UNIVERSITY
OF WROCŁAW
 
Main Page
Contents
Online First
General Information
Instructions for authors


VOLUMES
44.1 43.2 43.1 42.2 42.1 41.2 41.1
40.2 40.1 39.2 39.1 38.2 38.1 37.2
37.1 36.2 36.1 35.2 35.1 34.2 34.1
33.2 33.1 32.2 32.1 31.2 31.1 30.2
30.1 29.2 29.1 28.2 28.1 27.2 27.1
26.2 26.1 25.2 25.1 24.2 24.1 23.2
23.1 22.2 22.1 21.2 21.1 20.2 20.1
19.2 19.1 18.2 18.1 17.2 17.1 16.2
16.1 15 14.2 14.1 13.2 13.1 12.2
12.1 11.2 11.1 10.2 10.1 9.2 9.1
8 7.2 7.1 6.2 6.1 5.2 5.1
4.2 4.1 3.2 3.1 2.2 2.1 1.2
1.1
 
 
WROCŁAW UNIVERSITY
OF SCIENCE AND
TECHNOLOGY

Contents of PMS, Vol. 22, Fasc. 2,
pages 211 - 220
 

LIMIT THEOREMS FOR ARRAYS OF MAXIMAL ORDER STATISTICS

André Adler

Abstract: Let (X,X   ,1 < j < m ,n > 1)
     nj         n be independent and identically distributed random variables with the Pareto distribution. Let X
  n(k)  be the k -th largest order statistic from the n -th row of our array. This paper establishes unusual limit theorems involving weighted sums for the sequence (X    ,n > 1).
   n(k)

2000 AMS Mathematics Subject Classification: 60F0S, 60F1S.

Key words and phrases: Almost sure convergence; weak law of large numbers; generalized law of the iterated logarithm.

Download:    Abstract    Full text   Abstract + References