UNIVERSITY
OF WROCŁAW
 
Main Page
Contents
Online First
General Information
Instructions for authors


VOLUMES
44.1 43.2 43.1 42.2 42.1 41.2 41.1
40.2 40.1 39.2 39.1 38.2 38.1 37.2
37.1 36.2 36.1 35.2 35.1 34.2 34.1
33.2 33.1 32.2 32.1 31.2 31.1 30.2
30.1 29.2 29.1 28.2 28.1 27.2 27.1
26.2 26.1 25.2 25.1 24.2 24.1 23.2
23.1 22.2 22.1 21.2 21.1 20.2 20.1
19.2 19.1 18.2 18.1 17.2 17.1 16.2
16.1 15 14.2 14.1 13.2 13.1 12.2
12.1 11.2 11.1 10.2 10.1 9.2 9.1
8 7.2 7.1 6.2 6.1 5.2 5.1
4.2 4.1 3.2 3.1 2.2 2.1 1.2
1.1
 
 
WROCŁAW UNIVERSITY
OF SCIENCE AND
TECHNOLOGY

Contents of PMS, Vol. 22, Fasc. 2,
pages 201 - 209
 

STRONG LAWS OF LARGE NUMBERS FOR RANDOM PERMANENTS

Grzegorz A. Rempała
Jacek Wesołowski

Abstract: The strong laws of large numbers for random permanents of increasing order are derived. The method of proofs relies on the martingale decomposition of a random permanent function, similar to the one known for U -statistics.

2000 AMS Mathematics Subject Classification: Primary 60F05; Secondary 15A15, 15A52.

Key words and phrases: Random permanent, Hoeffding decomposition, strong law of large numbers; backward martingale.

Download:    Abstract    Full text   Abstract + References