UNIVERSITY
OF WROCŁAW
 
Main Page
Contents
Online First
General Information
Instructions for authors


VOLUMES
43.2 43.1 42.2 42.1 41.2 41.1 40.2
40.1 39.2 39.1 38.2 38.1 37.2 37.1
36.2 36.1 35.2 35.1 34.2 34.1 33.2
33.1 32.2 32.1 31.2 31.1 30.2 30.1
29.2 29.1 28.2 28.1 27.2 27.1 26.2
26.1 25.2 25.1 24.2 24.1 23.2 23.1
22.2 22.1 21.2 21.1 20.2 20.1 19.2
19.1 18.2 18.1 17.2 17.1 16.2 16.1
15 14.2 14.1 13.2 13.1 12.2 12.1
11.2 11.1 10.2 10.1 9.2 9.1 8
7.2 7.1 6.2 6.1 5.2 5.1 4.2
4.1 3.2 3.1 2.2 2.1 1.2 1.1
 
 
WROCŁAW UNIVERSITY
OF SCIENCE AND
TECHNOLOGY

Contents of PMS, Vol. 41, Fasc. 2,
pages 303 - 320
DOI: 10.37190/0208-4147.41.2.6
Published online 7.9.2021
 

On the Besov regularity of the bifractional Brownian~motion

Brahim Boufoussi
Yassine Nachit

Abstract:

Our aim is to improve Hölder continuity results for the bifractional Brownian motion (bBm) \((B^{\alpha,\beta}(t))_{t\in[0,1] }\) with \(0<\alpha<1\) and \(0<\beta\leq 1\). We prove that almost all paths of the bBm belong to (resp. do not belong to) the Besov spaces \(\mathbf{Bes}(\alpha \beta,p)\) (resp. \(\mathbf{bes}(\alpha \beta,p)\)) for any \(\frac{1}{\alpha \beta}<p<\infty\), where \(\mathbf{bes}(\alpha \beta,p)\) is a separable subspace of \(\mathbf{Bes}(\alpha \beta,p)\). We also show similar regularity results in the Besov-Orlicz space \(\mathbf{Bes}(\alpha \beta, M_2)\) with \(M_2(x)=e^{x^2}-1\). We conclude by proving the Ito-Nisio theorem for the bBm with \(\alpha \beta>1/2\) in the Hölder spaces \(\mathcal{C}^{\gamma}\) with \(\gamma<\alpha \beta\).

2010 AMS Mathematics Subject Classification: Primary 60G15; Secondary 60G18, 60G17.

Keywords and phrases: bifractional Brownian motion, self-similar, Besov spaces, Besov--Orlicz spaces, Itô--Nisio.

Download:    Abstract    Full text   Abstract + References