UNIVERSITY
OF WROCŁAW
 
Main Page
Contents
Online First
General Information
Instructions for authors


VOLUMES
44.1 43.2 43.1 42.2 42.1 41.2 41.1
40.2 40.1 39.2 39.1 38.2 38.1 37.2
37.1 36.2 36.1 35.2 35.1 34.2 34.1
33.2 33.1 32.2 32.1 31.2 31.1 30.2
30.1 29.2 29.1 28.2 28.1 27.2 27.1
26.2 26.1 25.2 25.1 24.2 24.1 23.2
23.1 22.2 22.1 21.2 21.1 20.2 20.1
19.2 19.1 18.2 18.1 17.2 17.1 16.2
16.1 15 14.2 14.1 13.2 13.1 12.2
12.1 11.2 11.1 10.2 10.1 9.2 9.1
8 7.2 7.1 6.2 6.1 5.2 5.1
4.2 4.1 3.2 3.1 2.2 2.1 1.2
1.1
 
 
WROCŁAW UNIVERSITY
OF SCIENCE AND
TECHNOLOGY

Contents of PMS, Vol. 22, Fasc. 2,
pages 253 - 258
 

SOME REMARKS ON SaS, b -SUBSTABLE RANDOM VECTORS

Jolanta K. Misiewicz
Shigeo Takenaka

Abstract: An SaS random vector X is b -substable, a < b < 2, if    d   1/b
X = Y Q  for some symmetric b -stable random vector Y,Q >  0 a random variable with the Laplace transform       a/b
exp(- t  ), Y and Q are independent. We say that an SaS random vector is maximal if it is not b -substable for any b > a.

In the paper we show that the canonical spectral measure for every SaS, b -substable random vector X, b > a, is equivalent to the Lebesgue measure on Sn-1. We show also that every such vector admits the representation X = Y + Z, where Y is an SaS sub-Gaussian random vector, Z is a maximal SaS random vector, Y and Z are independent. The last representation is not unique.

2000 AMS Mathematics Subject Classification: 60A99, 60E07, 60E10, 60E99.

Key words and phrases: Symmetric a -stable vector, substable distributions, spectral measure.

Download:    Abstract    Full text   Abstract + References