UNIVERSITY
OF WROC£AW
 
Main Page
Contents
Online First
General Information
Instructions for authors


VOLUMES
43.2 43.1 42.2 42.1 41.2 41.1 40.2
40.1 39.2 39.1 38.2 38.1 37.2 37.1
36.2 36.1 35.2 35.1 34.2 34.1 33.2
33.1 32.2 32.1 31.2 31.1 30.2 30.1
29.2 29.1 28.2 28.1 27.2 27.1 26.2
26.1 25.2 25.1 24.2 24.1 23.2 23.1
22.2 22.1 21.2 21.1 20.2 20.1 19.2
19.1 18.2 18.1 17.2 17.1 16.2 16.1
15 14.2 14.1 13.2 13.1 12.2 12.1
11.2 11.1 10.2 10.1 9.2 9.1 8
7.2 7.1 6.2 6.1 5.2 5.1 4.2
4.1 3.2 3.1 2.2 2.1 1.2 1.1
 
 
WROC£AW UNIVERSITY
OF SCIENCE AND
TECHNOLOGY

Contents of PMS, Vol. 41, Fasc. 1,
pages 9 - 23
DOI: 10.37190/0208-4147.41.1.2
Published online 25.2.2021
 

Energy of taut strings accompanying random walk

Mikhail A. Lifshits
Anatoly A. Siuniaev

Abstract: We consider the kinetic energy of the taut strings accompanying trajectories of a Wiener process and a random walk. Under certain assumptions on the band width, it is shown that the energy of a taut string accompanying a random walk within a band satisfies the same strong law of large numbers as proved earlier for a Wiener process and a fixed band width. New results for Wiener processes are also obtained.

2010 AMS Mathematics Subject Classification: Primary 60G15; Secondary 60G17, 60F15.

Keywords and phrases: kinetic energy, taut string, Wiener process, random walk, KMT-approximation.

G. B. Dantzig, A control problem of Bellman, Management Sci. Theory Ser. 17 (1971), 9, 542–546.

P. L. Davies and A. Kovac, Local extremes, runs, strings and multiresolution, Ann. Statist. 29 (2001), 1, 1–65.

L. Dümbgen and A. Kovac, Extensions of smoothing via taut strings, Electron. J. Statist. 3 (2009), 41–75.

I. A. Ibragimov, M. A. Lifshits, and Z. Kabluchko, Some extensions of linear approximation and prediction problems for stationary processes, Stoch. Processes Appl. 129 (2019), 2758–2782.

Z. Kabluchko and M. Lifshits, Least energy approximation for processes with stationary increments, J. Theoret. Probab. 30 (2017), 1, 268–-296.

Z. Kabluchko and M. Lifshits, Adaptive energy saving approximation for stationary processes, Izv. Math. 83 (2019), 5, 932–956.

J. Komlós, P. Major, and G. Tusnády, An approximation of partial sums of independent RV’s, and the sample DF. I, Z. Wahrsch. Verw. Gebiete 32 (1975), 111–131.

J. Komlós, P. Major, and G. Tusnády, An approximation of partial sums of independent RV’s, and the sample DF. II, Z. Wahrsch. Verw. Gebiete 34 (1976), 34–58.

N. Kruglyak and E. Setterqvist, Discrete taut strings and real interpolation, J. Funct. Anal. 270 (2016), 671–704.

N. Kruglyak and E. Setterqvist, Invariant K-minimal sets in the discrete and continuous setting, J. Fourier Anal. Appl. 23 (2017), 572–611.

M. Lifshits, Gaussian Random Functions, Kluwer, Dordrecht, 1995.

M. Lifshits and E. Setterqvist, Energy of taut string accompanying Wiener process, Stoch. Processes Appl. 125 (2015), 401–427.

R. M. Lochowski and P. Miłos, On truncated variation, upward truncated variation and downward truncated variation for diffusion, Stoch. Processes Appl. 123 (2013), 446–474.

P. Major, The approximation of partial sums of independent r.v.’s, Z. Wahrsch. Verw. Gebiete 35 (1976), 213–220.

E. Mammen and S. van de Geer, Locally adaptive regression splines, Ann. Statist. 25 (1997), 1, 387–413.

F. Modigliani and F. E. Hohn, Production planning over time and the nature of the expectation and planning horizon, Econometrica 23 (1955), 46–66.

A. I. Sakhanenko, Convergence rate in the invariance principle for non-identically distributed variables with exponential moments, in: A. A. Borovkov (ed.), Limit Theorems for Sums of Random Variables, Springer, New York, 1985, 2–73.

E. Schertzer, Renewal structure of the Brownian taut string, Stoch. Processes Appl. 128 (2018), 2, 487–504.

O. Scherzer et al., Variational Methods in Imaging, Appl. Math. Sci. 167, Springer, New York, 2009.

E. Setterqvist and R. Forchheimer, Real-time communication systems based on taut strings, J. Communications Networks 20 (2018), 2, 207–218.

A. Yu. Zaitsev, The accuracy of strong Gaussian approximation for sums of independent random vectors, Russian Math. Surveys 68 (2013), 4, 721–-761.

Download:    Abstract    Full text