UNIVERSITY
OF WROCŁAW
 
Main Page
Contents
Online First
General Information
Instructions for authors


VOLUMES
43.2 43.1 42.2 42.1 41.2 41.1 40.2
40.1 39.2 39.1 38.2 38.1 37.2 37.1
36.2 36.1 35.2 35.1 34.2 34.1 33.2
33.1 32.2 32.1 31.2 31.1 30.2 30.1
29.2 29.1 28.2 28.1 27.2 27.1 26.2
26.1 25.2 25.1 24.2 24.1 23.2 23.1
22.2 22.1 21.2 21.1 20.2 20.1 19.2
19.1 18.2 18.1 17.2 17.1 16.2 16.1
15 14.2 14.1 13.2 13.1 12.2 12.1
11.2 11.1 10.2 10.1 9.2 9.1 8
7.2 7.1 6.2 6.1 5.2 5.1 4.2
4.1 3.2 3.1 2.2 2.1 1.2 1.1
 
 
WROCŁAW UNIVERSITY
OF SCIENCE AND
TECHNOLOGY

Contents of PMS, Vol. 41, Fasc. 2,
pages 303 - 320
DOI: 10.37190/0208-4147.41.2.6
Published online 7.9.2021
 

On the Besov regularity of the bifractional Brownian~motion

Brahim Boufoussi
Yassine Nachit

Abstract:

Our aim is to improve Hölder continuity results for the bifractional Brownian motion (bBm) \((B^{\alpha,\beta}(t))_{t\in[0,1] }\) with \(0<\alpha<1\) and \(0<\beta\leq 1\). We prove that almost all paths of the bBm belong to (resp. do not belong to) the Besov spaces \(\mathbf{Bes}(\alpha \beta,p)\) (resp. \(\mathbf{bes}(\alpha \beta,p)\)) for any \(\frac{1}{\alpha \beta}<p<\infty\), where \(\mathbf{bes}(\alpha \beta,p)\) is a separable subspace of \(\mathbf{Bes}(\alpha \beta,p)\). We also show similar regularity results in the Besov-Orlicz space \(\mathbf{Bes}(\alpha \beta, M_2)\) with \(M_2(x)=e^{x^2}-1\). We conclude by proving the Ito-Nisio theorem for the bBm with \(\alpha \beta>1/2\) in the Hölder spaces \(\mathcal{C}^{\gamma}\) with \(\gamma<\alpha \beta\).

2010 AMS Mathematics Subject Classification: Primary 60G15; Secondary 60G18, 60G17.

Keywords and phrases: bifractional Brownian motion, self-similar, Besov spaces, Besov--Orlicz spaces, Itô--Nisio.

M. Ait Ouahra, H. Ouahhabi and A. Sghir, Continuity in law of some additive functionals of the bifractional Brownian motion, Stochastics 91 (2019), 613-628.

D. Alpay and D. Levanony, On the reproducing kernel Hilbert spaces associated with the fractional and bi-fractional Brownian motions, Potential Anal. 28 (2008), 163-184.

X. Bardina and K. Es-Sebaiy, An extension of bifractional Brownian motion. Comm. Stoch. Anal. 5 (2011), 333-340.

T. Bojdecki, L. G. Gorostiza and A. Talarczyk, Some extensions of fractional Brownian motion and sub-fractional Brownian motion related to particle systems, Electron. Comm. Probab. 12 (2007), 161-172.

B. Boufoussi, E. Lakhel and M. Dozzi, A Kolmogorov and tightness criterion in modular Besov spaces and an application to a class of Gaussian processes, Stoch. Anal. Appl. 23 (2005), 665-685.

B. Boufoussi and Y. Nachit, Besov regularity and local time of the solution to stochastic heat equation, arXiv:2006.04235v1 (2020).

Z. Ciesielski, Modulus of smoothness of the Brownian paths in the Lp norm, in: Constructive Theory of Functions (Varna, 1991), 71-75.

Z. Ciesielski, Orlicz spaces, spline systems and Brownian motion, Constr. Approx. 9 (1993), 191–208.

Z. Ciesielski, G. Keryacharian and B. Roynette, Quelques espaces fonctionnels associés à des processus gaussiens, Studia Math. 107 (1993), 171-204.

C. El-Nouty, The increments of a bifractional Brownian motion, Studia Sci. Math. Hungar. 46 (2009), 449-478.

C. El-Nouty and J. L. Journé, Upper classes of the bifractional Brownian motion, Studia Sci. Math. Hungar. 48 (2011), 371-407.

K. Es-Sebaiy and C. A. Tudor, Multidimensional bifractional Brownian motion: Itô and Tanaka’s formulas, Stoch. Dynam. 3 (2007), 365-388.

X. Fernique, Régularité de processus gaussiens, Invent. Math. 12 (1971), 304-+320.

C. Houdré and J. Villa, An example of infinite dimensional quasi-helix, in: Stochastic Models, Contemp. Math. 366, Amer. Math. Soc., 2003, 195-201.

T. P. Hytönen and M.C. Veraar, On Besov regularity of Brownian motions in infinite dimensions, Probab. Math. Statist. 28 (2008), 143-162.

K. Itô and M. Nisio, On the convergence of sums of independent Banach space valued random variables, Osaka J. Math. 5 (1968), 35-48.

J.-P. Kahane, Hélices et quasi-hélices, Adv. Math. 7B (1981), 417-433.

J.-P. Kahane, Some Random Series of Functions, Cambridge Univ. Press, 1985.

G. Kerkyacharian and B. Roynette, Une démonstration simples des thérèmes de Kolmogorov, Donsker et Ito-Nisio, C. R. Acad. Sci. Paris Sér. 312 (1991), 877-882.

I. Kruk, F. Russo and C. A. Tudor, Wiener integrals, Malliavin calculus and covariance structure measure, J. Funct. Anal. 249 (2007), 92-142.

H. Lakhel, Y. Ouknine and C. A. Tudor, Besov regularity for the indefinite Skorohod integral with respect to the fractional Brownian motion: the singular case, Stoch. Stoch. Reports 74 (2002), 597-615.

P. Lei and D. Nualart, A decomposition of the bi-fractional Brownian motion and some applications, Statist. Probab. Lett. 79 (2009), 619-624.

M. Ondreá and M. Veraar, On temporal regularity of stochastic convolutions in 2-smooth Banach spaces, Ann. Inst. H. Poincaré Probab. Statist. 56(3) (2020), 1792-1808.

I. Mendy, On the local time of sub-fractional Brownian motion, Ann. Math. Blaise Pascal 17 (2010), 357-374.

D. Nualart and Y. Ouknine, Besov regularity of stochastic integrals with respect to the fractional Brownian motion with parameter H„>1/2, J. Theoret. Probab. 16 (2003), 451-470.

B. Roynette, Mouvement Brownien et espaces de Besov, Stoch. Stoch. Reports 43 (1993), 221-260.

F. Russo and C. A. Tudor, On the bifractional Brownian motion, Stoch. Process. Appl. 5 (2006), 830-856.

A. Talarczyk, Bifractional Brownian motion for H„>1 and 2HK≤1, Statist. Probab. Lett. 157 (2020), art. 108628, 6 pp.

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, 2nd ed., Johann Ambrosius Barth, Heidelberg, 1995.

C. A. Tudor and Y. Xiao, Sample path properties of bifractional Brownian motion, Bernoulli 13 (2007), 1023-1052.

M. C. Veraar, Correlation inequalities and applications to vector-valued Gaussian random variables and fractional Brownian motion, Potential Anal. 30 (2009), 341-370.

Download:    Abstract    Full text