UNIVERSITY
OF WROCŁAW
 
Main Page
Contents
Online First
General Information
Instructions for authors


VOLUMES
43.1 42.2 42.1 41.2 41.1 40.2 40.1
39.2 39.1 38.2 38.1 37.2 37.1 36.2
36.1 35.2 35.1 34.2 34.1 33.2 33.1
32.2 32.1 31.2 31.1 30.2 30.1 29.2
29.1 28.2 28.1 27.2 27.1 26.2 26.1
25.2 25.1 24.2 24.1 23.2 23.1 22.2
22.1 21.2 21.1 20.2 20.1 19.2 19.1
18.2 18.1 17.2 17.1 16.2 16.1 15
14.2 14.1 13.2 13.1 12.2 12.1 11.2
11.1 10.2 10.1 9.2 9.1 8 7.2
7.1 6.2 6.1 5.2 5.1 4.2 4.1
3.2 3.1 2.2 2.1 1.2 1.1
 
 
WROCŁAW UNIVERSITY
OF SCIENCE AND
TECHNOLOGY

Contents of PMS, Vol. 11, Fasc. 2,
pages 253 - 269
 

CONVERGENCE AND REPRESENTATION THEOREMS FOR SET VALUED RANDOM PROCESSES

Nikolaos S. Papageorgiou

Abstract: In this paper we study set valued random processes in discrete time and with values in a separable Banach space. We start with set valued martingales and prove various convergence and regularity results. Then we turn our attention to larger classes of set valued processes. So we introduce and study set valued amarts and set valued martingales in the limit. Finally, we prove a useful property of the set valued conditional expectation.

2000 AMS Mathematics Subject Classification: Primary: -; Secondary: -;

Key words and phrases: -

Download:    Abstract    Full text   Abstract + References