UNIVERSITY
OF WROCŁAW
 
Main Page
Online First
Contents of previous volumes
Forthcoming papers
General Information
Instructions for authors


VOLUMES
42.2 42.1 41.2 41.1 40.2 40.1 39.2
39.1 38.2 38.1 37.2 37.1 36.2 36.1
35.2 35.1 34.2 34.1 33.2 33.1 32.2
32.1 31.2 31.1 30.2 30.1 29.2 29.1
28.2 28.1 27.2 27.1 26.2 26.1 25.2
25.1 24.2 24.1 23.2 23.1 22.2 22.1
21.2 21.1 20.2 20.1 19.2 19.1 18.2
18.1 17.2 17.1 16.2 16.1 15 14.2
14.1 13.2 13.1 12.2 12.1 11.2 11.1
10.2 10.1 9.2 9.1 8 7.2 7.1
6.2 6.1 5.2 5.1 4.2 4.1 3.2
3.1 2.2 2.1 1.2 1.1
 
 
WROCŁAW UNIVERSITY
OF SCIENCE AND
TECHNOLOGY

Contents of PMS, Vol. 11, Fasc. 2,
pages 291 - 304
 

MATHEMATICAL EXPECTATION AND MARTINGALES OF RANDOM SUBSETS OF A METRIC SPACE

Wojciech Herer

Abstract: Let F be a closed, bounded, non - empty random subset of a metric space (X,r). For some class of metric spaces we define in terms of the metric r (developing an idea of S. Doss) mathematical expectation and conditional mathematical expectation of F. We then consider martingales of random subsets of a metric space and prove theorems of convergence for such martingales.

2000 AMS Mathematics Subject Classification: Primary: -; Secondary: -;

Key words and phrases: -

Download:    Abstract    Full text   Abstract + References