Compactifiable classes of compacta

Seminarium: 
Topologia
Osoba referująca: 
Adam Bartoš (Uniwersytet Wrocławski)
Data spotkania seminaryjnego: 
poniedziałek, 14. Październik 2019 - 17:15
Sala: 
604
Opis: 
Two classes of topological spaces are \emph{equivalent} if every member of one class has a homeomorphic copy in the other class and vice versa. We say that a class of metrizable compacta $\mathcal{C}$ is \emph{compactifiable} if there is a continuous map $q\colon A \to B$ between metrizable compacta such that the family $\{q^{-1}(b): b \in B\}$ is equivalent to $\mathcal{C}$. I will present several results from the joint work with J. Bobok, J. van Mill, P. Pyrih, and B. Vejnar arxiv.1801.01826.