UNIVERSITY
OF WROCŁAW
 
Main Page
Contents
Online First
General Information
Instructions for authors


VOLUMES
44.1 43.2 43.1 42.2 42.1 41.2 41.1
40.2 40.1 39.2 39.1 38.2 38.1 37.2
37.1 36.2 36.1 35.2 35.1 34.2 34.1
33.2 33.1 32.2 32.1 31.2 31.1 30.2
30.1 29.2 29.1 28.2 28.1 27.2 27.1
26.2 26.1 25.2 25.1 24.2 24.1 23.2
23.1 22.2 22.1 21.2 21.1 20.2 20.1
19.2 19.1 18.2 18.1 17.2 17.1 16.2
16.1 15 14.2 14.1 13.2 13.1 12.2
12.1 11.2 11.1 10.2 10.1 9.2 9.1
8 7.2 7.1 6.2 6.1 5.2 5.1
4.2 4.1 3.2 3.1 2.2 2.1 1.2
1.1
 
 
WROCŁAW UNIVERSITY
OF SCIENCE AND
TECHNOLOGY

Contents of PMS, Vol. 28, Fasc. 2,
pages 257 - 270
 

LIMIT THEOREMS FOR STOCHASTIC DYNAMICAL SYSTEM ARISING IN ISING MODEL ANALYSIS

Ryszard Szwarc
Krzysztof Topolski

Abstract: A simple stochastic dynamical system defined on the space of doubly-infinite sequences of real numbers is considered. Limit theorems for this system are proved. The results are applied to the physical model of wetting of the flat heterogeneous wall.

2000 AMS Mathematics Subject Classification: Primary: 60F05; Secondary: 80B20, 60J10.

Keywords and phrases: Markov chain, random transformation, weak convergence, Ising model, wetting.

Download:    Abstract    Full text   Abstract + References