UNIVERSITY
OF WROCŁAW
 
Main Page
Online First
Contents of previous volumes
Forthcoming papers
General Information
Instructions for authors


VOLUMES
41.2 41.1 40.2 40.1 39.2 39.1 38.2
38.1 37.2 37.1 36.2 36.1 35.2 35.1
34.2 34.1 33.2 33.1 32.2 32.1 31.2
31.1 30.2 30.1 29.2 29.1 28.2 28.1
27.2 27.1 26.2 26.1 25.2 25.1 24.2
24.1 23.2 23.1 22.2 22.1 21.2 21.1
20.2 20.1 19.2 19.1 18.2 18.1 17.2
17.1 16.2 16.1 15 14.2 14.1 13.2
13.1 12.2 12.1 11.2 11.1 10.2 10.1
9.2 9.1 8 7.2 7.1 6.2 6.1
5.2 5.1 4.2 4.1 3.2 3.1 2.2
2.1 1.2 1.1 .imap
 
 
WROCŁAW UNIVERSITY
OF SCIENCE AND
TECHNOLOGY

Contents of PMS, Vol. 30, Fasc. 2,
pages 369 - 381
 

REGULARIZATION OF KERNELS FOR ESTIMATION OF THE WIGNER SPECTRUM OF GAUSSIAN STOCHASTIC PROCESSES

Patrik Wahlberg

Abstract: We study estimation of the Wigner time-frequency spectrum of Gaussian stochastic processes. Assuming the covariance belongs to the Feichtinger algebra, we construct an estimation kernel that gives a mean square error arbitrarily close to the infimum over kernels in the Feichtinger algebra.

2000 AMS Mathematics Subject Classification: Primary: 60G15, 42B35, 60G35, 62M15, 94A12.

Keywords and phrases: Time-frequency analysis, Gaussian stochastic processes, Wigner distribution, Wigner spectrum, minimum mean square error estimation, Cohen’s class, the Feichtinger algebra.

Download:    Abstract    Full text   Abstract + References