UNIVERSITY
OF WROC£AW
 
Main Page
Contents
Online First
General Information
Instructions for authors


VOLUMES
44.1 43.2 43.1 42.2 42.1 41.2 41.1
40.2 40.1 39.2 39.1 38.2 38.1 37.2
37.1 36.2 36.1 35.2 35.1 34.2 34.1
33.2 33.1 32.2 32.1 31.2 31.1 30.2
30.1 29.2 29.1 28.2 28.1 27.2 27.1
26.2 26.1 25.2 25.1 24.2 24.1 23.2
23.1 22.2 22.1 21.2 21.1 20.2 20.1
19.2 19.1 18.2 18.1 17.2 17.1 16.2
16.1 15 14.2 14.1 13.2 13.1 12.2
12.1 11.2 11.1 10.2 10.1 9.2 9.1
8 7.2 7.1 6.2 6.1 5.2 5.1
4.2 4.1 3.2 3.1 2.2 2.1 1.2
1.1
 
 
WROC£AW UNIVERSITY
OF SCIENCE AND
TECHNOLOGY

Contents of PMS, Vol. 40, Fasc. 2,
pages 317 - 330
DOI: 10.37190/0208-4147.40.2.7
Published online 5.8.2020
 

Distribution tails for solutions of SDE driven by an asymmetric stable Lévy process

Richard Eon
Mihai Gradinaru

Abstract: The behaviour of the tails of the invariant distribution for stochastic differential equations driven by an asymmetric stable Lévy process is obtained. We generalize a result by Samorodnitsky and Grigoriu where the stable driving noise was supposed to be symmetric.

2010 AMS Mathematics Subject Classification: Primary 60H10; Secondary 60G52, 60E07, 60F17.

Keywords and phrases: stochastic differential equation, asymmetric stable Lévy noise, tail behaviour, ergodic processes, stationary distribution.

Download:    Abstract    Full text   Abstract + References