17.1 16.2
16.1 15 14.2 14.1 13.2 13.1 12.2
12.1 11.2 11.1 10.2 10.1 9.2 9.1
8 7.2 7.1 6.2 6.1 5.2 5.1
4.2 4.1 3.2 3.1 2.2 2.1 1.2
1.1
 
 
WROC£AW UNIVERSITY
OF SCIENCE AND
TECHNOLOGY

Contents of PMS, Vol. 40, Fasc. 2,
pages 269 - 295
DOI: 10.37190/0208-4147.40.2.5
Published online 9.7.2020
 

Weyl multifractional Ornstein--Uhlenbeck processes mixed with a Gamma distribution

Khalifa Es-Sebaiy
Fatima-Ezzahra Farah
Astrid Hilbert

Abstract: The aim of this paper is to study the asymptotic behavior of aggregated Weyl multifractional Ornstein–Uhlenbeck processes mixed with Gamma random variables. This allows us to introduce a new class of processes, Gamma-mixed Weyl multifractional Ornstein–Uhlenbeck processes (GWmOU), and study their elementary properties such as Hausdorff dimension, local self-similarity and short-range dependence. We also prove that these processes approach the multifractional Brownian motion.

2010 AMS Mathematics Subject Classification: Primary 60G22; Secondary 60G17.

Keywords and phrases: Weyl multifractional Ornstein--Uhlenbeck process, Gamma distribution, aggregated process, multifractional Brownian motion.

Download:    Abstract    Full text   Abstract + References