SIMPLICIAL NONPOSITIVE CURVATURE (SNPC)

Jacek Świątkowski

Montreal, July 2006

 $notes\ downloadable\ from \\ \texttt{http://www.math.uni.wroc.pl/}{\sim} \texttt{swiatkow/montreal.html}$

What is SNPC?

It is a purely combinatorial condition for simplicial complexes that

- resembles metric nonpositive curvature (NPC)
- does not reduce to NPC, nor to small cancellation
- has many similar consequences as classical NPC
- provides examples different from classical ones, with various new and exotic properties

Terminology

- \bullet systolic complex = SNPC + simply connected
- ullet systolic group = acting geometrically on a systolic simplicial complex

References

downloadable from

http://www.math.uni.wroc.pl/~swiatkow/montreal.html

- T. Januszkiewicz, J. Świątkowski, Simplicial nonpositive curvature, Publ. Math. IHES, to appear.
- F. Haglund, Complexes simpliciaux hyperboliques de grande dimension, preprint, Prepublication Orsay 71, 2003.
- D. Wise, Sixtolic complexes and their fundamental groups, in preparation.
- T. Januszkiewicz, J. Świątkowski, Filling invariants in systolic complexes and groups, preprint 2005, submitted.
- D. Osajda, *Ideal boundary of 7-systolic complexes and groups*, preprint 2006, submitted.
- D. Osajda, Connectedness at infinity of systolic complexes and groups, preprint 2006, submitted.
- F. Haglund, J. Świątkowski, Separating quasi-convex subgroups in 7-systolic groups, preprint 2006, submitted.
- P. Przytycki, Systolic groups acting on complexes with no flats are hyperbolic, preprint 2006, submitted.
- T. Januszkiewicz, J. Świątkowski, Nonpositively curved developments of billiards, preprint 2006.
- T. Elsner, Flats and flat torus theorem in systolic spaces, preprint 2006.

BASIC DEFINITIONS

cycles

X - simplicial complex

- $cycle \ \gamma$ in X a subcomplex $\cong S^1$ $|\gamma|$ - length of γ = number of edges in γ
- diagonal in γ an edge of X connecting **nonconsecutive** vertices of γ

k-largeness

given a natural number $k \geq 4$

$$X$$
 is k -large if $\begin{cases} X \text{ is flag and} \\ \text{every cycle in } X \text{ of length} < k \text{ has a diagonal} \end{cases}$

Recall that:

X is flag iff

any finite set of vertices in X that are pairwise connected by edges spans a simplex of X

- 4-large \Leftrightarrow flag
- ullet 5-large \Leftrightarrow "no empty square" (known as Siebenmann's condition)
- 6-large \Leftrightarrow "no empty square and pentagon"

Remarks

- if $4 \le m < k$ then k-large $\implies m$ -large
- k-largeness will be applied to **links** of a simplicial complex
- it will serve as a local **curvature-like** bound

simplicial curvature

- link of X at its simplex σ $X_{\sigma} := \{ \tau \subset X \mid \tau \cap \sigma = \emptyset, \ \tau * \sigma \text{ is a simplex of } X \}$ (link X_{σ} describes how X looks like locally around σ)
- X is locally k-large iff links of X at all simplices are k-large (local 6-largeness =: SNPC [simplicial nonpositive curvature])
- k-systolic := locally k-large, connected and simply connected (for k = 6 simplicial analogue of CAT(0) or Hadamard space)
- k-systolic group acts properly discontinuously and cocomactly, by simplicial automorphisms, on a k-systolic simplicial complex
- we often abbreviate 6-systolic to systolic

k-largeness is easy to check for $k \geq 6$

- $homotopical\ systole\ \operatorname{sys}_h(X)$ - length of shortest homotopically nontrivial cycle in X
- if $k \ge 6$ then X is k-large iff links of X are k-large & $\operatorname{sys}_h(X) \ge k$ (proof will be sketched later)
- the following key feature of the above:

 $[local] + [global related to topology] \implies [global]$

allows induction w.r.t. dimension in checking k-largeness and in constructing k-large complexes

Examples and nonexamples of k-large and k-systolic complexes

- if dim X=1, X is k-large \iff $\operatorname{sys}_h(X) \geq k$ $(\iff X \text{ contains no cycles of length } < k)$
- a tree is k-large for arbitrary k $(\infty$ -large)
- 6-large torus
 - links are 6-large
 - $\operatorname{sys}_h = 6$

- .
- regular triangulations of E^2 or H^2 (by equilateral triangles with angles π/k) are k-systolic
- ideal triangulation of H^2 is k-systolic for arbitrary $k \pmod{\infty}$
- regular ideal triangulation of H^3 is 6-systolic
 - links of edges are 6-cycles
 - links of vertices are regular triangulations of E^2
- \bullet tree \times line has a 6-systolic triangulation
- tree \times tree has not [D. Wise]
- ullet no triangulation of 2-sphere S^2 is 6-large [by combinatorial Gauss-Bonnet]

and hence no triangulation of a manifold with dim ≥ 3 is SNPC [because it has 2-spherical links]

• $\forall k \geq 6 \ \forall n \text{ there are } n\text{-dimensional } k\text{-systolic pseudomanifolds}$ [construction uses simplices of groups]

DIAGRAMMATICS

filling short cycles

Lemma. Let

- \bullet X be a k-large simplicial complex and
- let γ be a cycle in X of length m.

If m < k then there is a simplicial map $D \to X$ such that

- D is a simplicial 2-disc,
- ullet D has no interior vertices, and
- $f|_{\partial D}$ maps ∂D isomorphically onto γ .

filling diagram of arbitrary cycle γ in X

is a **nondegenerate** simplicial map $f: \Delta \to X$ such that

- Δ is a simplicial 2-disc,
- $f|_{\partial\Delta}:\partial\Delta\to X$ is an isomorphism onto $\gamma.$

Note that

every homotopically trivial cycle in any simplicial complex has a filling diagram.

minimal filling diagrams in locally k-large complexes

Proposition.

Every homotopically trivial cycle in a locally k-large simplicial complex X has a filling diagram $f: \Delta \to X$ which is locally k-large (i.e. every interior vertex of Δ is contained in $\geq k$ triangles).

In fact, any minimal area filling diagram has this property.

Sketch of proof:

If a minimal area $f: \Delta \to X$ is **not** locally k-large.

there is an interior vertex v_0 in Δ contained in m triangles, with m < k.

Then $f(\Delta_{v_0})$ is a polygonal loop of length m in the link $X_{f(v_0)}$.

If $f(\Delta_{v_0})$ is a cycle, it bounds a 2-disc D as in Filling-Short-Loops Lemma.

Replacing the subdisc in Δ bounded by Δ_{v_0} with D

we get a **less area** filling diagram, a contradiction.

If $f|\Delta_{v_0}$ is not injective,

similar arguments produce filling diagram with less area.

Comparison with (3, k)-small cancellation

(3, k)-small cancellation diagrammatics is based on the following:

each filling diagram can be made locally k-large by **reductions of** cancellable pairs only

locally k-large diagrammatics:

to get locally k-large filling diagrams, bigger class of reductions is allowed/necessary.

- if dim X=2 then X is locally k-large iff X is a (3,k)-complex (in particular: every C(3)-T(k) small cancellation group is k-systolic)
- on the other hand

 2-skeleton of a locally k-large complex is in general **not** (3, k)

systolic is essentially more than small cancellation:

- [D. Wise] If $k \geq 6$ then any C(k) small cancellation group is k-systolic.
- [T. Januszkiewicz J. Ś] For each $k \geq 6$ there exist k-systolic groups of arbitrary cohomological dimension.
 - On the other hand, small cancellation groups have cohomological dimension ≤ 2 .

APPLICATIONS OF MINIMAL DIAGRAMS

Inductive criterion for k-largeness

Proposition. For $k \geq 6$,

if X is locally k-large and $sys_h(X) \geq k$ then X is k-large.

Proof:

Let γ be a cycle in X with no diagonal. We need $|\gamma| \geq k$.

If γ homotopically nontrivial, this follows from $sys_h(X) \geq k$.

If γ homotopically trivial, let $f: \Delta \to X$ be a minimal area filling diagram for γ . Then

- Δ has at least one interior vertex,
- interior vertices of Δ are contained in $\geq k$ triangles,
- boundary vertices of Δ are contained in ≥ 2 triangles.

Euler characteristic argument (combinatorial Gauss-Bonnet) shows then that $|\gamma| \geq k$.

More precisely:

$$1 = \chi(\Delta) = \frac{1}{6} \cdot \left[\sum_{v \in \partial \Delta} [3 - \chi(v)] + \sum_{v \in int\Delta} [6 - \chi(v)] \right]$$

where $\chi(v)$ is the number of triangles in Δ containing v. Equivalently

$$6 = \sum_{v \in \partial \Delta} [3 - \chi(v)] + \sum_{v \in int \Delta} [6 - \chi(v)].$$

Since $3 - \chi(v) \le 1$ for $v \in \partial \Delta$ and $6 - \chi(v) \le 6 - k \le 0$ for $v \in int\Delta$, we get

$$6 \le |\gamma| + [6 - k],$$
 and hence $k \le |\gamma|.$

7-systolic \Longrightarrow Gromov hyperbolic

Proposition.

If X is a 7-systolic simplicial complex then the 1-skeleton $X^{(1)}$ is Gromov hyperbolic.

Corollary. Any 7-systolic group is word-hyperbolic.

Proof of Proposition (sketch):

We need to show that geodesic triangles in $X^{(1)}$ are δ -thin for some universal δ .

- ♦ Geodesic bigons are 1-thin (exercise);
- ♦ thus we may restrict to **embedded** geodesic triangles

Let γ be the boundary of an embedded geodesic triangle T, and let $f: \Delta \to X$ be a filling diagram for γ with minimal area.

- \diamond 3 $\chi(v) \leq 2$ at vertices of T;
- \diamond there are no vertices v inside sides of T with $3 \chi(v) = 2$
- \diamond any two vertices with $3 \chi(v) = 1$ inside one side of T; are separated by a vertex with $3 \chi(v) \leq -1$.

Thus, total curvature $\sum [3-\chi(v)]$ inside each side of T is ≤ 1 , and hence

$$\sum_{v \in \partial \Delta} [3 - \chi(v)] \le 2 + 2 + 2 + 1 + 1 + 1 = 9.$$

- \diamond By minimality, for any $v \in int\Delta$ we have $6 \chi(v) \leq -1$;
- \diamond thus by Gauss-Bonnet, there are at most 3 interior vertices in Δ ;
- \diamond hence $\delta = 4$ works.

CONVEXITY

3-convexity in 6-large complexes

A subcomplex Q in a 6-large simplicial complex X is 3-convex if

- Q is full in X, and
- for every geodesic (v_0, v_1, v_2) in X with $v_0, v_2 \in Q$ we have $v_1 \in Q$.

Equivalently, polygonal paths with no diagonals intersecting Q only at endpoints have length ≥ 3 . [this explains "3" in the term]

Examples. \bullet Every X is 3-convex in itself.

- Any simplex is 3-convex (trivially)
- The residue (or star) of a simplex σ in X is the subcomplex $Res(\sigma, X) := \bigcup \{\tau \mid \sigma \subset \tau\} = \sigma * X_{\sigma}.$

Exercise: the residue of any simplex is 3-convex.

Diameter Criterion. Let Q be a subcomplex in a 6-large X. If

- Q is connected with diam $Q \leq 3$, and
- $\forall \sigma \subset X$ either $Q_{\sigma} = X_{\sigma}$ or Q_{σ} is connected with $\operatorname{diam} Q_{\sigma} \leq 3$ then Q is 3-convex in X. [proof uses diagrammatics]

Convexity in systolic complexes

A subcomplex Q in a systolic simplicial complex X is convex if

- \bullet Q is connected, and
- Q is locally 3-convex, i.e. $\forall \sigma \subset Q$ Q_{σ} is 3-convex in X_{σ} .

Examples. • A subcomplex of the equilaterally triangulated E^2 is convex iff it is convex in the ordinary sense.

• The same is **not true** in equilaterally triangulated H^2 .

Proposition. A subcomplex Q in a systolic complex X is convex iff it is geodesically convex. [proof will be sketched later]

ASPHERICITY and π_1 -INJECTIVITY

Asphericity Theorem. Let X be a locally 6-large (i.e. SNPC) connected simplicial complex. Then

- X is aspherical (i.e. its universal cover \tilde{X} is contractible),
- if Q is a connected locally 3-convex subcomplex of X then $\pi_1 Q$ injects in $\pi_1 X$.

Corollary [Cartan-Hadamard for SNPC]. Any systolic simplicial complex is contractible.

Sketch of proof of Asphericity Theorem:

locally convex maps

A simplicial map $f: Q \to X$ to an SNPC simplicial complex X is locally convex if

- \bullet f is nondegenerate,
- f is locally injective [i.e. $\forall \sigma \subset Q$ $f_{\sigma}: Q_{\sigma} \to X_{f(\sigma)}$ is injective]
- $\forall \sigma \subset Q$ the image $f_{\sigma}(Q_{\sigma})$ is 3-convex in $X_{f(\sigma)}$.

Extension Lemma. Any locally convex map $f: Q \to X$ extends to a map $\overline{f}: \overline{Q} \to X$ so that

- \overline{f} is a covering map, and
- $Q \subset \overline{Q}$ is a deformation retract.

Proof of Extension Lemma:

An elementary extension of a locally convex map $f:Q\to X$ is a map $Ef:EQ\to X$ such that

- (E1) $Q \subset EQ$ is a deformation retract,
- (E2) every simplex of EQ is a face of a simplex intersecting Q,
- (E3) $\forall \sigma \subset Q$ the induced map $(Ef)_{\sigma} : (EQ)_{\sigma} \to X_{f(\sigma)}$ is an isomorphism.

Fact. Every locally convex map has an elementary extension which is also locally convex.

(proof is difficult)

 $Ef: EQ \to X$

Construction of extension

Put recursively: $E_1f = Ef$, $E_1Q = EQ$ and $E_{n+1}f = E(E_nf), E_{n+1}Q = E(E_nQ).$

Then put

$$\overline{Q} = \bigcup_{n=1}^{\infty} E_n Q, \quad \overline{f} = \bigcup_{n=1}^{\infty} E_n f \quad \text{where} \quad \overline{f} : \overline{Q} \to X.$$

By (E3), \overline{f} is a covering map.

By (E1), $Q \subset \overline{Q}$ is a deformation retract.

back to the proof of Asphericity Theorem

- Inclusion map $f: |\sigma| \to X$, for any simplex Δ of X, is locally convex.
- f extends to a covering map $\overline{f}: Y \to X$ so that $|\sigma| \subset Y$ is a deformation retract, i.e. Y is contractible.
- Thus $\widetilde{X} = Y$, and hence \widetilde{X} is contractible.

to prove π_1 -injectivity part:

Thus $\pi_1 Q \to \pi_1 X$ is injective.

 \Diamond

DEVELOPABILITY

(remarks for those who know complexes of groups)

Definition. A complex of groups \mathcal{G} is *locally 6-large*, or *SNPC*, if all local developments of \mathcal{G} are 6-large simplicial complexes.

Developability Theorem.

Any locally 6-large (i.e. SNPC) complex of groups is developable.

Sketch of proof:

A sequence of elementary extensions yields the universal covering map to \mathcal{G} , hence developability.

[We will discuss later, in greater deteail, the case of simplices of groups.]

BALLS AND SPHERES

For a subcomplex $A \subset X$ define balls (or neighbourhoods)

$$B_1(A,X) = \bigcup \{ \tau \subset X \mid \tau \cap A \neq \emptyset \}, \quad B_n(A,X) = B_1(B_{n-1}(A,X),X)$$

and spheres

$$S_n(A,X) = \bigcup \{ \tau \subset B_n(A,X) \mid \tau \cap B_{n-1}(A,X) = \emptyset \}.$$

balls and spheres in systolic complexes

Let Q be a convex subcomplex of a systolic simplicial complex X. Elementary extension techniqes yield the following results.

- Balls $B_n(Q, X)$ are convex in X (in particular, they are 3-convex and thus full).
- $B_n(Q, X)$ is the simplicial span of the vertex set $\{v \in X \mid dist(v, Q) \leq n\}.$
- $S_n(Q,X)$ is the simplicial span of the vertex set

$$\{v \in X \mid dist(v,Q) = n\}.$$

• Projection Lemma. For any $\tau \subset S_1(Q,X)$ the intersection

$$Res(\tau, X) \cap Q$$

is a single (nonempty) simplex.

Definition. We call this simplex the projection of τ on Q.

• Link Lemma. Let $\tau \subset S_1(Q,X)$ and let σ be the projection of τ on Q. Then

$$(S_1(Q,X))_{\tau} = B_1(\sigma,X_{\tau}).$$

[exercise; use Projection Lemma]

STRONG CONVEXITY

Link Lemma motivates the following

Definition.

A connected subcomplex Q of a systolic complex X is $strongly\ convex$ if $\forall \tau \subset Q$

- either $Q_{\tau} = X_{\tau}$ or
- $Q_{\tau} = B_1(\sigma, X_{\tau})$ for some $\sigma \subset Q_{\tau}$.

Example.

For any convex subcomplex Q balls $B_n(Q,X)$ are strongly convex.

Strong convexity is stronger than convexity

Proof: apply Diameter Criterion of 3-convexity to links.

Remark. Strong convexity will play crucial role in the construction of high dimensional systolic spaces, as described later.

 \Diamond

DIRECTED GEODESICS

A sequence (σ_i) of simplices in a systolic complex X is a directed geodesic if $Res(\sigma_i, X) \cap B_1(\sigma_{i+2}, X) = \sigma_{i+1}$

for all appropriate i.

Examples: projection rays

A sequence $\sigma_0, \sigma_1, \ldots, \sigma_n$ of simplices is a *projection ray* on the final simplex σ_n if $\diamond \sigma_0 \subset S_n(\sigma_n, X)$, and

 $\diamond \ \sigma_{i+1}$ is the projection of σ_i on $B_{n-i-1}(Q,X)$, for $0 \le i \le n-1$.

Note that: • projection ray from σ_0 to σ_n , if exists, is **unique**;

- for any two vertices $u, w \in X$ there is a projection ray from u to v;
- each projection ray is a directed geodesic.

[follows, essentially, from Projection Lemma]

Characterization of directed geodesics

A finite sequence of simplices is a directed geodesic

iff it is a projection ray on its final simplex.

Properties of directed geodesics

- (1) If $\sigma_0, \ldots, \sigma_n$ is a directed geodesic then any sequence v_0, \ldots, v_n of vertices with $v_i \in \sigma_i$ is a geodesic in $X^{(1)}$.
- (2) Any two vertices are connected with unique directed geodesic.
- (3) All simlices of a directed geodesic connecting two simplices from a convex ubcomplex Q are contained in Q.
- (4) Directed geodesics satisfy the 2-sided fellow traveller property.
 - [(1) and (2) follow from Characterization; (3) and (4) are difficult]

CONVEXITY ←⇒ **GEODESIC CONVEXITY**

Proposition. Any convex subcomplex Q is geodesically convex.

Remark. The converse implication is easier.

Proof: Let u, w be any two vertices of Q.

• Any two geodesics from u to w can be modified to one another by a sequence of rhomb modifications.

[induction on lekgth of geodesics, using Projection Lemma]

 \Diamond

- There is a geodesic from u to w entirely contained in Q.

 [use existence of a directed geodesic from u to w]
- Rhomb modifications turn geodesics contained in Q to geodesics contained in Q.

Thus, any geodesic from u to w is contained in Q.

BIAUTOMATICITY

We omit definition of biautomaticity, mention consequences, and present a geometric criterion with which we prove it for systolic group.

Consequences. Biautomatic groups are semihyperbolic. In particular, for a biautomatic group

- each abelian subgroup is undistorted,
- each solvable subgroup is virtually abelian, and
- quadratic isoperimetric inequality holds.

Geometric Criterion

Let Γ be a graph and G a group acting on Γ by automorphisms, properly discontinuously and cocompactly. Let \mathcal{P} be a set of finite polygonal paths in Γ such that:

- (1) for some vertex v_0 of Γ , any two vertices in the orbit $G \cdot v_0$ are connected with a path from \mathcal{P} (\mathcal{P} is transitive on $G \cdot v_0$),
- (2) \mathcal{P} satisfies 2-sided fellow traveller property, and
- (3) \mathcal{P} is d-locally recognized for some d.

Then G is biautomatic.

[J.Ś, Regular path systems and (bi)automatic groups, Geometriae Dedicata 118 (2006), 23–48]

d-locally recognized path system

- \mathcal{R} set of G-congruence classes of length d polygonal paths in Γ
- $\mathcal{P}(\mathcal{R})$ the set of all finite paths γ in Γ such that \diamond if $|\gamma| < d$ then $[\gamma \cdot \gamma'] \in \mathcal{R}$ for some γ' \diamond if $|\gamma| \ge d$ then for any subpath $\eta \subset \gamma$ of length d we have $[\eta] \in \mathcal{R}$
- \mathcal{P} is d-locally recognized if $\mathcal{P} = \mathcal{P}(\mathcal{R})$ for some \mathcal{R} as above

Biautomaticity Theorem. Every systolic group G is biautomatic.

Proof: Let G act geometrically on a systolic complex X.

Put $\Gamma = (X')^{(1)}$ - the 1-skeleton of the 1st barycentric subdivision.

Then G acts on Γ , geometrically.

Let \mathcal{P} be the set of all paths in Γ of form

$$(b(\sigma_0), b(\sigma_0 * \sigma_1), b(\sigma_1), \dots, b(\sigma_{n-1}), b(\sigma_{n-1} * \sigma_n), b(\sigma_n))$$

where $\sigma_0, \ldots, \sigma_n$ is a directed geodesic, $b(\sigma)$ is the barycenter of σ .

• \mathcal{P} is transitive on $G \cdot b(v)$ for any vertex $v \in X$, since any two vertices in X are joined with a directed geodesic.

 \Diamond

- ullet satisfies the 2-sided fellow traveller since directed geodesics do so.
- \bullet \mathcal{P} is 2-locally recognized, by definition of directed geodesics.

By Geometric Criterion, G is biautomatic.

RELATIONSHIP TO CAT(0)

- in dim = 2: 6-systolic = CAT(0) (for standard PE metric)
- in general: 6-systolic is not CAT(0) with standard PE metric **Example 1.** Fix any $k \geq 6$ and consider X equal to the simplicial cone over $\bigcup_{i \in Z/kZ} \sigma_i * \sigma_{i+1}$, with $\dim \sigma_i = n$. X is clearly k-systolic, but if n is sufficiently large, X is not CAT(0).
- conversely, there are simplicial complexes X which are CAT(0) for standard PE metric, and are not systolic.

Example 2. $X = (\text{pentagon}) * \sigma$, with dim $\sigma = n$, is clearly not systolic $(X_{\sigma} = (\text{pentagon}))$, and for sufficiently large n X is CAT(0) (dihedral angle between codimension 1 faces of a regular simplex converges to $\pi/2$ as the dimension grows).

- CAT(0)-Lemma. For S denoting a finite set of shapes of Euclidean simplices we have: $\forall S \exists k \quad X \text{ is } k\text{-systolic & Shapes}(X) \subset S \implies X \text{ is } CAT(0)$
- in particular, for standard PE metric: $\forall n \exists k \quad X \text{ is } k\text{-systolic } \& \dim X \leq n \Longrightarrow X \text{ is } CAT(0)$ (if $n \to \infty$ then necessarily $k \to \infty$, due to Example 1 above)

Some explicit estimate. If

$$k \ge \frac{7\pi\sqrt{2}}{2} \cdot n + 2$$

then any k-systolic simplicial complex X with dim $X \leq n$ is CAT(0) for standard PE metric.

• similar results hold for CAT(-1)

PROOF OF CAT(0)-LEMMA (SKETCH):

Since PE simply connected complex is CAT(0) iff its spherical links are CAT(1), it is sufficient to prove

CAT(1)-Lemma. Let Π be a finite set of shapes of spherical simplices. Then there is $k \geq 6$, depending only on Π , such that if X is a PS k-large simplicial complex with Shapes $(X) \subset \Pi$ then X is CAT(1).

Preparations:

- for a closed geodesic γ in PS complex X, size of γ is the number of maximal nontrivial subsegments in γ contained in a single simplex of X
- if Shapes(X) is finite then size of γ is finite [Bridson]
- given a finite set S of shapes of spherical simplices, there is N such that if $|\gamma| < 2\pi$ for a closed geodesic γ in a PS complex X with Shapes $(X) \subset S$, then size $(\gamma) < N$ [Bridson]
- if X is PS and ∞ -large simplicial complex, then X contains no closed local geodesic

Steps of argument:

- take $S = \text{link completion of } \Pi$; the S is finite
- consider all closed geodesics γ , $|\gamma| < 2\pi$, in all PS flag simplicial complexes with Shapes $(X) \subset \mathcal{S}$
- for each such X, let K_{γ} be the full subcomplex of X spanned by the union of simplices whose interiors are intersected by γ
- there are finitely many K_{γ} , up to simplicial isomorphisms, since the number of their vertices is universally bounded
- complexes K_{γ} are not ∞ -large, since they contain closed geodesics
- put

$$k = \max\{sys(K_{\gamma}) \mid K_{\gamma} \text{ as above}\} + 1$$

where sys = length of the shortes cycle without diagonals

- if X is k-large, with Shapes(X) $\subset \mathcal{S}$, then X has no closed geodesic γ with $|\gamma| < 2\pi$ (otherwise K_{γ} for this X, as full subcomplex of a k-large complex, is k-large, a contradiction)
- thus, if X is k-large and Shapes(X) $\subset \Pi$, then neither X nor any of its spherical links contains a closed gedesic γ with $|\gamma| < 2\pi$
- hence X is CAT(1)

CONSTRUCTION

We present a construction of systolic complexes and groups of **arbitrary** dimension.

SNPC simplices of groups:

X simplicial complex, G acts on X simplicially, $G \setminus X \cong \Delta$ top simplex in X

• simplex of groups associated to such action

$$G\backslash\!\!\backslash X := (\Delta, \{G_{\sigma}\}, \{\varphi_{\sigma\tau}\})$$

$$\Leftrightarrow \text{ for a face } \sigma \subset \Delta \quad G_{\sigma} := \text{Stab}(\sigma, G) \quad (\textit{local groups})$$

$$\Leftrightarrow \text{ for } \sigma \supset \tau \qquad \varphi_{\sigma\tau} : G_{\sigma} \hookrightarrow G_{\tau} \quad (\textit{structure monomorphisms})$$

$$\Leftrightarrow \text{ if } \sigma \supset \tau \supset \rho \text{ then } \quad \varphi_{\tau\rho} \circ \varphi_{\sigma\tau} = \varphi_{\sigma\rho} \quad (\textit{compatibility})$$

- abstract simplex of groups $\mathcal{G} = (\Delta, \{G_{\sigma}\}, \{\varphi_{\sigma\tau}\})$
 - $\diamond developable \mathcal{G} = G \backslash X \text{ for some } G, X$
 - \diamond if developable, there are also $\widetilde{G}, \widetilde{X}$ (uniquely determined) s.t. $\mathcal{G} = \widetilde{G} \setminus \widetilde{X}$ and \widetilde{X} simply connected
- then $\widetilde{G} =: \pi_1(\mathcal{G}), \quad \widetilde{X} =: D(\mathcal{G}) = \widetilde{\mathcal{G}} universal \ development$ or universal covering of \mathcal{G}
- \mathcal{G} contains information about **links** in potential $D(\mathcal{G})$ called *local developments*
- ullet ${\cal G}$ is SNPC local developments are 6-large
- \bullet generalizes to locally k-large
- if \mathcal{G} is a locally k-large simplex of finite groups, with $k \geq 6$, then \mathcal{G} is developable, $\widetilde{\mathcal{G}}$ and $\pi_1(\mathcal{G})$ are k-systolic
- if moreover $G_{\Delta} = 1$, $G_{\sigma} = Z_2$ for codimension 1 faces σ , then \widetilde{G} is a pseudomanifold, $\operatorname{vcd}(\pi_1 \mathcal{G}) = \dim \Delta$

Examples of SNPC simplices of groups:

in dimension 2

$$D(\mathcal{G}) = (3, 6)$$
-plane

 $\pi_1(\mathcal{G}) = \text{reflection group of type } \widehat{A}_2$

in dimension 3

 T^2

6-large torus

generated by reflections

$$G_{54}\backslash\backslash T^2 = Z_2 / A Z_2 D_6$$

local developments:

at edges
$$=$$

 T^2 at vertices =

- \mathcal{G} is SNPC (local developments are 6-large), hence \mathcal{G} is developable
- $D(\mathcal{G})$ is a 6-systolic 3-dimensional pseudomanifold

Inductive construction of simplices of groups:

- Lemma. $\forall k \geq 6 \ \forall n \ \exists \ n$ -dimensional simplex of groups \mathcal{G} s.t.
 - \diamond \mathcal{G} is locally k-large (\Rightarrow developable),
 - \diamond local groups G_{σ} are finite, $G_{\Delta} = 1$,
 - $\diamond \ \pi_1(\mathcal{G}) \text{ is residually finite.}$

Moreover, such \mathcal{G} exists for any choice of finite groups G_{σ} at codim 1 faces σ of Δ .

- for "sufficiently deep" finite index normal subgroup H ⊲ π₁(𝒢) quotient H\D(𝒢) is compact k-large of dimension n
 ("sufficiently deep" includes torsion-free, so that H acts freely)
 ⋄ if codim 1 groups = Z₂ this gives pseudomanifolds
- inductive step in the proof of Lemma (sketch):

where $G_3 = \pi_1(\mathcal{G}_2)/H$, $H \triangleleft \pi_1(\mathcal{G}_2)$ sufficiently deep

(to get residual finiteness of $\pi_1(\mathcal{G}_3)$ some nontrivial **extra care** is necessary)

getting residual finiteness

residual finiteness

A G is residually finite, if $\forall g \in G, g \neq 1$, there is a subgroup A of finite index in G with $g \notin A$.

Remark. Note that, w.l.o.g., we may require that A < G is additionally normal (just take the intersection of conjugates of A in G).

extra-tilability

A locally 6-large simplex of groups \mathcal{G} over a simplex Δ is locally extra-tilable if

 $\forall \sigma \subset \Delta \subset \widetilde{\mathcal{G}} \ \forall \tau \subset \widetilde{\mathcal{G}}_{\sigma} \text{ ball } B_1(\tau, \widetilde{\mathcal{G}}_{\sigma}) \text{ is the strict fundamental domain for the action of some subgroup } A_{\tau} < G_{\sigma} \text{ on } \widetilde{\mathcal{G}}_{\sigma}.$

Example: $D_{12} = \langle a, b | a^2, b^2, (ab)^6 \rangle,$

Proposition. If \mathcal{G} is a simplex of groups over Δ s.t.

- local groups G_{σ} are finite, $G_{\Delta} = 1$, and
- \bullet $\,\mathcal{G}$ is locally 6-large and locally extra-tilable,

then $\pi_1 \mathcal{G}$ is residually finite.

(Note: proposition applies to \mathcal{G} as in Example)

To prove Proposition

Tilability Lemma. Under assumptions of Proposition, for any strongly convex subcomplex $Q \subset \widetilde{\mathcal{G}}$,

Q is the strict fundamental domain for the action of some subgroup

 $A_Q < \pi_1 \mathcal{G}$ on \mathcal{G} .

Moreover, if Q is finite then A_Q has finite index in $\pi_1 \mathcal{G}$.

Idea of proof (through an instructive example)

 $\widetilde{\mathcal{G}}$ = tesselation of H^2 by equilateral triangles with angles $\pi/6$ $\pi_1 \mathcal{G} = \langle s_1, s_2, s_3 | s_i^2, (s_i s_j)^6 \rangle$

 $A_Q = \langle a_1, \dots, a_{10}, b_1, \dots, b_{10} | a_i^2, b_i^2, (a_i a_{i+1})^3, (b_i b_{i+1})^3, (b_{10} a_1)^2, (a_{10} b_1)^2 \rangle$

Essential: links Q_{σ} have the form $B_1(\tau, X_{\sigma})$, which nicely matches with local extra-tilability.

Back to the proof of Proposition

Let $g \in \pi_1 \mathcal{G}, g \neq 1$.

We need a finite index subgroup $A < \pi_1 \mathcal{G}$ with $g \notin A$.

- Let $Q = B_N(v, \widetilde{\mathcal{G}})$ be a ball containing both Δ and $g \cdot \Delta$.
- Q is finite and strongly convex, hence is the strict fundamental domain for a subgroup $A_Q < \pi_1 \mathcal{G}$ of finite index.
- Since then $g \notin A_Q$, $A = A_Q$ does the job.