Sheldy Ombrosi (Universidad Complutense de Madrid)
In 1981 Strömberg proved that the center Hardy-Littlewood maximal
operator $M$ is of the weak-type $(1,1)$ in the context of Hyperbolic
spaces. In fact his result actually is in a more general context
(non-compact symmetric spaces). For $p>1$ boundedness results were
previously obtained by Stein and Clerk. The main difficulty in the
Hyperbolic setting is the exponential growth of the measure of a ball in
terms of its radio.This difficulty has generated that, to the best of
our knowledge, no general theory of weights has been developed in this
context.
In this talk using ideas of the discrete setting ($k$-trees) due to Naor
and Tao we will show that it is possible to obtain a Fefferman-Stein
endpoint weighted estimate generalizing the result of Strömberg.
Moreover, we also obtain (sharp) sufficient (geometric) conditions in a
weight $w$ for the weak and strong estimates of $M$ in the spaces
$L^p(w)$ for $p>1$.
The talk is based on a joint work with J. Antezana.
Streszczenie. W latach pięćdziesiątych Gagliardo wykazał, że dla obszaru $\Omega$ z
regularnym brzegiem operator śladu z przestrzeni Sobolewa
$W^1_1(\Omega)$ do przestrzeni $L^1(\partial \Omega)$ jest surjekcją.
Zatem naturalne jest pytanie o istnienie prawego odwrotnego operatora
do operatora śladu. Petree udowodnił, że w przypadku półpłaszczyzny
$\mathbb{R}x\mathbb{R}_{+}$ nie istnieje prawy odwrotny operator do
operatora śladu. Podczas referatu przedstawię prosty dowód twierdzenia
Petree, który wykorzystuje tylko pokrycie Whitney'a danego obszaru
oraz klasyczne własności przestrzeni Banacha. Następnie zdefiniujemy
operator śladu z przestrzeni Sobolewa $W^1_1(K)$, gdzie $K$ jest
płatkiem Kocha. Przez pozostałą część mojego referatu skonstruujemy
prawy odwrotny do operatora śladu na płatku Kocha. W tym celu
scharakteryzujemy przestrzeń śladów jako przestrzeń Arensa-Eelsa z
odpowiednią metryką oraz skorzystamy z twierdzenia Ciesielskiego o
przestrzeniach funkcji hölderowskich.
Entropy Weighted Regularisation: A General Way to Debias Regularisation Penalties
Olof Zetterqvist (University of Gothenburg/Chalmers)
Lasso and ridge regression are well established and successful models for variance reduction and, for the lasso, variable selection. However, they come with a disadvantage of an increased bias in the estimator. In this seminar, I will talk about our general method that learns individual weights for each term in the regularisation penalty (e.g. lasso or ridge) with the goal to reduce the bias. To bound the amount of freedom for the model to choose the weights, a new regularisation term, that imposes a cost for choosing small weights, is introduced. If the form of this term is chosen wisely, the apparent doubling of the number of parameters vanishes, by means of solving for the weights in terms of the parameter estimates. We show that these estimators potentially keep the original estimators’ fundamental properties and experimentally verify that this can indeed reduce bias.
Symetryzatory na grupie hyperoktahedralnej B(n) (inaczej permutacje znakowane) z zastosowaniami do modeli przestrzeni Focka typuB
Marek Bożejko (Uniwersytet Wroclawski)
W referacie opiszemy zachowanie się symetryzatorów postaci
$$P(\alpha,q) (x) = \alpha^{l_{1}(x)} q^{l_{2}(x))},$$ dla pewnych
naturalnych długości $l(i) ,i=1,2$, na grupie $B(n)$ .
Zbadamy kiedy te symetryzatory sa odwracalne i podamy zastosowania do
konstrukcji nowych przestrzeni Focka.
Podamy zwiazki z przestrzeniami q-Focka i przestrzeniami t-Focka,ktore
badalismy z Januszem Wysoczanskim. Beda tez problemy z tej tematyki. Praca wspolna z Wiktorem Ejsmontem.
Virtual combination of relatively quasiconvex subgroups and separability properties
Ashot Minasyan
Quasiconvex subgroups are basic building blocks of hyperbolic groups, and relatively quasiconvex subgroups play a similar role in relatively hyperbolic groups. If $Q$ and $R$ are relatively quasiconvex subgroups of a relatively hyperbolic group $G$ then the intersection $Q \cap R$ will also be relatively quasiconvex, but the join $\langle Q,R \rangle$ may not be. I will discuss criteria for the existence of finite index subgroups $Q’ \leqslant_f Q$ and $R’ \leqslant_f R$ such that the ``virtual join’’ $\langle Q’, R’ \rangle$ is relatively quasiconvex. This is closely related to separability properties of $G$ and I will present applications to limit groups, Kleinian groups and fundamental groups of graphs of free groups with cyclic edge groups. The talk will be based on joint work with Lawk Mineh.
In a recent work, we show that if A is an open subset of
SO(3,R) with sufficiently small normalized Haar measure, then
\mu(A^2) >3.99 \mu(A).
Our result was conjectured by Breuillard and Green around 2010 in the
context of finding continuous counterparts of product theorems for
groups of Lie type by Helfgott, Pyber-Szabo, and Breuillard-Green-Tao.
In less precise forms, the question traces back to much earlier works
of Henstock and Macbeath in the 50s.
In this talk, I will discuss this result and its proof highlighting
the fact that ideas from neostable group theory serve both as actual
ingredients of the argument and as conceptual principles behind the
stage. (Based on joint work with Yifan Jing and Ruixiang Zhang)
Simulation of uniformly distributed points on some geometrical objects
Tomasz Rolski (Uniwersytet Wrocławski)
We will survey various methods for simulation of uniformly distributed points on geometrical objects. In particular we consider d-dimensional balls, d-1-dimensional spheres. Interesting and not obvious problems appear when simulating random points on ellipses or ellipsoids. We conclude with a "numerical methods" for generating random points on parametrized objects like hyper-ellipsoids.
A set of reals X is Menger if for any countable sequence of open covers of
X one can pick finitely many elements from every cover in the sequence such
that the chosen sets cover X. Any set of reals of cardinality smaller than
the dominating number d is Menger and there is a non-Menger set of
cardinality d. By the result of Bartoszyński and Tsaban, in ZFC, there is a
totally imperfect (with no copy of the Cantor set inside) Menger set of
cardinality d. We solve a problem, whether there is such a set of
cardinality continuum. Using an iterated Sacks forcing and topological
games we prove that it is consistent with ZFC that d