UNIVERSITY
OF WROC£AW
 
Main Page
Contents
Online First
General Information
Instructions for authors


VOLUMES
43.2 43.1 42.2 42.1 41.2 41.1 40.2
40.1 39.2 39.1 38.2 38.1 37.2 37.1
36.2 36.1 35.2 35.1 34.2 34.1 33.2
33.1 32.2 32.1 31.2 31.1 30.2 30.1
29.2 29.1 28.2 28.1 27.2 27.1 26.2
26.1 25.2 25.1 24.2 24.1 23.2 23.1
22.2 22.1 21.2 21.1 20.2 20.1 19.2
19.1 18.2 18.1 17.2 17.1 16.2 16.1
15 14.2 14.1 13.2 13.1 12.2 12.1
11.2 11.1 10.2 10.1 9.2 9.1 8
7.2 7.1 6.2 6.1 5.2 5.1 4.2
4.1 3.2 3.1 2.2 2.1 1.2 1.1
 
 
WROC£AW UNIVERSITY
OF SCIENCE AND
TECHNOLOGY

Contents of PMS, Vol. 40, Fasc. 2,
pages 183 - 204
DOI: 10.37190/0208-4147.40.2.1
Published online 25.5.2020
 

Transition density estimates for relativistic $\alpha$-stable processes on metric spaces

Hubert Balsam
Katarzyna Pietruska-Pałuba

Abstract: We prove matching upper and lower bounds for the transition density of relativistic \(\alpha\)-stable processes on a \(d\)-set \((F, \rho, \mu),\) obtained via subordination. We also identify the corresponding Dirichlet form.

2010 AMS Mathematics Subject Classification: Primary 60J35, 60J76; Secondary 60B99.

Keywords and phrases: relativistic stable process, $d$-set, transition density, Dirichlet form.

References


[1] M. T. Barlow, Diffusions on fractals, in: École d' Été de Probabilité de St. Flour XXV — 1995, Lecture Notes in Math. 1690, Springer, Berlin, 1998, 1-121.

[2] M. T. Barlow and R.F. Bass, The construction of Brownian motion on the Sierpiński carpet, Ann. Inst. H. Poincaré Probab. Statist. 25 (1989), 225-257.

[3] M. T. Barlow and R.F. Bass, Brownian motion and harmonic analysis on Sierpiński carpets, Canad. J. Math. 51 (1999), 673-744.

[4] M. T. Barlow, R.F. Bass, T. Kumagai, and A. Teplyaev, Uniqueness of Brownian motion on Sierpiński carpets, J. Eur. Math. Soc. 12 (2010), 655-701.

[5] M. T. Barlow and E. A. Perkins, Brownian motion on the Sierpiński gasket, Probab. Theory Related Fields 79 (1988), 543-623.

[6] J. Bertoin, Lévy Processes, Cambridge Univ. Press, Cambridge, 1996.

[7] J. Bertoin, Subordinators: examples and applications, in: École d' Été de Probabilités de St. Flour XXVII, P. Bernard (ed.), Lecture Notes in Math. 1717, Springer, 1999, 4-79.

[8] S. Bochner, Diffusion equation and stochastic processes, Proc. Nat. Acad. Sci. USA 35 (1949), 368-370.

[9] S. Bochner, Harmonic Analysis and the Theory of Probability, Univ. of California Press, Berkeley, CA, 1955.

[10] K. Bogdan et al., Potential Analysis of Stable Processes and its Extensions (ed. by P. Graczyk and A. Stós), Lecture Notes in Math. 1980, Springer, Berlin, 2009.

[11] K. Bogdan, A. Stós, and P. Sztonyk, Harnack inequality for stable processes on d-sets, Studia Math. 158 (2003), 163-198.

[12] E. A. Carlen, S. Kusuoka, and D. W. Stroock, Upper bounds for symmetric Markov transition functions, Ann. Inst. H. Poincaré Probab. Statist. 23 (1987), 245-287.

[13] R. Carmona, W. C. Masters, and B. Simon, Relativistic Schrödinger operators: Asymptotic behaviour of the eigenfunctions, J. Funct. Anal. 91 (1990), 117-142.

[14] Z.-Q. Chen and T. Kumagai, Heat kernel estimates for stable-like processes on d-sets, Stoch. Processes Appl. 108 (2003), 27–62.

[15] Z.-Q. Chen and T. Kumagai, Heat kernel estimates for jump processes of mixed types on metric measure spaces, Probab. Theory Related Fields 140 (2008), 277-317.

[16] W. Farkas and N. Jacob, Sobolev spaces on non-smooth domains and Dirichlet forms related to subordinate reflecting diffusions, Math. Nachr. 224 (2001), 75-104.

[17] M. Fukushima, Dirichlet forms, diffusion processes, and spectral dimensions for nested fractals, in: Ideas and Methods in Mathematical Analysis, Stochastics, and Applications (Oslo, 1988), Cambridge Univ. Press., Cambridge, 1992, 151–161.

[18] M. Fukushima, Y. Oshima, and M. Takeda, Dirichlet Forms and Symmetric Markov Processes, de Gruyter, Berlin, 1994.

[19] A. Grigor'yan, Heat kernels and function theory on metric measure spaces, in: Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces (Paris, 2002), Contemp. Math. 338, Amer. Math. Soc., Providence, RI, 2003, 143–172.

[20] A. Grigor'yan, H. Hu, and K.-S. Lau, Heat kernels on metric measure spaces and an application to semilinear elliptic equations, Trans. Amer. Math. Soc. 355 (2003), 2065-2095.

[21] S. Havlin and D. Ben-Avraham, Diffusion in disordered media, Adv. Phys. 36 (1987), 695-798.

[22] J. Hawkes, A lower Lipschitz condition for the stable subordinator, Z. Wahrsch. Verw. Gebiete 17 (1971), 23-32.

[23] M. Hino and T. Kumagai, A trace theorem for Dirichlet forms on fractals, J. Funct. Anal. 238 (2006), 578-611.

[24] J. Hu and M. Zähle, Potential spaces on fractals, Studia Math. 170 (2005), 259–281.

[25] J. Hu and M. Zähle, Generalized Bessel and Riesz potentials on metric measure spaces, Potential Anal. 30 (2009), 315-340.

[26] N. Jacob and R. Schilling, Some Dirichlet spaces obtained by subordinate reflected diffusions, Rev. Mat. Iberoamer. 15 (1999), 59-91.

[27] A. Jonsson, Brownian motion on fractals and function spaces, Math. Z. 222 (1996), 495-504.

[28] A. Jonsson, A trace theorem for the Dirichlet form on the Sierpinski gasket, Math. Z. 250 (2005), 599-609.

[29] A. Jonsson and H. Wallin, Function Spaces on Subsets of Rn, Math. Reports 2, Part 1, Harwood, 1984.

[30] K. Kaleta and P. Sztonyk, Small-time sharp bounds for kernels of convolution semigroups, J. Anal. Math. 132 (2017), 355-394.

[31] P. Kim and A. Mimica, Green function estimates for subordinate Brownian motions: stable and beyond, Trans. Amer. Math. Soc. 366 (2014), 4383-4422.

[32] T. Kulczycki and B. Siudeja, Intrinsic ulrtacontractivity of the Feynman–Kac semigroup for relativistic stable processes, Trans. Amer. Math. Soc. 358 (2006), 5025-5057.

[33] T. Kumagai, Estimates on transition densities for Brownian motion on nested fractals, Probab. Theory Related Fields 96 (1993), 205-224.

[34] T. Kumagai, Function spaces and stochastic processes on fractals, in: Fractal Geometry and Stochastics III, Progr. Probab. 57, Birkähuser, Basel, 2004, 221-234.

[35] E. H. Lieb and R. Seiringer, The Stability of Matter in Quantum Mechanics, Cambridge Univ. Press, 2009.

[36] T. Lindstrøm, Brownian motion on nested fractals, Mem. Amer. Math. Soc. 83 (1990), no. 420, iv + 128 pp.

[37] K. Pietruska-Pałuba, On function spaces related to the fractional diffusions on d-sets, Stoch. Stoch. Reports 70 (2000), 153-164.

[38] M. Ryznar, Estimates of Green function for relativistic α-stable process, Potential Anal. 17 (2002), 1-23.

[39] C. Sabot, Existence and uniqueness of diffusions on finitely ramified self-similar fractals, Ann. Sci. École Norm. Sup. (4) 30 (1997), 605-673.

[40] R. Schilling, R. Song and Z. Vondracek, Bernstein Functions. Theory and Applications, de Gruyter Stud. Math. 37, de Gruyter, Berlin, 2010.

[41] R. Schilling and J. Wang, Functional inequalities and subordination: stability of Nash and Poincaré inequalities, Math. Z. 272 (2012), 921-936.

[42] A. Stós, Symmetric alfa -stable processes on d-sets, Bull. Polish Acad. Sci. Math. 48 (2000), 237-245.

[43] K.-T. Sturm, Diffusion processes and heat kernels on metric spaces, Ann. Probab. 26 (1998), 1-55.

[44] H. Triebel, Theory of Function Spaces. III, Monogr. Math. 100, Birkhäuser, Basel, 2006.

[45] H. Triebel, Fractals and Spectra Related to Fourier Analysis and Function Spaces, Modern Birkhäuser Classics, Birkhäuser, Basel, 2011.

Download:    Abstract    Full text