UNIVERSITY
OF WROCŁAW
 
Main Page
Contents
Online First
General Information
Instructions for authors


VOLUMES
43.2 43.1 42.2 42.1 41.2 41.1 40.2
40.1 39.2 39.1 38.2 38.1 37.2 37.1
36.2 36.1 35.2 35.1 34.2 34.1 33.2
33.1 32.2 32.1 31.2 31.1 30.2 30.1
29.2 29.1 28.2 28.1 27.2 27.1 26.2
26.1 25.2 25.1 24.2 24.1 23.2 23.1
22.2 22.1 21.2 21.1 20.2 20.1 19.2
19.1 18.2 18.1 17.2 17.1 16.2 16.1
15 14.2 14.1 13.2 13.1 12.2 12.1
11.2 11.1 10.2 10.1 9.2 9.1 8
7.2 7.1 6.2 6.1 5.2 5.1 4.2
4.1 3.2 3.1 2.2 2.1 1.2 1.1
 
 
WROCŁAW UNIVERSITY
OF SCIENCE AND
TECHNOLOGY

Contents of PMS, Vol. 40, Fasc. 1,
pages 1 - 22
DOI: 10.37190/0208-4147.40.1.1
Published online 20.3.2020
 

On potential theory of hyperbolic Brownian motion with drift

Grzegorz Serafin

Abstract:

Consider the \(\lambda\)-Green function and the \(\lambda\)-Poisson kernel of a Lipschitz domain \(U\subset \mathbb H^n=\left\{x\in\mathbb R^n:x_n>0\right\}\) for hyperbolic Brownian motion with drift. We provide several relationships that facilitate studying those objects and explain somewhat their nature. As an application, we yield uniform estimates for sets of the form \(S_{a,b}=\{x\in\mathbb H^n:x_n>a\), \(x_1\in(0,b)\}\), \(a,b>0\), which covers and extends existing results of that kind.

2010 AMS Mathematics Subject Classification: Primary 60J60; Secondary 58J65.

Keywords and phrases: hyperbolic space, hyperbolic Brownian motion with drift, \(\lambda\)-Poisson kernel, \(\lambda\)-Green function.

References


[1] P. Baldi, E. Casadio Tarabusi, and A. Figà -Talamanca, Stable laws arising from hitting distributions of processes on homogeneous trees and the hyperbolic half-plane, 197:257-273, 2001.

[2] P. Baldi, E. Casadio Tarabusi, A. Figà -Talamanca, and M. Yor, Non-symmetric hitting distributions on the hyperbolic half-plane and subordinated perpetuities, 17:587-605, 2001.

[3] K. Bogus, T. Byczkowski, and J. Małecki, Sharp estimates of the Green function of hyperbolic Brownian motion, 228:197-221, 2015.

[4] K. Bogus and J. Małecki, Sharp estimates of transition probability density for Bessel process in half-line, , 43:1-22, 2015.

[5] A. N. Borodin and P. Salminen, Handbook of Brownian Motion-Facts and Formulae, 2nd ed., Birkhäuser, Basel, 2002.

[6] T. Byczkowski, P. Graczyk, and A. Stós, Poisson kernels of half-spaces in real hyperbolic spaces, 23:85-126, 2007.

[7] T. Byczkowski and J. Małecki, Poisson kernel and Green function of the ball in real hyperbolic spaces, 27:1-26, 2007.

[8] T. Byczkowski, J. Małecki, and M. Ryznar, Hitting times of Bessel processes, 38:753-786, 2013.

[9] T. Byczkowski, J. Małecki, and T. Żak, Feynman-Kac formula, \(\lambda\)-Poisson kernels and \(\lambda\)-Green functions of half-spaces and balls in hyperbolic spaces, 118:201-222, 2010.

[10] D. Dufresne, The distribution of a perpetuity, with application to risk theory and pension funding, 25:39-79, 1990.

[11] W. Feller, An Introduction to Probability Theory and its Applications. Vol. II, Wiley, New York, 1971.

[12] G. B. Folland, Fourier Analysis and its Applications, Wadsworth and Brooks, Pacific Grove, CA, 1992.

[13] C. Grosche and F. Steiner, Handbook of Feynman Path Integrals, Springer, Berlin, 1998.

[14] J.-C. Gruet, Semi-groupe du mouvement Brownien hyperbolique, Stoch. Stoch. Reports 56 (1996), 53-61.

[15] P. Hartman and G. S. Watson, Norma distribution functions on spheres and the modified Bessel functions, 2:593-607, 1974.

[16] I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, Springer, New York, 1988.

[17] J. Małecki and G. Serafin, Hitting hyperbolic half-space, , 45:337-360, 2012.

[18] H. Matsumoto, Closed formulae for the heat kernels and the Green functions for the Laplacians on the symmetric spaces of rank one, 125:553-581, 2001.

[19] S. A. Molchanov, On Martin boundaries for invariant Markov processes on a solvable group, 12:358-362, 1967. (in Russian)

[20] S. A. Molchanov and E. Ostrovskii, Symmetric stable processes as traces of degenerate diffusion processes, 12:128-131, 1969.

[21] A. Pyć, G. Serafin, and T. Żak, Supremum distribution of Bessel process of drifting Brownian motion, 35:201-222, 2015.

[22] G. Serafin, Potential theory of hyperbolic Brownian motion in tube domains, 135:27-52, 2014.

[23] B. Trojan, Asymptotic expansions and Hua-harmonic functions on bounded homogeneous domains, 336:73-110, 2006.

[24] M. Yor, Loi de l'indice du lacet Brownien, et distribution de Hartman-Watson, 53:71-95, 1980.

[25] M. Yor, On some exponential functionals of Brownian motion, 24:509-531, 1992.

[26] M. Yor, Some Aspects of Brownian Motion, Part I: Some Special Functionals, Birkhäuser, Basel, 1992.

Download:    Abstract    Full text