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What is SNPC?
It is a purely combinatorial condition for simplicial complexes that
e resembles metric nonpositive curvature (NPC)
e does not reduce to NPC, nor to small cancellation
e has many similar consequences as classical NPC
e provides examples different from classical ones,
with various new and exotic properties
Terminology
o systolic complex = SNPC + simply connected

e systolic group = acting geometrically on a systolic simplicial complex
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BASIC DEFINITIONS
cycles
X - simplicial complex

e cycle v in X - a subcomplex = S'!

17| - length of vy = number of edges in ~y

e diagonalin v - an edge of X connecting nonconsecutive vertices of ~y

k-largeness

given a natural number k£ > 4

X is flag and

X is k-large if { every cycle in X of length < k has a diagonal

Recall that:
X is flag iff
any finite set of vertices in X that are pairwise connected by edges
spans a simplex of X

e 4-large <& flag

e 5-large < ”no empty square” (known as Siebenmann’s condition)
e 6-large < ”"no empty square and pentagon”
Remarks

o if4 < m < kthen k-large =— m-large
e k-largeness will be applied to links of a simplicial complex

e it will serve as a local curvature-like bound



simplicial curvature

link of X at its simplex o

X,:={rCcX|tNo=0,7x*0 is a simplex of X}

(link X, describes how X looks like locally around o)

X is locally k-large iff links of X at all simplices are k-large

(local 6-largeness =: SNPC [simplicial nonpositive curvature])

k-systolic := locally k-large, connected and simply connected

(for k = 6 — simplicial analogue of CAT(0) or Hadamard space)

k-systolic group — acts properly discontinuously and cocomactly, by
simplicial automorphisms, on a k-systolic simplicial complex

we often abbreviate 6-systolic to systolic

k-largeness is easy to check for £ > 6

homotopical systole sys; (X) —
— length of shortest homotopically nontrivial cycle in X

if £ > 6 then
X is k-large iff  links of X are k-large & sys;,(X) > k
(proof will be sketched later)
the following key feature of the above:
[local] + [global related to topology] = [global]

allows induction w.r.t. dimension in checking k-largeness and in con-
structing k-large complexes



Examples and nonexamples of k-large and k-systolic complexes

e ifdimX =1, X isk-large <= sys,(X) >k
(<= X contains no cycles of length < k)

e a tree is k-large for arbitrary k (oco-large)

e 6-large torus AVAVAVAN
- links are 6-large B /%@%\ A

-sysy =6 \VAVAVAVAV/
VAVAVAY

e regular triangulations of E? or H? (by equilateral triangles with angles
m/k) are k-systolic

e ideal triangulation of H? is k-systolic for arbitrary k  (oco-systolic)

e regular ideal triangulation of H? is 6-systolic
- links of edges are 6-cycles
- links of vertices are regular triangulations of E?

e tree X line has a 6-systolic triangulation
o tree X tree has not [D. Wise]

e no triangulation of 2-sphere S? is 6-large

[by combinatorial Gauss-Bonnet]

and hence no triangulation of a manifold with dim > 3 is SNPC

[because it has 2-spherical links]

e Yk > 6 Vn there are n-dimensional k-systolic pseudomanifolds

[construction uses simplices of groups]
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DIAGRAMMATICS

filling short cycles
Lemma. Let
e Y be a k-large simplicial complex and
e let v be a cycle in X of length m.
I 1 < k then there is a simplicial map 1) = X such that
e D is a simplicial 2-disc,
e 1) has no interior vertices, and

o f|op maps JD isomorphically onto 7.

filling diagram of arbitrary cycle 7y in .X

is 2 nondegenerate simplicial map f: 23 — X such that
e A is a siplicial 2-disc,
o floa:0A = Xisan isomorphism onto .

Note that

every homotopically trivial cycle in any simplicial complex
has a filling diagram.



minimal filling diagrams in locally k-large complexes

Proposition.

Every homotopically trivial cycle in a locally k-large simplicial complex X
has a filling diagram f : A — X which is locally k-large (i.e. every interior
vertex of A is contained in > k triangles).

In fact, any minimal area filling diagram has this property.

Sketch of proof:

If a minimal area f: A — X is not locally k-large.
there is an interior vertex v in A contained in m triangles, with m < k.

Then f(A,,) is a polygonal loop of length m in the link X (oo
If f(A,,) is a cycle, it bounds a 2-disc D as in Filling-Short-Loops Lemma.
Replacing the subdisc in A bounded by A, with D

we get a less area filling diagram, a contradiction.

It f|A

is not injective,
similar arguments produce filling diagram with less area.
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Comparison with (3, k)-small cancellation
(3, k)-small cancellation diagrammatics is based on the following;:

each filling diagram can be made locally k-large by reductions of
cancellable pairs only

locally k-large diagrammatics:

to get locally k-large filling diagrams, bigger class of reductions
is allowed /necessary.

o if dim X = 2 then
X is locally k-large iff X is a (3, k)-complex

(in particular: every C'(3) —T'(k) small cancellation group is k-systolic)

e on the other hand
2-skeleton of a locally k-large complex is in general not (3, k)

systolic is essentially more than small cancellation:
o [D. Wise] If k£ > 6 then any C'(k) small cancellation group is k-systolic.

e [T. Januszkiewicz — J. §] For each k > 6 there exist k-systolic groups
of arbitrary cohomological dimension.

On the other hand,
small cancellation groups have cohomological dimension < 2.



APPLICATIONS OF MINIMAL DIAGRAMS

Inductive criterion for k-largeness

Proposition. For k£ > 6,
if X is locally k-large and sysp(X) > k then X is k-large.

Proof:
Let v be a cycle in X with no diagonal. We need |vy| > k.

If v homotopically nontrivial, this follows from sysp(X) > k.

If v homotopically trivial, let f : A — X be a minimal area filling diagram
for v. Then

e A has at least one interior vertex,
e interior vertices of A are contained in > k triangles,

e boundary vertices of A are contained in > 2 triangles.

Euler characteristic argument (combinatorial Gauss-Bonnet) shows then
that |y| > k.

More precisely:

1=yx(A) = -[Z[3—X(v)]+ Z [6 — x(v)]]

vEAA vEintA

S =

where y(v) is the number of triangles in A containing v. Equivalently

6= B-x@]+ Y [6-x(v)]

vEOA vEINEA

Since 3 — x(v) <1 for v € OA and 6 — x(v) <6 — k <0 for v € intA,
we get
6 < |y|+[6— K, and hence k< |y



7-systolic = Gromov hyperbolic

Proposition.

If X is a 7-systolic simplicial complex then the 1-skeleton XV is Gromov
hyperbolic.

Corollary. Any 7-systolic group is word-hyperbolic.

Proof of Proposition (sketch):

We need to show that
geodesic triangles in X1 are §-thin for some universal 6.

o Geodesic bigons are 1-thin (exercise);
¢ thus we may restrict to embedded geodesic triangles

Let v be the boundary of an embedded geodesic triangle T',
and let f: A — X be a filling diagram for v with minimal area.

o 3 — x(v) < 2 at vertices of T}
& there are no vertices v inside sides of T with 3 — x(v) = 2

o any two vertices with 3 — x(v) = 1 inside one side of T
are separated by a vertex with 3 — x(v) < —1.

Thus, total curvature ) [3 — x(v)] inside each side of T" is < 1, and hence

Y B-x@)]<2+2+2+14+14+1=09.
vEDA

¢ By minimality, for any v € intA we have 6 — x(v) < —1;
¢ thus by Gauss-Bonnet, there are at most 3 interior vertices in A;

¢ hence § = 4 works.
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CONVEXITY

3-convexity in 6-large complexes

A subcomplex () in a 6-large simplicial complex X is 8-convez if

e (Qisfullin X, and

e for every geodesic (vg,v1,v2) in X with vg, vy € @ we have vy € Q.
Equivalently, polygonal paths with no diagonals intersecting () only at end-
points have length > 3. [this explains ”3” in the term]
Examples. e Every X is 3-convex in itself.

e Any simplex is 3-convex (trivially)

e The residue (or star) of a simplex ¢ in X is the subcomplex
Res(o,X) =U{r |o C 1} =0 X,.

Exercise: the residue of any simplex is 3-convex.

Diameter Criterion. Let () be a subcomplex in a 6-large X. If
e () is connected with diam(@ < 3, and
e Yo C X either Q, = X, or (., is connected with diam@, < 3

then @ is 3-convex in X. [proof uses diagrammatics]

Convexity in systolic complexes

A subcomplex @ in a systolic simplicial complex X is conver if
e () is connected, and

e () is locally 3-convex, ie. Vo CQQ (@, is 3-convex in X,.

Examples. e A subcomplex of the equilaterally triangulated E? is convex
iff it is convex in the ordinary sense.

e The same is not true in equilaterally triangulated H?2.

Proposition. A subcomplex @ in a systolic complex X is convex iff it is
geodesically convex. [proof will be sketched later]
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ASPHERICITY and 7,-INJECTIVITY

Asphericity Theorem. Let X be a locally 6-large (i.e. SNPC) connected
simplicial complex. Then

o \ is aspherical  (i.e. its universal cover X is contractible ],

e if () is a connected locally 3-convex subcomplex of X' then
m1() injects in 7.\,

Corollary [Cartan-Hadamard for SNPC].

Any systolic sitaplicial complex is contractible.

Sketch of proof of Asphericity Theorem:

locally convex maps

A simplicial map f : Q@ — X to an SNPC simplicial complex X is locally
conver it

e [ 1s nondegenerate.
e fislocally injective  [ie VYo CQ fo:Qus = Xy is injective |

e Vo C () the image fo(Qs) is 3-convex in X,

o
/ IXG
X\‘ - >
z‘\%\

12



Extension Lemma. Any locally convex map f : ) — X extends to a
map f : ) — X so that

e f is a covering map. and

e () C @ is a deformation retract.

Proof of Extension Lemma:

An elementary extension of a locally convex map f:Q — X is a map
Ef : EQ — X such that

(E1) Q C EQ is a deformation retract,

(E2) every simplex of EQ is a face of a simplex intersecting (),

(E3) Yo C Q  the induced map (Ef)q : (EQ)s — X (o) is an 1somor-

phism.

Fact. Every locally convex map has an elementary extension which is also
locally convex.
(proof is difficult)

f:Q—=X Ef:BQ - X

13




Construction of extension
Put recursively: E,f = Ef, E;QQ = EQ and
Eni1f = E(Enf), Ent1Q = E(EQ).
Then put
Q=U2,E,Q, [f=UXE,f where f:Q—-X.

By (E3), f is a covering map.
By (E1), @ C Q@ is a deformation retract. O

back to the proof of Asphericity Theorem
e Inclusion map f : |o| = X, for any simplex A of X, is locally convex.

e f extends to a covering map f:Y — X so that
lo| C Y is a deformation retract, i.e. Y is contractible.

e Thus X = Y, and hence X is contractible.

to prove m -injectivity part:

Q mQ
deform. f = = injective since
retr. f is a covering
Q — X T Q — X
f
Thus mQ — mX is injective. &
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DEVELOPABILITY

(remarks for those who know complexes of groups)

Definition. A complex of groups G is locally 6-large, or SNPC, if all local
developments of G are 6-large simplicial complexes.

Developability Theorem.
Any locally 6-large (i.e. SNPC) complex of groups is developable.

Sketch of proof:

A sequence of elementary extensions yields the universal covering map to
G, hence developability.

[We will discuss later, in greater deteail, the case of simplices of groups.]
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BALLS AND SPHERES

For a subcomplex A C X define balls (or neighbourhoods)
Bi(A,X)=U{rCX|tTNA#0}, Bp(A X)=DBi(Bn-1(4,X),X)

and spheres

Su(A, X) = U{r C Bu(A,X)| 7N Bp_1(A,X) = 0}.

balls and spheres in systolic complexes
Let @ be a convex subcomplex of a systolic simplicial complex X.
Elementary extension techniqes yield the following results.

e Balls B, (Q, X) are convex in X
(in particular, they are 3-convex and thus full).

e B,(Q,X) is the simplicial span of the vertex set
{v e X |dist(v,Q) <n}.

e 5,(Q, X) is the simplicial span of the vertex set
{v e X |dist(v,Q) =n}.
e Projection Lemma. For any 7 C 51(Q, X) the intersection
Res(t,X)NQ
is a single (nonempty) simplex.

Definition. We call this simplex the projection of T on Q.

e Link Lemma. Let 7 C S1(Q, X) and let o be the projection of 7 on
@. Then

(Sl (Qa X))T = Bl(aa XT)

[exercise; use Projection Lemma)
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STRONG CONVEXITY

Link Lemma motivates the following

Definition.
A connected subcomplex () of a systolic complex X is strongly convex if

V7 CQ
e cither QT = XT or
® Q = Bi(o, X;) for some o C Q.

Example.
For any convex subcomplex @ balls B, (Q, X) are strongly convex.

Strong convexity is stronger than convexity

Proof: apply Diameter Criterion of 3-convexity to links. %

Remark. Strong convexity will play crucial role in the construction of high
dimensional systolic spaces, as described later.
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DIRECTED GEODESICS

A sequence (o;) of simplices in a systolic complex X is a directed geodesic if
Res(o;, X) N By(0i42, X) =041
for all appropriate ¢.

B4

Examples: projection rays

A sequence 0g,01,...,0, of simplices is a projection ray on the final
simplex o, if o 09 C Sp(o,,X), and

o iy is the projection of o; on Bn_i-1(Q,X),for0<:<n—1

Note that: e projection ray from og to o, if exists, 1s unique;
e for any two vertices u,w € X there is a projection ray from u to v;

e cach projection ray is a directed geodesic.
[follows, essentially, from Projection Lemma)

Characterization of directed geodesics

A finite sequence of simplices is a directed geodesic
iff it is a projection ray on its final simplex.

Properties of directed geodesics

(1) If og,...,0, is a directed geodesic then any sequence vy, ..., v, of ver-
tices with v; € o; is a geodesic in X (1),

(2) Any two vertices are connected with unique directed geodesic.

(3) All simlices of a directed geodesic connecting two simplices from a
convex ubcomplex @ are contained in Q.

(4) Directed geodesics satisfy the 2-sided fellow traveller property.
[(1) and (2) follow from Characterization; (3) and (4) are difficult]
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CONVEXITY < GEODESIC CONVEXITY

Proposition. Any convex subcomplex () is geodesically convex.

Remark. The converse implication is easier.

Proof: Let u,w be any two vertices of ().

e Any two geodesics from u to w can be modified to one another by a
sequence of rhomb modifications.
[induction on lekgth of geodesics, using Projection Lemmal]

e There is a geodesic from u to w entirely contained in Q).
[use existence of a directed geodesic from u to w]

e Rhomb modifications turn geodesics contained in () to geodesics con-
tained in Q).

Thus, any geodesic from u to w is contained in ). &
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BIAUTOMATICITY

We omit definition of biautomaticity, mention consequences,
and present a geometric criterion with which we prove it for systolic group.

Consequences. Biautomatic groups are semihyperbolic. In particular,
for a biautomatic group

e cach abelian subgroup is undistorted,
e cach solvable subgroup is virtually abelian, and

e quadratic isoperimetric inequality holds.

Geometric Criterion

Let I' be a graph and G a group acting on I' by automorphisms, properly
discontinuously and cocompactly. Let P be a set of finite polygonal paths
in I' such that:

(1) for some vertex vy of I', any two vertices in the orbit G-vg are connected
with a path from P (P is transitive on G - vg),

(2) P satisfies 2-sided fellow traveller property, and
(3) P is d-locally recognized for some d.
Then G is biautomatic.

[J.g, Regular path systems and (bi)automatic groups,
Geometriae Dedicata 118 (2006), 23-48]

d-locally recognized path system
e R - set of G-congruence classes of length d polygonal paths in T’

e P(R) - the set of all finite paths v in I such that
o if |y] < d then [y-+'] € R for some +/
o if |y| > d then for any subpath 1 C 7 of length d we have [n] € R

o P is d-locally recognized if P = P(R) for some R as above

20



Biautomaticity Theorem. Every systolic group G is biautomatic.

Proof: Let GG act geometrically on a systolic complex X.

Put I' = (X’)(") - the 1-skeleton of the 1st barycentric subdivision.
Then G acts on I', geometrically.

Let P be the set of all paths in I' of form

(b(00),b(og *01),b(01),-..,b(0n-1),b(0n_1 % 04),b(0n))

where oy, ...,0, is a directed geodesic, b(o) is the barycenter of o.

e P is transitive on G - b(v) for any vertex v € X,
since any two vertices in X are joined with a directed geodesic.

e P satisfies the 2-sided fellow traveller
since directed geodesics do so.

e P is 2-locally recognized, by definition of directed geodesics.

By Geometric Criterion, GG is biautomatic. &
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RELATIONSHIP TO CAT(0)
e in dim =2: 6-systolic = CAT'(0) (for standard PE metric)

e in general:  6-systolic is not CAT(0) with standard PE metric

Example 1. Fix any £ > 6 and consider X equal to the simplicial
cone over U;cz/xz 0; * 0441, with dimo; = n. X is clearly k-systolic,
but if n is sufficiently large, X is not CAT'(0).

e conversely, there are simplicial complexes X which are CAT(0) for
standard PE metric, and are not systolic.

Example 2. X = (pentagon)x*o, with dim o = n, is clearly not systolic
(Xs = (pentagon)), and for sufficiently large n X is CAT(0) (dihedral
angle between codimension 1 faces of a regular simplex converges to
7/2 as the dimension grows).

e CAT(0)-Lemma.
For S denoting a finite set of shapes of Euclidean simplices we have:

VS3k X is k-systolic & Shapes(X) S — X is CAT(0)

e in particular, for standard PE metric:
Vn3k X is k-systolic & dim X <n = X is CAT(0)

(if n — oo then necessarily £ — 0o, due to Example 1 above)
Some explicit estimate. If

T2
2

then any k-systolic simplicial complex X with dim X < n is CAT(0)
for standard PE metric.

k> ‘n 4+ 2

e similar results hold for CAT'(—1)
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PROOF OF CAT(0)-LEMMA (SKETCH):

Since PE simply connected complex is C'AT(0) iff its spherical links are
CAT(1), it is sufficient to prove

CAT(1)-Lemma. Let IT be a finite set of shapes of spherical simplices.
Then there is £ > 6, depending only on II, such that
if X is a PS k-large simplicial complex with Shapes(X) C II
then X is CAT(1).

Preparations:
e for a closed geodesic v in PS complex X, size of v is the number of
maximal nontrivial subsegments in v contained in a single simplex of
X
e if Shapes(X) is finite then size of + is finite [Bridson]
e given a finite set S of shapes of spherical simplices, there is N such that
if || < 2 for a closed geodesic v in a PS complex X with Shapes(X) C

S, then size(y) < N [Bridson]

e if X is PS and oo-large simplicial complex, then X contains no closed
local geodesic
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Steps of argument:
e take S = link completion of II; the § is finite

e consider all closed geodesics 7, |v| < 2m, in all PS flag simplicial com-
plexes with Shapes(X) C S

e for each such X, let K, be the full subcomplex of X spanned by the
union of simplices whose interiors are intersected by -~

e there are finitely many K, up to simplicial isomorphisms, since the
number of their vertices is universally bounded

e complexes K, are not oo-large, since they contain closed geodesics

e put
k = max{sys(K,) | K, as above} + 1

where sys = length of the shortes cycle without diagonals

o if X is k-large, with Shapes(X) C S, then X has no closed geodesic ~
with |y] < 27
(otherwise K for this X, as full subcomplex of a k-large complex,
is k-large, a contradiction)

e thus, if X is k-large and Shapes(X) C II, then neither X nor any of its
spherical links contains a closed gedesic v with |y| < 27

e hence X is CAT(1)
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CONSTRUCTION

We present a construction of systolic complexes and groups of arbitrary
dimension.

SNPC simplices of groups:

X simplicial complex, G acts on X simplicially,
G\X = A top simplex in X

e simplex of groups associated to such action

G\X := (A, {Go}, {$or})
o for a face 0 C A G, := Stab(o,G) (local groups)

oforocDT Yor : Go — G (structure monomorphisms)

oifoc DT D pthen ¢rp0905r =¢@s, (compatibility)

e abstract simplex of groups G = (A, {G,}, {por})
o developable — G = G\\X for some G, X

o if developable, there are also G, X (uniquely determined)
s.t. G = G\\X and X simply connected

~ ~

o then G=:71(G), X=D(G)=G - universal development

or universal covering of G

e G contains information about links in potential D(G)
called local developments

e Gis SNPC — local developments are 6-large
e generalizes to locally k-large

e if G is a locally k-large simplex of finite groups, with & > 6,
then G is developable, G and 71 (G) are k-systolic

e if moreover GA = 1, G, = Z3 for codimension 1 faces o,
then G is a pseudomanifold, ved(mG) = dim A
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Examples of SNPC simplices of groups:

in dimension 2

g
G o= Z’“"/ftki local developments at vertices = O
pE
D(G) = (3.06)-plane

i (G) = reflection group of type A.

in dimension 3 A R

(s O-large torus

(in penerated by reflections

local developments:

at edges = /D'w‘\
at edges = ¢ )
\—/

at vertices = 1>

s ( is SNPC (local developments are 6-large), hence G is developable

e [} is a 6-systolic 3-dimensional pseudomanifold

X2¢




Inductive construction of simplices of groups:

e Lemma. Vk > 6 Vn 3 n-dimensional simplex of groups g s.t.
o G is locally k-large (=> developable),
o local groups G, are finite, Ga =1,
o m1(G) is residually finite.

Moreover, such G exists for any choice of finite groups G, at codim 1
faces o of A.

e for "sufficiently deep” finite index normal subgroup H <7 (9)
quotient H\D(G) is compact k-large of dimension n
("sufficiently deep” includes torsion-free, so that H acts freely)

o if codim 1 groups = Z» this gives pseudomanifolds

e inductive step in the proof of Lemma (sketch):

C‘!)_
gz — G4 61 M g3 —
GZA@

G2 G,

where G3 = m1(G2)/H, H <m(G2) sufficiently deep

(to get residual finiteness of m(G3)
some nontrivial extra care is necessary)
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getting residual finiteness

residual finiteness
A G is residually finite, if Vg € G, g # 1, there is a subgroup A of finite
index in GG with g ¢ A.

Remark. Note that, w.l.o.g., we may require that A < G is additionally
normal (just take the intersection of conjugates of Ain G).

extra-tilability

A locally 6-large simplex of groups G over a simplex A 1s locally cxtra-tilable
if —~ ~ ~
Yo C A CGVT C G, ball By(r, G,) is the strict fundamental domain
for the action of some subgroup A, < G, on g'?(,.

Example: Dy, = (a,b|a®, 0%, (ab)®), <
2

Daz

Doz, (%Y - T

Proposition. If G is a simplex of groups over A s.t.
e local groups G, are finite, GA = 1, and
e ( is locally 6-large and locally extra-tilable,

then 7, G is residually finite.

(Note: proposition applies to G as in Example)
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To prove Proposition

Tilability Lemma. Under assumptions of Proposition, for any strongly

convex subcomplex ) C G,
Q) is the strict fundamental domain for the action of some subgroup

Ag <mGong.
Moreover, if ) is finite then Ag has finite index in mg.

Idea of proof (through an instructive example)

. D) N
G = tesselation of H” by equilateral
triangles with angles 7 /6

™G = (s1, 52,5357 (si55)°)

rlQ = <(11 A bl, ey bl() la%, b‘f, ((qu(l,,‘+1)3, (b,bl+1 )3~, (bl()(fl;l )‘2‘ ((.I,H)b] )2>

Essential: links Qo have the form B (7, Xs), which nicely matches with

local extra-tilability.

Back to the proof of Proposition

Let g € mG, g # 1.
We need a finite index subgroup A < mG with g ¢ A.

e Let () = By(v,G) be a ball containing both A and g - A.

e () is finite and strongly convex, hence is the strict fundamental domain
for a subgroup Ag < m G of finite index.

e Since then g ¢ Ag, A= Ag does the job. &
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