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Combinatorial geometry

Let X be a set and F ⊆ P(X ) a family of subsets of X .

Let I ⊆ X ×F be the incidence relation I = {(x ,F ) ∈ X ×F : x ∈ F},
and GI be the incidence structure GI = (X ,F , I).
We view GI as a bipartite graph.

In combinatorial geometry one is interested in combinatorial properties
of the family GI of all finite (induced) subgraphs of GI:

GI = {(X0,F0, I) : X0 ⊆ X ,F0 ⊆ F are finite, I = I ∩ (X0 ×F0)},

Example

Let X = R2 and F be the set of all circles of radius one in R2.

Unit Distance Problem: What is the growth rate of
f (m,n) = max{|I| : (X0,F0, I) ∈ G, |X0| = m, |F0| = n},

as m,n→∞?
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Setting

By a relation I we mean a subset of the Cartesian product of two sets
I ⊆ U× V.

Often we view a relation I ⊆ U×V as the bipartite graph GI = (U,V, I).
For a ∈ U,b ∈ V we often write I(a,b) instead of (a,b) ∈ I;
Also for b ∈ V we denote by I(U; b) the set

I(U; b) = {u ∈ U : (u,b) ∈ I}.

Let GI be the set of all finite subgraphs of GI:

GI = {(U,V , I) : U ⊆ U,V ⊆ V are finite, I = I ∩ (U × V )}.

Assume I is definable in a first order structureM.

What are combinatorial properties of GI under some model-theoretic
assumptions, e.g. stability, NIP?

These assumptions can be global, e.g assuming that Th(M) is NIP; or
local, assuming only that I is NIP.
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Example
The relation I from the unit circles problem is semialgebraic, namely

I = {(u, v) ∈ R2 × R2 : (u1 − v1)2 + (u2 − v2)2 = 1}.

In these talk we consider Strong Erdös–Hajnal Property under the
assumption of local distality.
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Strong Erdös–Hajnal Property

We say that a relation I ⊆ U× V has Strong Erdös–Hajnal Property if
there is δ > 0 such for any (U,V , I) ∈ GI there are U0 ⊆ U,V0 ⊆ V with
|U0| > δ|U|, |V0| > δ|V | and either (U0 × V0) ∩ I = ∅ or (U0 × V0) ⊆ I.

Theorem (Chernikov-S., 2015)
If a relation I is definable in a distal structure then GI has Strong
Erdos-Hajnal Property.

Example
Let F be an algebraically closed field of characteristic p > 0.
Let I ⊆ F2 × F2 be the set of all pairs (u, v) with u1v1 = u2 + v2.
The family GI does not have Strong Erdos-Hajnal Property.
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NIP and Distality

Let I ⊆ U× V be a relation.

As usual for a subset B ⊆ V we will denote by SI(B) the set of all
complete I(u; v)-types over B.

Definition
The relation I is NIP if there is d ∈ N such that for all finite B ⊆ V we
have |SI(B)| ∈ O(|B|d ), i.e. for some C ∈ R we have |SI(B)| 6 C|B|d
for all finite B ⊆ V.
A structureM is NIP if every definable inM relation is NIP.

To define distality we first introduce some terminology.
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Definition
Let I ⊆ U× V be a relation and ∆ ⊆ U a subset.

1. For b ∈ V we say that I(U,b) crosses ∆ if I(U,b) ∩∆ 6= ∅ and
¬I(U,b) ∩∆ 6= ∅.

2. For B ⊆ V we say that ∆ is I-complete over B if ∆ is not crossed
by any I(U,b) with b ∈ B.

In other words, ∆ is I-complete over B if and only if any a,a′ ∈ ∆
realize the same I-type over B.

Definition
Let I ⊆ U× V be a relation.

1. Let B ⊆ V be a finite set. A family F of subsets of U is an
(abstract) cell decomposition for I over B if U ⊆

⋃
F and every

∆ ∈ F is I-complete over B.
2. An (abstract) cell decomposition for I is an assignment T that to

each finite B ⊆ V assignes a cell decomposition T (B) for I over B.
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Remark
Any relation I ⊆ U× V admits the smallest cell decomposition where
T (B) is the partition of U to realizations of complete I-types over B.

We can restate NIP:

Restatement of NIP
A relation I ⊆ U× V is NIP if and only if I admits a cell decomposition
T with T (B) = O(|B|d ) for finite B ⊆ V.

The idea of distality is to require that the sets in T (B) are uniformly
definable.
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Distality (Simon 2011; Chernikov–Simon 2012)

Definition
Let I ⊆ U× V be a relation.

1. A cell decomposition T for I is called weakly distal if there is a
relation D ⊆ U× Vk such that for any finite B ⊆ V every ∆ ∈ T (B)
is D-definable over Bk , i.e. there are b1, . . . ,bk ∈ B with
∆ = D(U; b1, . . . ,bk ).

2. We say that the relation I is distal if it admits a weak distal cell
decomposition.

In addition if both I and D are definable in a structureM then we say
that I is distal inM.
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Distality

Let T be a weak distal cell decomposition for a relation I witnessed by
a relation D ⊆ U× Vk .

For a finite set B ⊆ V let TD(B) be the family of all D-definable over Bk

sets that are I-complete over B.

Obviously T (B) ⊆ TD(B), and TD is also a weak distal cell
decomposition for I.
We say that T is a distal cell decomposition for I if T = TD.

Remark
A distal cell decomposition can be viewed as uniformly definable:
Let TD be a distal cell decomposition for I given by D ⊆ U× Vk .
Let Θ ⊆ V× Vk be the set of all pairs (b, β) ∈ V× Vk with I(U,b)
crossing D(U, β).
Given a finite B ⊆ V we have

TD(B) = {D(V, β) : β ∈ Bk , (b, β) /∈ Θ for any b ∈ B}.
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An example

Let U = R2, V be the set of all affine lines and half-spaces, and I be
the incidence relation.
We take B to be the set of the following 6 lines.
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An example

We get at least 15 two-dimensional convex regions that are I-complete
over B.

These convex regions can not be uniformly definable when B changes.
So the smallest cell decomposition is not weakly distal.
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An example

To get the o-minimal cell decomposition we add all vertical lines
through the intersection points.

We get a weak distal cell decomposition, where D-definable sets are
vertical trapezoids.
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Distality implies NIP

Remark
If a relation I ⊆ U× V is distal then I is NIP.

Indeed let T = TD be a distal cell decomposition for I with D ⊆ U× Vk .
For any finite B ⊆ V the size of TD(B), is bounded by the number of
D-definable over Bk sets, hence it is at most |B|k .
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NIP+Distality: Strong Erdös–Hajnal Property

Theorem (Chernikov-S., 2015)
Let I ⊆ U× V be a relation. If I is distal in some NIP structureM then
GI has Strong Erdos-Hajnal Property.

Main ingredient of the proof: Cutting Lemma.
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ε-cutting

If I ⊆ U× V is a NIP relation then SI(B) = O(|B|d ).

What is the number of approximate types?

Idea: for ε > 0 elements a,a′ ∈ U have the same (I, ε)-type over finite
B ⊆ V if

I(a,b)↔ I(a′,b)

for all but ε|B|-many b ∈ B.
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ε-cutting

Definition
Let I ⊆ U× V be a relation and 0 6 ε 6 1.

1. Let ∆ ⊆ U be a subset and B ⊆ V be finite.
For 0 6 ε 6 1 we say that ∆ is (I, ε)-complete over B if

|{b ∈ B : I(U; b) crosses ∆}| < ε|B|.

In other words, there is B0 ⊆ B with |B0| 6 ε|B| such that ∆ is
I-complete over B \ B0.

2. The family ∆1, . . . ,∆t ⊆ U is called an ε-cutting for I over B if
U ⊆

⋃t
i=1 ∆i and every ∆i is (I, ε)-complete over B.
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Cutting Lemma

Theorem (Cutting Lemma; Chernikov-S., 2015)
Let I ⊆ U× V be a relation. Assume I is distal in some NIP structure
M.

For any 0 < ε 6 1 there is T (ε) such that for any finite B ⊆ V there is
an ε-cutting for I over B of size at most T (ε).
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Cutting Lemma implies Strong Erdös–Hajnal Property

Claim
Assume I ⊆ U× V satisfies the conclusion of the Cutting Lemma.
For any 0 < α < 1/2 there is 0 < β < 1 such that for any finite A ⊆ U,
B ⊆ V there are A0 ⊆ A, B0 ⊆ B with |A0| > β|A|, |B0| > α|B| and
either (A0 × B0) ∩ I = ∅ or (A0 × B0) ⊆ I.

Proof.
Let ε = 1− 2α.
Let A ⊆ U, B ⊆ V be finite.
By Cutting Lemma there are ∆1, . . . ,∆t ⊆ U covering U with t < T (ε)
such that every ∆i is (I, ε)-complete over B.
Let β = 1/T (ε).
For at least one i we have |∆i ∩ A| > β|A|. Let A0 = ∆i ∩ A.
Choose B1 ⊆ B with |B1| > (1− ε)|B| = 2α|B| such that A0 is
I-complete over B1.
For each b ∈ B1 either A0 ∩ I(U,b) = ∅ or A0 ⊆ I(U,b).
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Proof of Cutting Lemma (based on Matoušek’s idea)

Let I× V × U be a relation with a distal cell decomposition TD given by
some D ⊆ V× Vk definable in a NIP structureM.

Key Lemma
Let 0 < ε < 1. There is l(ε) such that for any finite B ⊆ U there is
S ⊆ B with |S| < l(ε) such that TD(S) is ε-cutting for I over B. (Notice
that |TD(S)| 6 |S|k ).

Proof.
Let Θ ⊆ V× Vk be the set of all pairs (b, β) such that I(U; b) crosses
D(U;β). Clearly Θ is definable inM, hence is NIP.
Fix 0 < ε 6 1.
Let B ⊆ V be finite.
By the ε-net theorem there is S ⊆ B with |S| < l(ε) such that for any
β ∈ Bk if |Θ(B, β) > ε|B| then Θ(U, β) ∩ S 6= ∅.
In other words, if D(U, β) is not (I, ε)-complete over B then D(U, β) is
crossed by some I(U, s) with s ∈ S, i.e. it is not I-complete over S.
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Cutting Lemma for Distal Relations

Theorem (Cutting Lemma; Chernikov-Galvin-S.)
Let I ⊆ V× U be a distal relation.
For any 0 < ε 6 1 there is T (ε) such that for any finite B ⊆ V there is
an ε-cutting for I over B of size at most T (ε).

Corollary
If I ⊆ U× V is a distal relation then the family GI has Strong
Erdös–Hajnal Property.

Corollary
Let F be an algebraically closed field of finite characteristic p > 0.
The relation I ⊆ F2 × F2 given by

I = {(u, v) : u1v1 = u2 + v2}

is not distal.
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On the proof of Cutting Lemma

Key Lemma
Let I ⊆ U× V be a distal relation with a distal cell decomposition D.
Let 0 < ε 6 1. For any finite B ⊆ U there is S ⊆ B such that TD(S) is
an ε-cutting for I over B and |TD(S)| < T (ε).

The main ingredient of the proof:
The notion of a distal cell decomposition provides an axiomatic setting
for random sampling method of Clarkson and Shor (1989).

Let I ⊆ U× V and D ⊆ U× Vk be relations such that for any
b1, . . . ,bk ∈ U the set D(U; b1, . . . ,bk ) is I-complete over {b1, . . . ,bk}.
Let B ⊆ U be a finite set and µ be a binomial probability distribution on
2B.

For ε > 0 and S ⊆ B let |D(S)>ε| be the number of D-definable over S
sets crossed by at lest ε|B|-many b ∈ B.

Clarkson and Shor provided a very useful estimate on E(|D(S)>ε|).
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Comparing two cases
Key Lemma
Let 0 < ε < 1. For any finite B ⊆ U there is S ⊆ B such that TD(S) is
an ε-cutting for I over B and
(a) |S| 6 `(ε) in distal+NIP case;
(b) |TD(S)| 6 T (ε) in distal case.

The idea of proof in the case (a):
1. Predict `(ε) and choose the uniform probability distribution on the

space Ω =
( B
`(ε)

)
.

2. Show that Pr({S ∈ Ω: TD(S) is an ε-cutting for I over B}) > 0.

In the case (b) after predicting T (ε) we work in the spaceΩ = 2B with a
binomial distribution and use Clarkson–Shor method to show that the
probability of the desired event is positive.

To some surprise, in both cases, we get the same so-called suboptimal
bound: |TD(S)| = O((1

ε )d logd (1 + 1
ε )).
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Optimal Cutting Lemma

Theorem (Chernikov-Galvin-S.)
Let I ⊆ U× V be a relation admitting a distal cell decomposition TD
with TD(B) = O(|B|d ).
For any 0 < ε < 1 there is a constant C such that for finite B ⊆ V there
is an ε-cutting ∆1, . . . ,∆t for I over B with t 6 C(1

ε )d .
Moreover each ∆i is an intersection two D-definable over Bk sets.

Remark
The exponent d plays an essential role in applications.
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O-minimal case

Example

Let U = R2, V be the set of all affine half planes, and I the incidence
relation.
For any finite B ⊆ V we have |SI(B)| ≈ |B|2.
Hence for any cell decomposition T we have |T (B)| ' |B|2.
Let T be the standard o-minimal cell decomposition for I. It is weakly
distal with D ⊆ U× V6 and |T (B)| = O(|B|3).
There is a semi-cylindrical cell decomposition T s that is distal with
Ds ⊆ U× V4 and |T s

D | = O(|B|2), i.e. it is optimal.

Theorem (Chernikov-Galvin-S.)

Let I ⊆ M2 ×Mn be a relation definable in an o-minimal structureM.
There is a distal cell decomposition TD for I definable inM with
|TD(B)| = O(|B|2).
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An example of optimal distal cell decomposition

We add only vertical line segments where they are needed, i.e. from
an intersection point to the first line above (or plus infinity) and the first
line below (or minus infinity), as in the following picture.
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