UNIVERSITY
OF WROCŁAW
 
Main Page
Contents
Online First
General Information
Instructions for authors


VOLUMES
44.1 43.2 43.1 42.2 42.1 41.2 41.1
40.2 40.1 39.2 39.1 38.2 38.1 37.2
37.1 36.2 36.1 35.2 35.1 34.2 34.1
33.2 33.1 32.2 32.1 31.2 31.1 30.2
30.1 29.2 29.1 28.2 28.1 27.2 27.1
26.2 26.1 25.2 25.1 24.2 24.1 23.2
23.1 22.2 22.1 21.2 21.1 20.2 20.1
19.2 19.1 18.2 18.1 17.2 17.1 16.2
16.1 15 14.2 14.1 13.2 13.1 12.2
12.1 11.2 11.1 10.2 10.1 9.2 9.1
8 7.2 7.1 6.2 6.1 5.2 5.1
4.2 4.1 3.2 3.1 2.2 2.1 1.2
1.1
 
 
WROCŁAW UNIVERSITY
OF SCIENCE AND
TECHNOLOGY

Contents of PMS, Vol. 32, Fasc. 2,
pages 227 - 239
 

MOMENTS OF POISSON STOCHASTIC INTEGRALS WITH RANDOM INTEGRANDS

Nicolas Privault

Abstract: We show that the moment of order n of the Poisson stochastic integral of a random process (u )
  x x∈X  over a metric space X is given by the non-linear Mecke identity
   ∫
E[(   ux(ω )ω (dx))n]
    X              ∑         ∫
             =            E [   ε+𝔰k(u |Ps11|...u|sPkk|)σ(ds1)...σ(dsk)],
                (P1,...,Pk)∈Pn    Xk

where the sum runs over all partitions P1 ∪ ...∪ Pk  of (1,...,n) , |Pi| denotes the cardinality of Pi  , and  +
ε𝔰k  is the operator that acts by addition of points at s1,...,sk  to Poisson configurations. This formula recovers known results in case (u(x))x∈X  is a deterministic function on X .

2000 AMS Mathematics Subject Classification: Primary: 60G57; Secondary: 60G55, 60H07.

Keywords and phrases: Poisson stochastic integrals, moment identities, Bell polynomials, Poisson–Skorohod integral.

Download:    Abstract    Full text   Abstract + References